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Improvements for calculating two-phase bubble and drop motion using an
adaptive sharp interface method.
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Abstract: In this paper, we describe new tech-
niques for numerically approximating two-phase
flows. Specifically, we present new techniques
for treating the viscosity and surface tension terms
that appear in the Navier-Stokes equations for in-
compressible two-phase flow. Our resulting nu-
merical method has the property that results com-
puted using our two-phase algorithm approach the
corresponding “one-phase” algorithm in the limit
of zero gas density/viscosity; i.e. the two-phase
results approach the one-phase free-boundary re-
sults in the limit that the gas is assumed to become
a uniform pressure void. By grid convergence
checks and comparison with previous experimen-
tal data, we shall demonstrate the advantages of
our new proposed discretizations.

Keyword: volume-of-fluid method, sharp inter-
face, multiphase flow, surface tension, viscosity

1 Introduction

The accurate numerical treatment of surface ten-
sion and viscous effects in two-fluid problems
has many applications. For example, Cristini
and Renardy (2006) computed flows applicable
to monodisperse emulsions. Jimenez, Sussman,
and Ohta (2005) computed bubble motion in vis-
coelastic flows, which has applications in the
study of bioreactors and chemical separators.

In this paper, we present new techniques for treat-
ing the surface tension terms and viscosity terms
as they appear in the Navier-Stokes equations for
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two-phase flows. The governing equations for in-
compressible, immiscible two-phase flow can be
written according to Chang, Hou, Merriman, and
Osher (1996) as:

ρ DU
Dt

=

∇ · (−pI +2μD)+ρgẑ−σκ(F)∇H, (1)

∇ ·U = 0,

Dφ
Dt

= 0, (2)

DF
Dt

= 0, (3)

ρ = ρLH(φ )+ρG(1−H(φ )),

μ = μLH(φ )+ μG(1−H(φ )),

κ(φ ) = ∇ · ∇φ
|∇φ | (4)

or,

κ(F) = ∇ · ∇F
|∇F| , (5)

H(φ ) =
{

1 φ ≥ 0
0 φ < 0

(6)

φ is a level set function which is positive in liq-
uid and negative in gas. F is a volume-of-fluid
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function which, for each computational cell, rep-
resents the fraction of fluid that is liquid. i.e.
F = 1 if a cell contains only liquid, F = 0 if a
cell contains only gas and 0 < F < 1 otherwise.
In the numerical algorithm we present in this pa-
per, we shall couple the solutions of φ and F in the
same manner as described by Sussman and Puck-
ett (2000).

The other variables are defined as follows: U is
the velocity vector, p is the pressure, D = 1

2(∇U +
∇UT ) is the rate of deformation tensor, g corre-
sponds to the acceleration due to gravity, μL (μG)
is the viscosity of liquid (gas), ρL (ρG) is the den-
sity of liquid (gas), κ is the curvature, and σ is the
coefficient of surface tension.

Numerical algorithms for calculating the surface
tension force term,

σκ∇H,

have been presented from the perspective of front
tracking algorithms, volume-of-fluid algorithms,
level set methods, and various hybrid methods.
Example implementations of surface-tension in
the context of front tracking methods are pre-
sented by Nobari, Jan, and Tryggvason (1993),
Unverdi and Tryggvason (1992), Udaykumar,
Rao, and Shyy (1996), Ye, Shyy, and Chung
(2001), and Popinet and Zaleski (1999). Exam-
ples in the context of volume-of-fluid methods
are presented by Brackbill, Kothe, and Zemach
(1992), Francois, Cummins, Dendy, Kothe, Si-
cilian, and Williams (2006), Aleinov and Puck-
ett (1995), Rudman (1998), and Gueyffier, Li,
Nadim, Scardovelli, and Zaleski (1999). Ex-
amples in the context of the level set method
are presented by Sussman, Smereka, and Osher
(1994),Kang, Fedkiw, and Liu (2000), Liu, Kr-
ishnan, Marella, and Udaykumar (2005). Finally,
examples in the context of various hybrid meth-
ods have been presented by Sussman and Puckett
(2000), Sussman (2003), and Enright, Marschner,
and Fedkiw (2002). The ability to accurately cal-
culate surface tension can be important for mod-
eling the impact of drops on surfaces, contact line
dynamics, bubble motion, and the break-up of liq-
uid jets. In previous work by Sussman (2003),
a second order coupled level set and volume of

fluid method was presented for calculating bub-
ble growth and collapse. In that work, the “height
fraction” technique, as originally described by
Helmsen, Colella, and Puckett (1997), was em-
ployed to accurately calculate curvature directly
from volume fractions. In this work we demon-
strate that the “height fraction” technique can be
extended to calculate curvature to any order of ac-
curacy.

