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Pendulum Thermal Vibrational Convection in a Liquid Layer with Internal Heat
Generation

V.G. Kozlov1 and N.V. Selin2

Abstract: Thermal vibrational convection in a sector
of a thin spherical liquid layer subjected to pendulum
vibrations (spherical pendulum) is investigated theoret-
ically and experimentally. Temperature non-uniformity
inside the liquid is caused by uniformly distributed inter-
nal heat sources (one side of the layer is isothermal, the
other one is adiabatic). Experiments are carried out un-
der conditions of stable temperature stratification in the
gravity field. Heat transfer and convective structure are
investigated in a wide interval of governing dimension-
less parameters. A critical increase of heat transfer is re-
vealed as the vibrations intensity is increased, caused by
average convection. It is shown that thermal convection
is connected to the action of various thermo-vibrational
mechanisms; the experimental threshold of convective
stability is in good agreement with a theoretically deter-
mined one. Alongside with the thermal vibrational con-
vection the occurrence of regular spatial structures which
are not connected with temperature distribution is found
and described.

keyword: Nonisothermal liquid, Pendulum vibrations,
Thermal vibrational convection, Stability, Heat transfer.

1 Introduction

In practice, thermal vibrational convection is the ”mean”
convection that occurs in a nonisothermal incompress-
ible liquid undergoing an oscillating force field (e.g., in
a vibrating cavity). Convection is caused by mean mass
forces generated in the liquid (which is subjected to os-
cillations) due to temperature (density) non-uniformity.
In the case of high-frequency translational vibrations of
a cavity along a definite direction the theoretical descrip-
tion of thermal vibrational convection has been done by
the method of averaging (Zenkovskaya & Simonenko,
1966) and later has got wide application (see Gershuni
& Lyubimov, 1998). In case of low or moderate fre-
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quencies the numerical study is used (Yan, Shevtsova &
Saghir, 2006). Mean thermal vibrational effects are de-
termined by a nonlinear interaction between the temper-
ature field and the pulsational velocity component. As
explained above, in case of translational cavity vibra-
tions the oscillations are connected to non-uniformity of
density (temperature), thus the mean vibrational effect is
proportional to the square of the density non-uniformity
(βΘ)2, it is characterized by the vibrational parameter
Rv = (bΩβΘL)2/2νχ (here b and Ω – amplitude and fre-
quency of cavity translational vibration, L – character-
istic length scale, β – thermal expansion coefficient, Θ
– characteristic temperature difference, ν and χ – kine-
matic viscosity and thermal diffusivity coefficients).

Vibrational thermal convection undergoes qualitative
modification in case of pendulum (combined transla-
tional – rotational) vibrations of a cavity (Kozlov, 1988).
The presence of an isothermal pulsational velocity com-
ponent, connected to the variation of cavity orientation
in space, results in the occurrence of a new thermal vi-
brational mechanism which is proportional to the density
non-uniformity βΘ. This mechanism considerably sur-
passes the classical one (determined by the parameter Rv)
in efficiency. A theoretical background for thermal vibra-
tional convection in case of a spherical pendulum with
relatively long handle was given by Kozlov (1989). The
theoretical description of vibrational convection under
vibrations of plane pendulum (Kozlov, 1988) was cor-
roborated experimentally by Ivashkin & Kozlov (1987)
and Ivanova & Kozlov (2003a).

The high efficiency of pendulum (combined translational
– rotational) vibration is determined by a synchronous
variation of isothermal pulsational velocity components
(connected with rotary oscillation) and variation of the
external force field – inertial one caused by translational
component of vibration. In the absence of the transla-
tional vibration when the cavity makes only rotary os-
cillations (the handle of the pendulum is short) or liq-
uid oscillations are connected mainly with the vibration
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of system elements or the cavity boundary, the linear
on βΘ thermal vibrational mechanism remains (Lyubi-
mov, 1995), however, in a weakened form. In this case
the Schlichting mechanism of mean flows generation
in Stokes boundary layers – “acoustic streaming” (Ny-
borg, W.L, 1965) takes place alongside with the thermo-
vibrational mechanism (Ivanova & Kozlov, 2003b; Ger-
shuni & Lyubimov, 1998). This mechanism of mean
flows generation is not connected with temperature non-
uniformity.

