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Electromagnetic Stirring in Crystal Growth Processes

Nancy Ma1 and John S. Walker2

Abstract: For semiconductor crystal growth from a
melt, stirring due to the interaction of a steady electric
current and a steady magnetic field can lead to a more
uniform distribution of the additives in the crystal. This
paper treats the electromagnetic stirring in a cylinder
with a weak uniform axial magnetic field and with an
electric current between an electrode in the center of the
top of the cylinder and an electrode at the vertical wall
of the cylinder. The magnitude and distribution of the
stirring are studied as functions of the aspect ratio of the
cylinder and of the strength of the electromagnetic body
force. All of the steady axisymmetric flows considered
here are stable with respect to small perturbations.

1 Introduction

In the vertical gradient freeze (VGF) method, a single
crystal grows vertically upward through the solidifica-
tion of a melt contained in a vertical cylindrical am-
poule (Monberg, 1994). Ostrogorsky and Muller (1994)
showed that the use of a submerged heater in the VGF
method leads to a more uniform axial distribution of the
additives in the crystal. A submerged heater is a circular
disk, whose diameter is slightly less than the inside diam-
eter of the ampoule. Placed in the melt, the submerged
heater separates an upper melt region above the heater
from a lower melt region between the heater and the crys-
tal. The submerged heater is raised as the crystal grows,
so that the axial height of the lower melt region is con-
stant. Melt flows from the upper melt region, through the
narrow radial gap between the periphery of the heater and
the ampoule wall, and into the lower melt region. While
the submerged heater leads to greater axial uniformity of
the additives in the crystal, it may lead to large radial
variations, because the melt with low concentrations of
the additives enters the lower melt region near the periph-
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ery of the crystal-melt interface. This radial macrosegre-
gation can be eliminated through electromagnetic (EM)
stirring (Ma et al., 2003). For EM stirring, a graphite rod
through the center of the fused silica heater disk acts as
one electrode and a cylindrical graphite liner inside the
ampoule acts as another electrode. A solenoid around
the crystal growth furnace produces a weak uniform ax-
ial magnetic field. The interaction of the steady elec-
tric current between the two graphite electrodes and the
magnetic field drives a steady axisymmetric azimuthal
melt motion. The axial variation of the centrifugal force
due to the azimuthal velocity drives a steady axisymmet-
ric meridional melt motion with radial and axial veloc-
ity components. The meridional circulation provides the
mixing in the melt, which leads to more uniform additive
distributions in the crystal.

In a crystal growth process, the melt motion driven by
the EM body force is coupled to the buoyant convection
and the flow from the heater-ampoule gap to the crystal-
melt interface (Ma et al., 2003; Wang et al., 2006). Here
we isolate the EM stirring in order to study the charac-
teristics of this flow as functions of the aspect ratio of
the lower melt region and of the magnitude of the EM
body force. The flow driven by a steady electric cur-
rent and a steady magnetic field is closely related to the
flow driven by a rotating magnetic field (RMF). The uses
of RMF’s in crystal growth processes were reviewed by
Dold and Benz (1999). The linear stability analysis for
the flow driven by an RMF in a cylinder was presented
by Grants and Gerbeth (2002). The differences between
the present flow and that driven by an RMF arise from the
differences between the azimuthal EM body forces. First,
for an RMF, the azimuthal body force varies roughly as
the radial coordinate r, but here the body force varies
roughly as 1/r between the two electrodes. Second, for an
RMF, the body force is symmetric about a plane, which is
midway between the top and bottom of the cylinder, but
here the body force is far from symmetric with a much
stronger force near the top boundary.

EM stirring has also been used during the Czochralski
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Figure 1 : Dimensionless geometry with the electrical
conductivities σ and the weak uniform axial magnetic
field Bẑ.

growth of silicon crystals (Watanabe et al., 1999; Watan-
abe et al., 2002). In the Czochralski process, the melt is
contained in an open crucible and the crystal grows from
the central region of the top of the melt. In the experi-
ments of Watanabe et al. (2002), the crystal served as one
electrode and a small electrically conducting rod was in-
serted into the free surface at one azimuthal position near
the crucible wall to serve as the second electrode. The
electric current is concentrated near the azimuthal plane
where the second electrode enters the melt. Therefore the
EM body force and the resultant melt motion are very far
from axisymmetric, so that there is no relationship to the
axisymmetric flow treated here.