Conventional wisdom would have it that only a
level set representation of an interface is capa-
ble of having a very high order accurate method
for extracting the interface curvature. For ex-
ample, a “spectral” level set approach was pre-
sented by Sussman and Hussaini (2003). Previ-
ous methods for extracting curvature from volume
fractions have been proposed by Chorin (1985)
(osculating circle technique), Poo and Ashgriz
(1989), Aleinov and Puckett (1995) (convolution
technique), Williams, Kothe, and Puckett (1998),
Renardy and Renardy (2002) (“PROST”), Helm-
sen, Colella, and Puckett (1997) (height frac-
tion), Sussman (2003) (height fraction), Francois,
Cummins, Dendy, Kothe, Sicilian, and Williams
(2006) (height fraction), and Cummins, Francois,
and Kothe (2005) (height fraction). The chal-
lenge in accurately calculating curvature from the
volume-of-fluid function F is the fact that F tran-
sitions sharply from 0 (computational cell con-
taining only gas) to 1 (computational cell con-
taining only liquid). Of all the approaches for
calculating curvature from volume fractions, the
“height fraction” approach is the most direct, and,
in contrast to convolution techniques, it is “local-
ized.”

In this paper we present a systematic approach to
extending the “height fraction” approach to any
order of accuracy (i.e. higher than second order).
We show specifically in this paper how to cal-
culate curvature up to fourth order accuracy and
provide guidelines of how to compute curvature
to higher orders. We remark that for higher than
fourth order accuracy, one would have to retain
an ever increasing number of terms in the Taylor
series expansion of the height function, but we be-
lieve this procedure can be automated if necessary
to get very large orders of accuracy.
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In addition to presenting new techniques for dis-
cretizing the curvature, we shall also present new
“sharp-interface” techniques for discretizing the
viscous force terms,

∇ · (2μD).

In Sussman, Smereka, and Osher (1994) and
Kang, Fedkiw, and Liu (2000), the viscous force
terms were treated explicitly. An explicit treat-
ment is unacceptable for handling a wide range of
bubble or drop deformation problems. For exam-
ple, many non-Newtonian fluids also have large
values for the viscosity coefficient, in these cases
the explicit viscous timestep constraint is too re-
strictive. In Liu, Krishnan, Marella, and Udayku-
mar (2005), the viscous terms were split into two
parts; one part reduced to the Laplacian of the
velocity, the other part is related to the jump in
stress at the liquid/gas boundary. The first part
(Laplacian of velocity) was treated implicitly and
the second part was treated explicitly. For cases
in which the gas viscosity equals the liquid vis-
cosity, there would be no time step constraints on
the method proposed by Liu, Krishnan, Marella,
and Udaykumar (2005), but for cases where there
is a jump in viscosity, one would have the same
time-step constraints as a method that treated the
viscous terms explicitly.

Sussman, Almgren, Bell, Colella, Howell, and
Welcome (1999) and Li, Renardy, and Renardy
(2000) treated the viscous terms implicitly and
semi-implicitly respectively. Both approaches,
Sussman, Almgren, Bell, Colella, Howell, and
Welcome (1999) and Li, Renardy, and Renardy
(2000), had no time-step constraint related to the
viscous terms, but neither of these methods was
for a “sharp-interface” approach. The method
proposed by Sussman, Almgren, Bell, Colella,
Howell, and Welcome (1999) led to a coupled sys-
tem that was simultaneously solved for all three
components of the velocity; the resulting matrix
equation for the coupled system necessitated a
complicated matrix iterative solver which was not
guaranteed to converge. In recent work, Suss-
man, Smith, Hussaini, Ohta, and Zhi-Wei (2007)
presented a two-phase sharp-interface approach
in which the viscous terms were handled implic-

itly, but similarly as in Sussman, Almgren, Bell,
Colella, Howell, and Welcome (1999), the re-
sulting matrix system was not guaranteed to con-
verge. Another drawback to the method proposed
by Sussman, Smith, Hussaini, Ohta, and Zhi-Wei
(2007), is that it is difficult to extend the matrix
iterative solver from solving problems on a sin-
gle, fixed, uniform rectangular grid, to a compos-
ite matrix iterative solver for solving problems on
an adaptive hierarchy of grids.

In this paper, we shall extend upon the ideas of
Li, Renardy, and Renardy (2000) for treating the
viscous force terms. In other words, we still will
not have a time-step constraint associated with
the viscous force terms, and at the same time,
the resulting matrix system will be decoupled
and diagonally dominant. Therefore the method
we present here for discretizing the viscous force
terms will be more robust than that presented by
Sussman, Almgren, Bell, Colella, Howell, and
Welcome (1999) and Sussman, Smith, Hussaini,
Ohta, and Zhi-Wei (2007). We incorporate the
same splitting techniques as Li, Renardy, and Re-
nardy (2000) but in a sharp interface framework
instead of a smoothed interface framework; and
on an adaptive hierarchy of grids instead of a sin-
gle uniform grid. By treating the coupled viscous
force terms explicitly and the remainder of the
viscous force terms implicitly, we can use previ-
ously developed matrix iterative solvers that have
been designed for an adaptive hierarchy of grids.
For the results in this paper, we use a solver de-
veloped for an adaptive hierarchy of grids that ex-
ploits multigrid techniques across adaptive levels,
and the multigrid preconditioned conjugate gradi-
ent on a specific level; we refer the reader to the
work of Sussman (2005). In previous work, the
composite solver described by Sussman (2005)
was applied to the pressure projection equations.
In this work, we use this composite solver for each
component of the viscous force terms as well.

Our discretization of the viscous force terms has
the property that in the limit of zero gas density,
zero gas viscosity, our discretization of the vis-
cous force terms reduces to the discretization that
would appear if one were just computing the so-
lution to the liquid only, and treating the gas pres-
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sure as spatially constant.