The results of theoretical analysis and experimental study
of thermal vibrational convection in the sector of a rela-
tively thin spherical layer of liquid with homogeneous
internal thermal emission undergoing oscillations of a
spherical pendulum are presented in this work. Exper-
iments are carried out in a rectangular cavity (with one
side much shorter than two others) fastened perpendicu-
larly to the pendulum handle.

2 The theory of thermal vibrational convection in a
cavity making oscillations of spherical pendulum

Following Kozlov (1988) consider the behavior of a non
– isothermal liquid in a cavity, subjected to the oscilla-
tions of a spatial pendulum (Fig. 1).
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Figure 1 : Statement of problem: the cavity undergoes
oscillations according to the law of a spherical pendulum.

Let’s introduce the inertial system XY Z and non-inertial
one x′y′z′ connected with the cavity. The origins of co-
ordinates of both systems are in the center of pendu-
lum; z′ axis coincides with the pendulum handle and

passes through the characteristic cavity point, for exam-
ple through the center of mass. The pendulum handle
(axis z′) moves along a conical surface. Axis Z is di-
rected along the main axis of the cone. The motion of
axis z′ in space (the cavity motion) is characterized by
the variation of the angles between the axis Z and the
projections of an axis z′ on the main planes Y Z and XZ:
δ = ϕ0 cosΩt, α = ϕ0 sinΩt. Thus the axes of mobile
system x′ and y′ perform harmonious oscillations, their
average on time position coincides with the axes X and Y
of the inertial system of coordinates.

Consider the case when the linear size of the cavity is
small in comparison with the pendulum length and intro-
duce the mobile coordinates system xyz connected with
the cavity itself. The origin of coordinates will be cho-
sen on the axis z, the axes x and y let’s direct parallel to
the axes x′ and y′. The coordinates in mobile systems are
presented in Fig. 1: r′ = r+r0, where r0 – constant vec-
tor in the non-inertial system which is directed from the
pendulum center to the beginning of coordinates of the
system xyz.

The equations of vibrational convection of a non-
isothermal liquid are obtained by the method of averag-
ing, thus all the variables are presented as superposition
of slowly varying (averaged) and oscillating components.
The set of equations for slowly varying variables charac-
terizes the averaged liquid behavior in the non-inertial
coordinate system xyz connected with the cavity.

Omitting the detailed description of the procedure (see
Kozlov, 1988; Kozlov, 1989), let’s write out in a final
dimensionless form the set of equations for slowly vary-
ing variables, describing the averaged thermal vibrational
convection in a cavity subjected to high-frequency spatial
oscillations induced by a spherical pendulum:

∂v
∂t

+
1
Pr

(v∇)v = −∇p+Δv+(Ra γ−2Rvk)T

−RkT ∇(w1i+w2j) (1)

Pr
∂T
∂t

+(v∇)T = ΔT (2)

divv = 0 (3)

divw1 = 0, rotw1 = ∇T × i−2(Rk/Rv)j (4)
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divw2 = 0, rotw2 = ∇T × j+2(Rk/Rv)i (5)

The set of equations (1-6) differs from those presented
in Kozlov (1989) only in the form. Here k− unit vec-
tor related to the pendulum orientation r0 = r0k, γ – the
unit vector directed vertically upwards, other notations
are conventional. As the units of distance, time, speed,
pressure and temperature (variables w) are chosen ac-
cordingly L, L2/ν, χ/L, ρνχ/L2 and characteristic tem-
perature difference Θ.