2 Problem formulation

The dimensional geometry is sketched in Fig. 1. The
cylindrical liquid region has a radius R and an axial di-
mension 2bR. The top boundary at z∗ = bR consists of
the bottom of the graphite rod for r∗ ≤ aR and of the
bottom of the fused silica heater for aR ≤ r∗ ≤ R, where
r,θ, z are cylindrical coordinates, and an asterisk denotes
a dimensional variable. The bottom boundary of the liq-
uid at z∗ = −bR is the crystal-melt interface, while the
vertical boundary at r∗ = R is the inside surface of the
graphite liner. Both the fused silica and the crystal have
electrical conductivities, which are much less than the
electrical conductivity σL of the liquid, so that they can
be treated as electrical insulators with σ = 0. The elec-
trical conductivity of graphite is much greater than σL,

so that the two electrodes can be treated as perfect elec-
trical conductors with σ = ∞. The weak uniform axial
magnetic field produced by the external solenoid is Bẑ,
where B is the magnetic flux density, and r̂, θ̂, ẑ are unit
vectors for the cylindrical coordinates. The dimensional
voltage difference between the two electrodes is φ0.

In addition to the axial magnetic field produced by the ex-
ternal solenoid, there is an azimuthal magnetic field pro-
duced by the electric current between the two electrodes.
The interaction of the azimuthal magnetic field and the
electric current produces an EM body force which has
radial and axial components and which is exactly bal-
anced by a pressure gradient, so that it does not drive any
flow. In Ohm’s law, the characteristic ratio of (1) the in-
duced electric field due to the flow across the magnetic
field lines to (2) the static electric field due to the volt-
age difference between the electrodes is the interaction
parameter

N =
(

σLB3

ρφ0

)1/2

R, (1)

where ρ is the density of the liquid (Ma et al., 2003).
Equation (1) assumes that the characteristic velocity for
the induced electric field is (σLφ0B/ρ)1/2, which is given
by a balance between the EM body force and the non-
linear inertial term in the momentum equation. For the
EM stirring in the VGF growth of gallium-antimonide
(GaSb) crystals considered by Ma et al. (2003), φ0 =
0.215mV,B = 0.126mT,R = 25mm, ρ = 6030kg/m3 and
σL = 1.0MS/m. Therefore, N=0.0000318, so that the in-
duced electric field can be neglected in Ohm’s law.

The dimensionless equations governing the electric po-
tential function φ and the electric current density j are

∂2φ
∂r2 +

1
r

∂φ
∂r

+
∂2φ
∂z2 = 0, (2)

jr = −∂φ
∂r

, jz = −∂φ
∂z

. (3)

Here r and z are normalized by R, while φ is normalized
by φ0, and j is normalized by σLφ0/R. The boundary
conditions are

φ = 1, at r = 1, (4)

∂φ
∂z

= 0, at z = −b (5)
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φ = 0, at z = b for 0 ≤ r ≤ a, (6)

∂φ
∂z

= 0, at z = b for a ≤ r ≤ 1. (7)

The separation-of-variables solution of the equation (2)
and of the boundary conditions (4) and (5) is

φ = 1+
NT

∑
N=1

ANJ0 (λNr)
cosh [λN (z+b)]

cosh(2λNb)
, (8)

where J0 is the Bessel function of the first kind and zeroth
order, while λN are the zeros of J0. The coefficients AN

are determined by minimizing a residual E based on the
boundary conditions (6) and (7),

E =
aZ

0

r [φ (r,b)]2dr +w

1Z

a

r

[
∂φ
∂z

(r,b)
]2

dr. (9)

The weighting factor w is included in order to insure that
the errors in both boundary conditions are small. We used
NT = 500 which gave very small errors for both boundary
conditions with a range of values for w, while w = 0.1 for
the results presented here. The dimensional EM body
force in the azimuthal direction is(

σLφ0B
R

)
∂φ
∂r

. (10)

The dimensionless equations governing the liquid veloc-
ity v are

∂v
∂t

+(v•∇)v = −∇p+T m
∂φ
∂r

θ̂+∇2v, (11)

∇•v = 0, (12)

where t is time normalized by R2/ν, p is pressure nor-
malized by ρν2/R2, v is normalized by ν/R, and ν is the
kinematic viscosity of the liquid. The magnetic Taylor
number

Tm =
σLφ0BR2

ρν2 (13)

is the dimensionless representation of the azimuthal EM
body force. The boundary conditions are

v = 0, at r = 1 and at z = ±b. (14)

This paper treats the steady axisymmetric flow driven by
the EM body force, but we also want to verify that all

the flows considered here are stable with respect to small
disturbances. For each component of the velocity and for
the pressure, we introduce the form

vr = vr0 (r, z)+εReal [vr1 (r, z)exp(λt − imθ)]+O
(
ε2) ,

(15)

where the subscript 0 denotes the variables for the steady
axisymmetric base flow, the subscript 1 denotes the com-
plex modal functions such as vr1 = vr1R + ivr1I, λ =
λR + iλI is the complex eigenvalue, m is the real integer
azimuthal wave number and ε << 1. The form given by
equation (15) is introduced into equations (11) and (12)
and the boundary conditions (14), and O

(
ε2

)
terms are

neglected. The equations for the steady, axisymmetric
base flow are given by the terms without an ε. With the
base-flow equations satisfied, the eigenvalue problem for
the linear stability analysis is given by the terms with ε.