2 Surface Tension: Curvature discretization
using “height fractions”

In this section we describe high order discretiza-
tion techniques for the curvature κ , which appears
in the surface tension force term,

σκ∇H.

The curvature of an interface is computed to sec-
ond or fourth order accuracy from the volume
fractions. The method is based on reconstruct-
ing the “height” function, Helmsen, Colella, and
Puckett (1997), from the volume fractions. The
first step in determining the curvature is to first
determine whether the interface is more aligned
horizontally (along the x-y plane), vertically in the
x-z plane, or vertically in the y-z plane. Since we
represent the interface using the coupled levelset
and volume-of-fluid method, the orientation is de-
termined by looking at the maximum component
of the gradient of the levelset function. Without
loss of generality, we assume that the free surface
is oriented more horizontal than vertical; i.e. we
assume that |φz| ≥ |φx| and |φz| ≥ |φy| where,

(φz)i, j,k ≈ φi, j,k+1−φi, j,k−1

2Δz

For a second order curvature algorithm, a 3x3x7
stencil of volume fractions is constructed about
cell (i, j,k). For the fourth order algorithm, a
5x5x13 stencil of volume fractions is constructed
about cell (i, j,k). The following 3x3 (5x5 for
fourth order) vertical sums, Fi′, j′ , i′ = −1 . . .1,
j′ = −1 . . .1, are calculated as (e.g. second order
case),

Fi′, j′ =
3

∑
k′=−3

Fi′+i, j′+ j,k′+k,

where Fi′, j′ (2 indices) is defined as a vertical sum
and Fi, j,k (3 indices) is the volume fraction of liq-
uid in cell (i, j,k). Please see Figure 1 for a two
dimensional illustration of a valid 3x7 stencil on
the left and an invalid 3x3 stencil on the right. As
long as the interface does not exit the bottom or

top of the 3x3x7 second order stencil (or 5x5x13
fourth order stencil), the vertical sums are exact
integrals of the height function h(x,y) (up to a
constant); i.e.

Fi′, j′ΔxΔyΔz =∫ xi+i′+1/2

xi+i′−1/2

∫ y j+ j′+1/2

y j+ j′−1/2

h(x,y)dxdy+C. (7)

It can be shown that Δz(F1,0 − F−1,0)/(2Δx) is a
second order approximation to hx(xi,y j) and that
Δz(F1,0−2F0,0 +F−1,0)/Δx2 is a second order ap-
proximation to hxx(xi,y j). In general, one expands
h(x,y) in a Taylor series,

h(x,y) =h(xi,y j)
+(x−xi)hx(xi,y j)

+
1
2
(x−xi)2hxx(xi,y j)

+
1
6
(x−xi)3hxxx(xi,y j)

+
1
24

(x−xi)4hxxxx(xi,y j)

+(y−y j)hy(xi,y j)

+
1
2
(y−y j)2hyy(xi,y j)

+
1
6
(y−y j)3hyyy(xi,y j)

+
1
24

(y−y j)4hyyyy(xi,y j)

+(x−xi)(y−y j)hxy(xi,y j)

+
1
2
(x−xi)2(y−y j)hxxy(xi,y j)

+
1
2
(x−xi)(y−y j)2hxyy(xi,y j)

+
1
4
(x−xi)2(y−y j)2hxxyy(xi,y j)

+higher order terms.

After integrating the Taylor series expansion of
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Figure 1: Two dimensional illustration of a valid
3x7 stencil on the left and an invalid 3x3 stencil on
the right for calculating curvature using the height
function approach. The vertical sums on the right
are invalid since the interface exits the bottom of
the 3x3 stencil.

h(x,y) and using (7), one has,

Fi′, j′Δz =h(xi+i′,y j+ j′)

+
1
24

Δx2hxx(xi+i′ ,y j+ j′)

+
1

(16)(120)
Δx4hxxxx(xi+i′ ,y j+ j′)

+
1
24

Δy2hyy(xi+i′ ,y j+ j′)

+
1

(16)(120)
Δy4hyyyy(xi+i′ ,y j+ j′)

+
1

(24)(24)
Δx2Δy2hxxyy(xi+i′ ,y j+ j′)

+higher order terms.

(8)

For a horizontally orientated surface, the curva-
ture is written as,

κ = ∇ ·n

where,

n =
(
− hx√

1+h2
x+h2

y
,− hy√

1+h2
x+h2

y
, 1√

1+h2
x+h2

y

)
.

For a fourth order approximation to the curvature,
we must approximate hx, hy, hxx, hyy and hxy with

fourth order accuracy. We assume the discretiza-
tion of each of these terms has the form,

∂ l+mh(xi,y j)
∂xl∂ym = Δz

2

∑
i′=−2

2

∑
j′=−2

Al,m
i′, j′Fi′ , j′

where l = 0,1,2 and m = 0,1,2. The coefficients,
Al,m

i′, j′ (i′ = −2 . . .2 and j′ = −2 . . .2), are deter-
mined by the “method of undetermined coeffi-
cients” in which one uses the relation (8) to relate
Fi′, j′ to h, and the fact that our discretization for
the derivatives of h should be exact for the poly-
nomials hp,q(x,y) = (x− xi)p(y− y j)q where p =
0 . . .4 and q = 0 . . .4. As a result, for each deriva-
tive (l,m) of h, one constructs a matrix system of
equations with 25 equations and 25 unknown co-
efficients Al,m

i′, j′ , i′ = −2 . . .2, j′ = −2 . . .2. Each
row in the matrix system corresponds to a differ-
ent hp,q(x,y), p = 0 . . .4, q = 0 . . .4. The coeffi-
cients on a particular row are determined by (8).
For example the 7th row, 1st column of the matrix
is given by F−2,−2 which is determined by plug-
ging h1,1(x,y) into (8). The 7th row entry of the
right hand side of the matrix system corresponds
to

∂ l+mh1,1(xi,y j)
∂xl∂ym .