The equations are written within the framework of the
Boussinesq approximation βΘ << 1, in the assumption
of small angular oscillations ϕ0 << 1 and relatively small
cavity size |r|<< |r0|. The times of characteristic hydro-
dynamic and thermal processes are assumed to consider-
ably surpass the period of oscillation, i.e. ΩL2/ν >> 1
and ΩL2/χ >> 1, where L is the reference scale (linear
size of the cavity).

2.1 Boundary conditions, dimensionless parameters
and additional variables

On borders S of the non-deformable cavity the conditions
of heat exchange are set, the non-slip condition is satis-
fied v|s = 0 and the normal components of vectors w1 and
w2 are absent; the last reflects the nonviscous character
of high-frequency oscillations.

T |s = Ts , w1 ·n |s = w2 ·n |s = 0 , v |s = 0 (6)

Here n is the unit vector normal to the boundary.

The set of equations contains the dimensionless param-
eters: Prandtl number Pr, gravitational Rayleigh num-
ber Ra, two vibrational parameters: Rv, which charac-
terizes the action of classical thermo-vibrational mecha-
nism, and Rk, which is connected with the mean action
of inertia forces – centrifugal force and Coriolis force:

Pr =
ν
χ
, Ra =

gβΘL3

νχ
,

Rv =
(βΘLϕ0r0Ω)2

2νχ
, Rk =

(ϕ0Ω)2 r0βΘL3

2νχ
(7)

The additional solenoidal vector variables w1 and w2

represent the amplitudes of pulsational velocity compo-
nents, caused by pendulum oscillations of the cavity in

perpendicular planes – around the axes y and x corre-
spondingly. It is worth noting that each of these vari-
ables has two parts: nonisothermal wT connected to non-
uniform liquid temperature and tangential acceleration,
and isothermal wr connected to the rotary cavity vibra-
tions:

w1 = w1T +w1r,

rotw1T = ∇T × i, rotw1r = −2Rk

Rv
j (8)

w2 = w2T +w2r,

rotw2T = ∇T × j, rotw2r =
2Rk

Rv
i

In case of our approximations (relatively long pendulum
and small density non-uniformity) the isothermal and
nonisothermal velocity components wT and wr are of the
same order of magnitude. The limiting case Rk << Rv

corresponds to the action of translational vibrations of
circular polarization (rotating force field).

The presence of a rotary vibrational component (in addi-
tion to translational one) as follows from (1) results in,
firstly – reformation of mean force field (gravity), sec-
ondly – generation of the additional vibrational volumet-
ric force proportional to βΘ.

Pendulum thermal vibrational convection exhibits sev-
eral specific features, and the shape of the cavity plays
an important role. Let’s consider the convection in a
sector of spherical layer of thickness h (the plane layer
fastened perpendicularly to the pendulum shoulder). In
the approximation h/r0 << 1 the isothermal pulsational
velocity components far from the lateral borders of the
layer are of a specific kind: w1r = Rk / Rv(1− 2z)i and
w2r = Rk / Rv(1−2z)j (the origin of coordinates of non-
inertial system is on the inner boundary of the layer, the
length unit is h). The total action of the vibrational mech-
anism determined by parameter Rk in this case results in
a renormalization of the steady (gravity) field (Ivanova
& Kozlov, 2003a), it is possible to exclude variables w1r
and w2r from consideration and rewrite the set of equa-
tions in the form:

∂v
∂t

+
1
Pr

(v∇)v = −∇p+Δv+(Ra γ+2Rkk)T

−RvT ∇(w1i+w2j) (9)
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Pr
∂T
∂t

+(v∇)T = ΔT (10)

divv = 0 (11)

divw1 = 0, rotw1 = ∇T × i (12)

divw2 = 0, rotw2 = ∇T × j (13)

In such form the set of equations is equivalent to the
one of the classical thermal vibrational convection un-
der translational vibrations of circular polarization. The
important difference consists of the modification of the
steady (gravity) field due to rotary vibrations. It is worth
mentioning that the sign of the term with parameter Rk

in (9) changes in comparison with (1).