For the steady axisymmetric base flow, we introduce a
stream function ψ(r, z) where

vr0 =
1
r

∂ψ
∂z

, vz0 = −1
r

∂ψ
∂r

, (16)

Figure 2 : Total dimensionless electric current versus the
aspect ratio of the melt region.

and we eliminate p0 by cross-differentiating the r and z
components of equation (11). Therefore the base flow is
governed by a fourth-order equation for ψ and a second-
order equation for vθ0. We represent each of these two
base-flow variables by a sum of Chebyshev polynomials
in r and z. We insure that the representations have the
correct Taylor series in r, i.e., vθ0 has only odd powers
of r, and ψ has only even powers of r, starting with r2.
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We apply each equation at the Gauss-Lobatto collocation
points, including r = 0. For each equation at r = 0, we
identify the leading power of r in the Taylor series for
that equation, we divide by that power of r, and we take
the limit as r → 0. The nonlinear base-flow equations are
solved with an iterative Newton-Raphson scheme.

The complex modal functions vr1,vθ1,vz1, p1 are gov-
erned by a set of linear homogeneous equations and
boundary conditions. The governing equations involve
coefficients given by the base-flow variables and their
first derivatives, and they also involve the complex eigen-
value λ from the time derivative in equation (11). We
use the continuity equation (12) to eliminate vθ1 and we
use the azimuthal component of the momentum equa-
tion (11) to eliminatep1. Therefore we have two fourth-
order equations governing vr1,vz1. Each of these per-
turbation variables is represented by a sum of Cheby-
shev polynomials in r and z. We insure that each
representation has the correct Taylor series in r, i.e.,
vr1 includes r(m−1), r(m+1), r(m+3), ..., and vz1 includes
rm, r(m+2), r(m+4), .... The perturbation equations are ap-
plied at the same Gauss-Lobatto points. Again the lead-
ing term in the Taylor series of each equation is applied
at r = 0. The resultant complex linear matrix eigenvalue
problem was solved with the FORTRAN subroutines in
the EISPACK library (Smith et al., 1976).

For each combination of the the parameters Tm,b,a, we
first use the Newton-Raphson scheme to determine the
steady axisymmetric base flow and we then use the EIS-
PACK subroutines to determine all the complex eigenval-
ues for m = 1,2,3,4,5,6. . . . The base flow is stable with
respect to small perturbations if λR < 0 for every eigen-
value for every value of m.

3 Results

The electric potential function φ depends on the values
of a and b. We only consider a = 0.2. For the applica-
tion treated by Ma et al. (2003), b = 0.2. One purpose
of this paper is to determine how the flow varies with the
aspect ratio b over the range 0.2 ≤ b ≤ 1.0. The total di-
mensionless electric current between the two electrodes
is

I = 2π
bZ

−b

∂φ
∂r

(1, z)dz. (17)

The value of I is plotted as a function of b in Fig. 2.

After increasing from I = 0.779 for b= 0.2 to I= 0.877 for
b = 0.4, I begins to asymptote to its value for b = ∞. For
b >0.4, the current is concentrated near z = b, so that the
electrically insulating boundary at z = -b has very little
effect on the electric current.

The dimensionless azimuthal EM body force ∂φ/∂r near
z = b is larger than that near z = −b for all values of b,
but the difference increases rapidly as b is increased from
0.2 to 1.0. The contours of ∂φ/∂r for b = 0.2 and for b =
1.0 are plotted in Fig. 3a and Fig. 3b, respectively. For b
= 0.2, there is a significant EM body force near z = -0.2,
with the maximum value at z = -0.2 being 0.55. For b =
1.0, ∂φ/∂r <0.2 for z <0.5 and the maximum value at z
= -1 is less than 0.01.

The flow depends on a, b and Tm. For the growth of
GaSb crystals with φ0 = 0.215mV, B = 0.126mT and
R = 25mm, the value of Tm is 19500 (Ma et al., 2003).
Here we are interested in the magnitude and charac-
teristics of the steady axisymmetric meridional circula-
tion as functions of b and Tm, so we consider the range
0 ≤ Tm ≤ 100000. The azimuthal velocity vθ0 is driven
by the EM body force Tm∂φ/∂r and the meridional cir-
culation is driven by the axial variation of v2