In two dimensions, one has the following fourth
order approximations,

∂h(xi)
∂x

≈ Δy
Δx

(
5
48

(F−2 −F2)+
17
24

(F1 −F−1)
)

∂ 2h(xi)
∂x2 ≈
Δy
Δx2

(−1
8

(F−2 +F2)+
3
2
(F1 +F−1)− 11

4
F0

)

Our derivation above for approximating curva-
ture from volume fractions is dependent on the
fact that a column sum of volume fractions cor-
responds to the associated integral of the height
function (7). If the interface should pass through
any 1x1x13 column (4th order method) of data
more than once, then the height function is not
well defined. In this case we implement a fix
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that does not sacrifice the order of accuracy of our
method. Given a 1x1x13 column of data, denoted
as Fk, k = −6 . . .6, our fix is implemented as fol-
lows:

• construct a temporary level set function,
φk = Fk −1/2.

• Determine the critical index k∗ that is closest
to zero among the indices of cells where the
temporary level set function changes sign:
i.e.

k∗ = sign(k) min
φkφk+1≤0

|k|.

• Determine the zero crossing kcross between
k∗ and k∗ +1:

kcross = k∗ +
φk∗

φk∗+1 −φk∗

• Reinitialize φk to be the distance from kcross.
For k = −6 . . .6,

φk =
{

k−kcross zk∗+1 > zk∗

kcross −k zk∗+1 < zk∗

• Fix the column data Fk,

Fk =

⎧⎨
⎩

0 φk < −2
1 φk > 2
Fk otherwise

2.1 Numerical validation of curvature dis-
cretization for a circle

We check our curvature discretization algorithm
for a circle in 2d or a sphere in 3d. In 2d, we have
a unit circle located at the point (2,2) in a 4x4 do-
main. In 3d, we have a unit sphere located at the
origin in a 2x2x2 domain. Symmetric boundary
conditions are used at the borders of the domain.
As demonstrated by tables 1, and 2, we get the
appropriate order of accuracy for our high order
height fraction curvature discretization schemes.

Table 1: Convergence study for computing cur-
vatures from volume fractions of a unit circle in
2d. Errors for the second order and fourth order
discretizations are reported.

Δx E2nd
max E4th

max E2nd
avg E4th

avg

1/16 0.0031 0.00104 0.0019 0.00016
1/32 0.0007 4.21E-5 0.0005 7.9E-6

Table 2: Convergence study for computing cur-
vatures from volume fractions of a unit sphere in
3d. Errors for the second order and fourth order
discretizations are reported.

Δx E2nd
max E4th

max E2nd
avg E4th

avg

1/16 0.050 0.03288 0.0035 0.00079
1/32 0.010 0.00084 0.0009 2.13E-5

2.2 Parasitic currents

In this section we test our implementation of sur-
face tension for the problem of a static 2d drop
with diameter D. We assume the drop is sur-
rounded by gas with uniform pressure and zero
viscosity. The exact solution for such a problem
is that the velocity u is identically zero. If we scale
the Navier-Stokes equations by the time scale T =
Dμ/σ , and by the velocity scale U = σ/μ , then
the non-dimensionalized Navier-Stokes equations
in the drop become,

Du
Dt

= −∇p+Oh2Δu−Oh2κ∇H.

where the Ohnesorge number Oh is defined as,

Oh =
μ√

σρD
.

The numerical simulation uses the coupled lev-
elset and volume-of-fluid (CLSVOF) algorithm
described in Sussman (2003). We investigate
the maximum velocity of our numerical method
for varying grid resolutions at the dimensionless
time t = 250. The dimensions of our computa-
tional grid are [0,1]x[0,1] with symmetric bound-
ary conditions at all boundaries. A unit diameter
drop is placed at the origin of our domain. In other
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Table 3: Convergence study for static droplet
with surface tension (parasitic currents test).
Droplet is surrounded by gas with uniform pres-
sure and zero viscosity. Maximum velocity at
t = 250 is shown. 1/Oh2 = 12000. The liquid
density is one. Results for the second order dis-
cretization of curvature and the fourth order dis-
cretization are reported.

Δx
max. velocity
(2nd)

max. velocity
(4th)

1.0/32 1.4E-6 3.6E-7
1.0/64 1.5E-7 1.1E-8

words, we only compute with a quarter of the drop
in the domain, and assume symmetry for the solu-
tion of the rest of the drop. Our tolerance for the
pressure solver and viscous solver is 1.0E − 12.
In table 3 we display results of our grid refine-
ment study for 1/Oh2 = 12000. We used both
the second order height fraction algorithm and the
fourth order height fraction algorithm for calcu-
lating curvature. Our results indicate at least sec-
ond order convergence when the second order cur-
vature discretization is used, and at least fourth or-
der convergence when the fourth order curvature
discretization is used. For a reference of previous
results for parasitic currents, we refer the reader to
work by Popinet and Zaleski (1999) and Francois,
Cummins, Dendy, Kothe, Sicilian, and Williams
(2006).