Thus, in the thin plane layer filled with nonisothermal
liquid and fastened perpendicularly to the pendulum han-
dle the total convective action of the centrifugal field
and Coriolis force (averaged thermo-vibrational effect)
is similar to the action of some effective force field di-
rected to the center of pendulum and similar in form to
the gravity force. In the frame of made approximations
about relatively small linear sizes of the cavity the field is
considered homogeneous. The direction of this effective
force field is opposite to the direction of centrifugal force
(the vector k is directed along the pendulum shoulder).

Accordingly, the nature of the vibrational mechanism Rk

in plane layers allows simulating the presence of a static
force field in weightlessness or to change and even com-
pletely exclude the action of gravity field (i.e. its effects
on the thermal convection) in Earth conditions. It is true
at Raγ + 2Rk k = 0, i.e. when Ra = 2Rk, and the unit
vectors γ and k are of opposite direction (average posi-
tion of the pendulum – vertical, of the layer – horizontal,
a point of pendulum hanging is above the cavity). Cer-
tainly, the action of the classical convective mechanism
Rv (connected with translational vibrational component)
remains. It allows, in particular, using the pendulum vi-
brations for experimental study of classical vibrational
convection in plane layers in Earth conditions in a wide
range of Rayleigh numbers, including the weightlessness
conditions.

3 Vibrational convection in a plane layer of liquid
with uniform internal heat release

Consider the vibrational convection in the horizontal
plane layer undergoing oscillations induced by a spher-
ical pendulum (Fig. 2). The borders of the layer are per-
pendicular to the pendulum shoulder, the average posi-
tion of the shoulder – vertical. The distance from the
point of pendulum hanging, located below the layer to
the center of the layer remains constant and equal to r0.

r0

y

zT=0

x
( T/ z)=0 z=0

z=h

Figure 2 : Geometry of the problem and the coordinate
system.

The bottom layer boundary is adiabatic (i.e. the normal
component of heat flux is zero), the top one – isothermal,
non-uniformity of liquid temperature is connected with
internal heat release (Q – volumetric density of internal
heat sources – the amount of heat released into the unit
volume per unit time).

The heat transfer equation differs from (10) as the inter-
nal heat sources must be added. Its dimensionless form
is:

Pr
∂T
∂t

+(v∇)T = ΔT +1 (14)

The other dimensionless equations, (9) and (11–13), do
not change if the unit of length is thickness of layer h and
the unit of temperature is Qh2/ρ cp, where cp – specific
heat coefficient.

Dimensionless parameters take the form:

Ra =
gβQh5

ρcpνχ2 ,

Rv =
(ϕ0Ωβr0Qh3)2

2νχ3(ρcp)2 , Rk =
(ϕ0Ω)2βr0Qh5

2νχ2ρcp
(15)
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Under the chosen boundary conditions (the nondimen-
sional temperature of the isothermal border is assumed
to be T = 0)

z = 0 : ∂T/∂z = 0, z = 1 : T = 0 (16)

the quasi-equilibrium distributions of temperature and
pulsational velocity components read:

T0 =
1
2

(
1− z2

)

w01 =
1
6
(1−3z2) i (17)

w02 =
1
6
(1−3z2)j

Vectors w 01 and w02 are equal and mutually perpendic-
ular. Under the action of vibrations the liquid layers,
which are normal to the pendulum shoulder, make plane-
parallel circular oscillations in a horizontal plane. The
amplitude of oscillations depends on the coordinate z and
is determined by the temperature distribution.