θ0/r. Since
vθ0=0 at z = ±b, there is always radially outward flow in
the central part of the melt and radially inward flow near
both z = b and z = −b. Therefore the meridional cir-
culation always consists of a clockwise circulation with
radially inward flow near z = −b and a counterclock-
wise circulation with radially inward flow near z = b. As
b is increased from 0.2 to 1.0, the EM body force be-
comes much more concentrated near z = b, as illustrated
in Fig. 3, so that we expect the relationship between the
two meridional circulations to vary strongly with b. For
Tm = 100000, the contours of ψ for b = 0.2 and for b =
1.0 are presented in Fig. 4a and Fig. 4b, respectively.
For Tm = 100000 and b = 0.2, −4.92 ≤ ψ ≤ 4.78, so
that the clockwise circulation is only slightly larger than
the counterclockwise one, and each occupies roughly
half of the melt region. For Tm = 100000 and b = 1.0,
−16.26 ≤ ψ ≤ 4.93, so that the clockwise circulation
is much stronger than the counterclockwise circulation,
which is confined to the region 0.7 ≤ z ≤ 1.0.

The magnitude of the clockwise circulation −ψmin and
the magnitude of the counterclockwise circulation ψmax

are plotted as functions of Tm for b = 0.2, 0.5, 0.75 and
1.0 in Figs. 5a and 5b, respectively. As b is increased, the
magnitude of the clockwise circulation increases mono-
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(a) (b)
Figure 3 : Dimensionless electromagnetic body force. a. For b = 0.2, ∂φ/∂r =0.35, 0.4, 0.5, 0.6, 0.8, 1.0, 1.5, 2.0
and 3.0. b. For b = 1.0, ∂φ/∂r =0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0 and 2.0.

(a) (b)
Figure 4 : Streamlines for the dimensionless meridional circulation with Tm = 100000. a. For b = 0.2, ψ = k, for k
= -4 to 4. b. For b = 1.0, ψ = 2k, for k = -8 to 2.

tonically, but the magnitude of the counterclockwise cir-
culation first increases until it reaches a maximum for b
= 0.5 and then it decreases.

The maximum value of vθ0 is plotted as a function of
Tm for b = 0.2, 0.5, 0.75 and 1.0 in Fig. 6. The varia-

tion of vθ0max with b is smaller than the variation of ei-
ther the clockwise or counterclockwise meridional circu-
lation. For Tm < 35000, the value of vθ0max decreases
monotonically as b is increased from 0.2 to 1.0. For Tm
> 35000, vθ0max first increases to a maximum for b =
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(a) (b)
Figure 5 : Magnitudes of the dimensionless clockwise and counterclockwise meridional circulations versus Tm. a.
Clockwise circulation −ψmin. b. Counterclockwise circulation ψmax.

Figure 6 : Maximum dimensionless azimuthal velocity versus Tm.

0.5 and then decreases as b is increased to 1.0. David-
son (1992) argued that the magnitude of vθ0max with an
azimuthal body force depends on the balance between
the addition of angular momentum by the azimuthal body
force and the loss of angular momentum due to viscous
shear stresses near the boundaries, all during one circuit
around each streamline for the meridional circulation.
Since I is roughly proportional to the total azimuthal
force on the fluid, Fig. 2 indicates that the total force in-
creases as b is increased from 0.2 to 0.4 and then begins
to asymptote to a constant value as b is increased further
to 1.0. On the other hand, the magnitude of the clockwise
meridional circulation increases roughly in proportion to
b. Therefore, during one circuit around any meridional

streamline, the loss of angular momentum due to viscous
stresses increases more than the addition of angular mo-
mentum by the azimuthal body force as b is increased.

There are two causes for the decrease of the counter-
clockwise circulation near z = b as b is increased from
0.5 to 1.0. First, vθ0max is decreasing with increasing
b. Second, the magnitude of the clockwise circulation
is increasing, and the associated viscous shear stresses
decrease the counterclockwise circulation. The clock-
wise circulation increases in spite of the small decrease
in vθ0max because the axial extent of the clockwise cir-
culation increases greatly as b is increased, while the ax-
ial extent of the counterclockwise circulation decreases
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slightly.

All of the steady axisymmetric flows considered here are
stable with respect to small perturbations.

4 Conclusions

The primary purpose of EM stirring in the VGF pro-
cess with a submerged heater is to eliminate the radial
macrosegregation. The radial distribution of additives in
the crystal depends on the characteristics of the merid-
ional flow in the melt. In EM stirring, the meridional flow
consists of a clockwise circulation with radially inward
flow near the crystal-melt interface and a counterclock-
wise circulation with radially inward flow near the bot-
tom of the submerged heater. The results presented here
show that the magnitudes of both circulations and the re-
lationship between the two circulations depend strongly
on the axial distance between the crystal-melt interface
and the bottom of the heater. For fixed values of the
voltage difference between the two electrodes and of the
magnetic field strength, the radial distribution of addi-
tives in the crystal will be a strong function of the ax-
ial length of the melt region. As a controllable parame-
ter, this axial length provides another method to improve
crystal quality.
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