As a remark, the overall accuracy of our numer-
ical method is first order since the temporal dis-
cretization approach for the viscous force terms
(backwards Euler for the decoupled terms) is only
first order accurate. But, for problems which
are dominated by surface tension effects, the im-
proved accuracy in calculating curvature can have
a positive impact on the overall error since the er-
ror for the discretization of the curvature domi-
nates the overall error anyway. In our results here
for parasitic currents, and also our results in sec-
tion 6.1 for a 2D drop in shear flow, the improved
accuracy in discretizing the curvature reduces the
overall error significantly, even though the formal
overall order of our method is only first order.

3 Viscosity: An adaptive, sharp interface
treatment for the viscous force terms

We present in this section a simple and robust
adaptive method for computing the viscous forces
as they appear in (1),

∇ · (2μD). (9)

Our algorithm follows the same strategy as pro-
posed by Li, Renardy, and Renardy (2000) in
which we discretize the coupling terms in (9) ex-
plicitly and the remainder of the terms implicitly.
It was shown by Li, Renardy, and Renardy (2000)
that the following temporal discretization for the
viscous forces is stable for any time step:

ρ
u∗∗−u∗

Δt
=

∇ ·μ∇u∗∗ +(μu∗∗x )x +(μv∗x)y +(μw∗
x)z (10)

ρ
v∗∗−v∗

Δt
=

∇ ·μ∇v∗∗ +(μv∗∗y )y +(μu∗y)x +(μw∗
y)z

ρ w∗∗ −w∗

Δt
=

∇ ·μ∇w∗∗ +(μw∗∗
z )z +(μu∗z )x +(μv∗z )y

The non-coupling terms are discretized using
standard finite volume techniques. For example,
we approximate the terms ∇ ·μ∇u∗∗ +(μu∗∗x )x in
(10) as,

2μi+1/2, j,k(ui+1, j,k−ui, j,k)−2μi−1/2, j,k(ui, j,k −ui−1, j,k)

Δx2

+
μi, j+1/2,k(ui, j+1,k−ui, j,k)−μi, j−1/2,k(ui, j,k −ui, j−1,k)

Δy2

+
μi, j,k+1/2(ui, j,k+1−ui, j,k)−μi, j,k−1/2(ui, j,k −ui, j,k−1)

Δz2

where we define the face centered viscosity
μi+1/2, j “sharply” as,

μi+1/2, j =
1

θi+1/2, j

μL
+ 1−θi+1/2, j

μG

.

θi+1/2, j is the height fraction, also used by Gibou,
Fedkiw, Cheng, and Kang (2002) and Liu, Krish-
nan, Marella, and Udaykumar (2005), which is
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given by,

θi+1/2, j(φ ) =

⎧⎪⎨
⎪⎩

1 φi+1, j,φi, j ≥ 0
0 φi+1, j,φi, j < 0

φ+
i+1, j+φ+

i, j

|φi+1, j |+|φi, j | otherwise
(11)

The “+” superscript stands for the “positive part:”
i.e., a+ ≡ max(a,0).

The (combined) density is also defined “sharply”
as,

ρ =
{

ρL φ ≥ 0
ρG φ < 0

In previous work, the coupling terms were dis-
cretized as follows: e.g. for the term (μv∗x)y in
2d, one has,

1
4ΔxΔy

·(
μi, j+ 1

2
(vi+1, j+1 +vi+1, j −vi−1, j+1 −vi−1, j)

−μi, j− 1
2
(vi+1, j +vi+1, j−1 −vi−1, j −vi−1, j−1)

)

Unfortunately, with the above discretization for
the coupling terms, velocities in gas cells (μG = 0)
could be accidentally included in the discretiza-
tion of the coupling terms in liquid cells. When
the gas viscosity is zero, there should be no effect
on the viscous force terms from the gas.

In this paper we discretize the explicit coupling
terms, e.g. (μv∗x)y or (μu∗y)x, as follows (in two
dimensions),

(
∂ μvx

∂y
)i j ≈⎛

⎜⎜⎝
μi+1/2, j+1/2(vx)i+1/2, j+1/2−
μi+1/2, j−1/2(vx)i+1/2, j−1/2+
μi−1/2, j+1/2(vx)i−1/2, j+1/2−
μi−1/2, j−1/2(vx)i−1/2, j−1/2

⎞
⎟⎟⎠
/

(2Δy)

(
∂ μuy

∂x
)i j ≈⎛

⎜⎜⎝
μi+1/2, j+1/2(uy)i+1/2, j+1/2−
μi−1/2, j+1/2(uy)i−1/2, j+1/2+
μi+1/2, j−1/2(uy)i+1/2, j−1/2−
μi−1/2, j−1/2(uy)i−1/2, j−1/2

⎞
⎟⎟⎠
/

(2Δx)

The viscosity at a node is given by

μi+1/2, j+1/2 =⎧⎪⎪⎨
⎪⎪⎩

μL θi+1/2, j+1/2 = 1
μG θi+1/2, j+1/2 = 0
0 μG = 0 and 0 < θi+1/2, j+1/2 < 1

μLG otherwise,

where,

μLG =
μGμL

μGθi+1/2, j+1/2 + μL(1−θi+1/2, j+1/2)
.

θi+1/2, j+1/2 is a “node fraction” defined as,

θi+1/2, j+1/2(φ ) =⎧⎨
⎩

1 φi+1, j,φi, j,φi, j+1,φi+1, j+1 ≥ 0
0 φi+1, j,φi, j,φi, j+1,φi+1, j+1 < 0

θND otherwise.

The “+” superscript stands for the “positive part”
(i.e., a+ ≡ max(a,0)), and

θND =
φ+

i+1, j +φ+
i, j+1 +φ+

i, j +φ+
i+1, j+1

|φi+1, j|+ |φi, j+1|+ |φi, j|+ |φi+1, j+1| .

The components of the parts of the deformation
tensor that are handled explicitly, e.g. the cou-
pled terms, (uy)i+1/2, j+1/2 in the equation for v
and (vx)i+1/2, j+1/2 in the equations for u, are cal-
culated at nodes using standard central differenc-
ing, i.e.,

(uy)i+1/2, j+1/2 =
ui+1, j+1 −ui+1, j +ui, j+1 −ui, j

2Δy
.

Our discretization of the viscous terms have the
following important properties:

1. if the gas viscosity is zero, the velocity in gas
cells, φi, j < 0, is never used. This enables
our two-phase method to be equivalent to the
corresponding one-phase method in the limit
of zero gas density and zero gas viscosity
(i.e. gas treated as a vacuum with uniform
pressure).

2. The resulting matrix system for each velocity
component can be written in the following
form,

α(x)p+β ∇ · (A(x,y)∇p) = f (x,y), (12)
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where (12) is solved for p. A is a diagonal
matrix. We solve (12) on an adaptive hierar-
chy of grids as described in section 4.

4 Matrix solver for adaptive hierarchy of
grids

The equations that result when calculating the vis-
cous force terms or when calculating the pressure
projection step can be written generally as,

α(x)p+β ∇ · (A(x,y)∇p) = f (x,y)+α(x)q+β ∇ ·V , (13)

where A is a diagonal matrix and V is a given vec-
tor field (e.g., for the pressure projection step, V is
the velocity to be projected and for the calculation
of the viscous forces, V ≡ 0).

We discretize (13) as,

αi j pi j +β (DGp)i j = fi j +αi jqi j +β (DV)i j (14)

where, in 2d,

(Gp)i+1/2, j = (A11)i+1/2, j
pi+1, j − pi j

Δx

(Gp)i, j+1/2 = (A22)i, j+1/2
pi, j+1 − pi j

Δy

(DV)i j =
ui+1/2, j −ui−1/2, j

Δx
+

vi, j+1/2 −vi, j−1/2

Δy

We solve (14) with a combination of the multigrid
method and the multigrid preconditioned conju-
gate gradient method (MGPCG). We refer the
reader to the work of Tatebe (1993) in regards to
MGPCG. Our adaptive composite solver will con-
verge to any specified tolerance ε , so long as each
time the outer multigrid solver visits a level, we
compute the solution on that level exactly. In our
implementation, we compute the solution on each
level (using MGPCG) to a tolerance of εx10−2.

Our Multigrid+MGPCG algorithm for solving
(14) follows the same “V-cycle” procedure as out-
lined by Briggs, Henson, and McCormick (2000):

1. Put (14) in residual correction form. For levels
� = 0 to �max,

V � = V �−Gp�
predict

q� = q�− p�
predict

p� = p�
predict

2. For � = �max . . .0,

1. if � < �max, restrict V �+1 to V �.

2. Calculate R� = f � +αq� +β DV �.

3. if � < �max, restrict R�+1 to R�.

4. save V � to V �
save, q� to q�

save, and R� to
R�

save.

5. p�
correct = 0.

6. iterate until the residual on level � is
less than the tolerance εx10−2. Iterate
using MGPCG,

α p�
correct +β DGp�

correct = R�
save

7.

R� = R�
save−α p�

correct −β DGp�
correct

V � = V �−Gp�
correct

q� = q�− p�
correct

3. For � = 0 . . .�max,

1. if � > 0, prolongate p�−1
correct,

p�
correct = p�

correct + I�
�−1 p�−1

correct

2. iterate until the residual on level � is
less than the tolerance εx10−2. Iterate
using MGPCG,

α p�
correct +DGp�

correct = R�
save

3.

V � = V �
save−Gp�

correct

q� = q�
save− p�

correct

p� = p� + p�
correct

4. repeat steps (2) and (3) until convergence.
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5 Overall numerical method for two-phase
flow

Prior to each timestep we are given a liquid ve-
locity, UL,n, and a total velocity Un. UL,n corre-
sponds to Un except on gas faces, where we re-
place the gas velocity in UL,n with the extrapo-
lated liquid velocity. UL,n is then used to calcu-
late the nonlinear advective terms in the liquid,
and also used to advance the free surface.

Prior to each time step, we are also given a level
set function, φ n, and a volume-of-fluid function,
Fn. The level set function, and volume-of-fluid
function are stored at cell centers. The velocity is
stored at both cell centers and face-centers.

An outline of our numerical algorithm is as fol-
lows:

step 1: CLSVOF interface advection:

φ n+1
i j = φ n

i j −Δt[UL ·∇φ ]i j

Fn+1
i j = Fn

i j −Δt[UL ·∇F ]i j

step 2: Calculate (cell centered) advective force
terms:

A L
i j = [UL ·∇UL]ni j

Ai j = [U ·∇U ]ni j

The nonlinear advective terms are dis-
cretized using upwind, second order Van-
Leer slope limiting; see e.g. van Leer (1979)
and Sussman (2003) for a description of
slope limiting.

step 3: Calculate (cell centered) semi-implicit
viscous forces:

Un
i j =

{
UL,n

i j φi j ≥ 0
Un

i j φi j < 0

Ai j =
{

A L
i j φi j ≥ 0

Ai j φi j < 0

U∗
i j = Un

i j +Δt (−Ai j +gẑ) .

ρ
U∗∗ −U∗

Δt
= L∗∗,uncoupled +L∗,coupled

The term L∗∗,uncoupled represents the uncou-
pled viscous force terms which are handled
implicitly and the term L∗,coupled represents
the coupled viscous force terms which are
handled explicitly (see section 3). The vis-
cous coefficient μ is evaluated as a function
of the updated levelset function φ n+1.

step 4: Interpolate cell centered forces to face
centered forces, calculate the face centered
surface tension force, and then form the
face centered intermediate velocity to be pro-
jected, Vi+1/2, j:

A L
i+1/2, j =

1
2
(A L

i+1, j +A L
i, j)

Ai+1/2, j =
1
2
(Ai+1, j +Ai, j)

Ai+1/2, j =
{

A L
i+1/2, j φi j ≥ 0 or φi+1, j ≥ 0

Ai+1/2, j otherwise

Li+1/2, j =

(
L∗,coupled

i j +L∗∗,uncoupled
i j +

L∗,coupled
i+1, j +L∗∗,uncoupled

i+1, j

)

4

Un
i+1/2, j =

{
UL,n

i+1/2, j φi j ≥ 0 or φi+1, j ≥ 0

Un
i+1/2, j otherwise

V i+1/2, j = Un
i+1/2, j + (15)

Δt

⎛
⎜⎝

−Ai+1/2, j

+ 2
ρi+1, j+ρi, j

Li+1/2, j

−[σκ∇H
ρ ]i+1/2, j +gẑ

⎞
⎟⎠ (16)

The surface tension term,

σκi+1/2, j(∇H)i+1/2, j

ρi+1/2, j
,
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is discretized as,

σκi+1/2, j
H(φi+1, j )−H(φi j)

Δx

ρi+1/2, j

where

H(φ ) =
{

1 φ ≥ 0
0 φ < 0

and

ρi+1/2, j = ρLθi+1/2, j +ρG(1−θi+1/2, j)

The discretization of the height fraction,
θi+1/2, j, is described by equation (11).

The curvature κi+1/2, j is computed with
second-order or fourth-order accuracy from
the volume fractions as described in Section
2.

step 5: Implicit pressure projection step:

∇ · ∇p
ρ

= ∇ ·V (17)

Un+1
i+1/2, j = V − [

∇p
ρ

]i+1/2, j

We solve the resulting linear system using a
composite solver for an adaptive hierarchy of
grids (see section 4).

step 6: Liquid velocity extrapolation; assign
UL,n+1

i+1/2, j = Un+1
i+1/2, j and then extrapolate

UL,n+1
i+1/2, j into the gas region.

step 7: Interpolate face centered velocity to cell
centered velocity:

UL,n+1
i j =

1
2
(UL,n+1

i+1/2, j +UL,n+1
i−1/2, j)

Un+1
i j =

1
2
(Un+1

i+1/2, j +Un+1
i−1/2, j)

6 Results

6.1 2D Drop in Shear Flow

For this test problem, we are initially given a
drop with radius a located at the coordinants
(L/2,L/2) in a LxL physical domain. The den-
sity ratio and viscosity ratio between the drop and
its surrounding fluid is 1. The horizontal velocity
at the top wall is fixed at u(x,L, t) = U0 and the
horizontal velocity at the bottom wall is fixed at
u(x,0, t) = −U0. The velocity at the side walls is
u(0,y, t)= u(64,y, t)= γ̇(y−L/2). The initial ve-
locity is u(x,y,0) = γ̇(y−L/2). γ̇ is the shear rate
and satisfies γ̇ = 2U0

L .

We assume the surface tension coefficient is σ =
200.0, the viscosity coefficient is μ = 100.0, a =
1, L = 64, U0 = 32.0, and the density of both flu-
ids is ρL = ρG = 1. Given these parameters, the
Capillary number is,

Ca =
μγ̇a
σ

= 1/2,

and the Reynolds number is,

Re =
ργ̇a2

μ
= 1/100.

We compute solutions to this problem on an adap-
tive hierarchy of grids and compare the results to
those reported in Zheng, Lowengrub, Anderson,
and Cristini (2005). Our base coarse grid has di-
mensions 64x64 and we compute with either 4
levels of adaptivity (effective fine grid resolution
1024x1024, Δx f ine = 1/16) or 5 levels of adap-
tivity (effective fine grid resolution 2048x2048,
Δx f ine = 1/32). The computation with 5 levels
of adaptivity was restarted from the 4 level com-
putation at time t = 12.3. The actual number of
grid cells advanced per time step after the drop
had attained a steady state were 8192 and 19136
for the four level and five level computations re-
spectively.

In Figures 2 and 3, we show the droplet at time
t = 16. In Figure 4, we compare the steady
half-length (major axis divided by initial radius)
for the 4-level computation (1.52), 5-level com-
putation (1.57) and the 4-level computation us-
ing fourth order curvature (1.58). The drop half-
length reported by Zheng, Lowengrub, Anderson,
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and Cristini (2005) using the boundary integral
method is 1.583.

Figure 2: Steady shape of drop in a shear flow.
Ca = 0.5, Re = 1/100. Five levels of adaptivity.
Coarse level has 64x64 grid cells. Effective fine
grid resolution 2048x2048. Drop half-length di-
vided by a is 1.57; expected value is 1.583.

6.2 3D Axisymmetric bubble motion

We compute the steady state shapes of a gas bub-
ble rising in a viscous Newtonian liquid. For com-
parison, we use the experimental results found in
Bhaga and Weber (1981) and Hnat and Buckmas-
ter (1976) and computational results in Ryskin
and Leal (1984). In all of our bubble calculations,
we computed on an adaptive hierarchy of grids
with a base coarse grid of 24x72 and three lev-
els of adaptivity. We have calculated these prob-
lems previously in the work of Sussman, Smith,
Hussaini, Ohta, and Zhi-Wei (2007); the main
difference is that in this paper, we treat the cou-
pled viscous terms explicitly whereas in Sussman,
Smith, Hussaini, Ohta, and Zhi-Wei (2007) they
were treated implicitly. We find that the results
whether the coupled viscous terms are treated ex-
plicitly or implicitly do not differ noticeably. The
advantage of being able to treat the coupled vis-
cous terms explicitly is that the matrix solver for
solving the remainder of the viscous force terms is

Figure 3: Magnification of Steady shape of drop
in a shear flow. Ca = 0.5, Re = 1/100. Five levels
of adaptivity. Coarse level has 64x64 grid cells.
Effective fine grid resolution 2048x2048. Drop
half-length divided by a is 1.57; expected value is
1.583.

Figure 4: Graph of drop half-length divided by a
vs. time. Coarse level has 64x64 grid cells. Drop
half-length divided by a is 1.52 with 4 levels of
AMR (effective fine grid 1024x1024). Drop half-
length is 1.57 with 5 levels of AMR. Using 4th
order curvature gives a drop half-length of 1.58
with 4 levels of AMR. Ca = 0.5, Re = 1/100. ex-
pected value is 1.583.
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more robust and can handle problems with a very
low Reynolds number.

As in Bhaga and Weber (1981) and Hnat and
Buckmaster (1976), we present our computational
results in terms of the following dimensionless
groups. The Reynolds number R, the Eötvös num-
ber Eo, and the Morton number Mo are defined as
follows

R =
ρLU
ηL

Eo =
gL2U

σ
Mo =

gη4
L

ρσ3
. (18)

ρ is the liquid density, L is the bubble diameter, U
is a characteristic velocity, ηL is the liquid viscos-
ity, σ is the surface tension, and g is the accelera-
tion of gravity. A comparison of computed termi-
nal bubble shapes versus previous computational
and experimental results are reported in Figures
5, 6, 7 and 8. Our comparisons include oblate
ellipsoidal cap bubbles studied by Bhaga and We-
ber (1981) (Eo = 243, Mo = 266, and R = 7.77
for bubble figure 2(d) and Eo = 116, Mo = 5.51,

and R = 13.3 for bubble figure 3(d)), spheri-
cal cap bubbles studied by Hnat and Buckmaster
(1976) (R = 19.38, Mo = 0.065, and C = 4.95,
where C = r

(ν2/g)1/3 ), and a disk-bubble studied by
Ryskin and Leal (1984) (R = 100 and We = 10).

Figure 5: Comparison of our numerical re-
sults with experimental results found in paper by
Bhaga and Weber (1981) (figure 2, bubble (d)).

7 Conclusions

The “height fraction” approach for deriving cur-
vature from volume fractions was extended from
second order accurate to fourth order accurate.
The improved accuracy was verified both analyti-
cally and through numerical tests. When applied

Figure 6: Comparison of our numerical re-
sults with experimental results found in paper by
Bhaga and Weber (1981) (figure 3, bubble (d)).

Figure 7: Comparison of our numerical results
with experimental results found in paper by Hnat
and Buckmaster (1976) where Re = 19.38, Mo =
0.065, and C = 4.95.

Figure 8: Comparison of our numerical results
with computational results found in paper by
Ryskin and Leal (1984) where Re = 100 and
We = 10.

to the “parasitic currents” test, there was a fac-
tor of 14 improvement of the fourth order method
over the second order method. For the problem of
droplet deformation under a shear flow, the 4th or-
der method had 0.2% error whereas the 2nd order
method gave a 4.0% error.
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We also introduced a semi-implicit, sharp-
interface, technique for treating the viscosity
force terms on an adaptive hierarchy of grids. Our
new algorithm allows us to solve problems which
have strong viscous effects (a very small Reynolds
number). Our computations compare very well to
previous computations for the multi-phase prob-
lem of a rising gas bubble in liquid.
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