3.1 Convective stability of a quasi-equilibrium state

Consider the problem of quasi-equilibrium stability of a
plane liquid layer. Let us introduce the normal perturba-
tions of temperature T ′, pressure p′, average velocity v′

and pulsational velocity components w′
1 and w′

2. Sub-
stituting the perturbations into the basic set (9, 11–14)
and linearizing it, one obtains the set of equations for the
perturbations:

∂v′

∂t
= −∇ p′ +Δv′ + T ′ (Raγ+2Rkj

−Rv∇(w01i+w02j))−Rv∇(w′
1i+w′

2j)T0 (18)

Pr
∂T ′

∂t
+v′ ∇T0 = ΔT ′

rot w′
1 = ∇ T ′ × i, rotw′

2 = ∇T ′ × j

divv′ = 0, divw′
1 = 0, divw′

2 = 0

Let’s consider the normal perturbations

(
v′, T ′, w′

1, w′
2
)

= (v, T, w1, w2) exp(i k1 x+ i k2 y−λ t)

We shall limit ourselves with the case of monotonous
perturbations which threshold is defined by the condi-
tion λ = 0. After the usual transformations connected
to elimination of the pressure perturbations and the hor-
izontal components of v, w1 and w2, and replacement
w = −(ik1w1z + ik2w2z)/k2 one obtains the set of homo-
geneous equations for the amplitudes:

ΔΔv− (Ra+ 2Rk)k2 T +Rv k2 Ṫ0 (T + ẇ) = 0

ΔT − Ṫ0v = 0 (19)

Ṫ +Δw = 0

Here Δ stands for the operator Δ ≡ (∂2/∂z2)− k2; · ≡
∂/∂z – differentiation with respect to the transversal co-
ordinate, v – z-component of velocity perturbation.

Normal components of the mean and pulsational veloc-
ities are to be zero at the solid boundaries of the layer,
as well as ∂v / ∂z. The temperature perturbation vanishes
at the isothermal boundary, normal component of heat
flux is equal to zero at the adiabatic boundary. Thus the
amplitudes v, w and the temperature T satisfy the condi-
tions:

z = 0 : v = v̇ = w = Ṫ = 0

z = 1 : v = v̇ = w = T = 0

The problem (19), (20) coincides with the problem of
quasi-equilibrium stability of a plane layer (2D case) un-
der linear translational vibrations (Gershuni et al., 1989).
The combined action of gravity and thermo-vibrational
mechanism is determined by the complex (Ra + 2Rk).
The basic difference consists of the degeneration of the
form of the perturbations. The amplitude problem does
not contain wave-numbers k1 and k2 separately, only the
square of the wave vector k2 = k2

1 + k2
2 is the parameter

of the problem. Thus the ratio between k1 and k2 is not
determined and wide variety of perturbations (rectangu-
lar, square, hexagonal . . . ) correspond to the threshold.
The linear stability theory does not answer the question
of their competition, the non-linear analysis is needed.
This situation is similar to classical Rayleigh-Bènard sta-
bility problem.

The stability boundary is presented in Fig. 3. The signs
on vibrational parameter Rk and gravitational Rayleigh
number are identical, if the direction of the pendulum
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Figure 3 : The border of vibroconvective quasi-
equilibrium stability in the plane liquid layer undergo-
ing the high-frequency oscillations induced by a spheri-
cal pendulum: average position of the layer – horizontal;
average position of the pendulum – vertical.

shoulder and the gravity are opposite (γ ·k = 1). The neg-
ative value of gravitational Rayleigh number corresponds
to the case when the adiabatic boundary is above.

It’s worth mentioning, that the results are valid in the
limiting case of high frequencies when the thickness of
boundary Stokes layers is negligibly small.

4 Experimental study of thermal vibrational con-
vection in a plane liquid layer with internal ther-
mal emission

Experimental setup includes the mechanical vibrator, the
cavity and a measuring part. The oscillations of a spher-
ical pendulum 1 (Fig. 4) with the cavity 2 fastened on
it are produced by the disk 3 rotating at some definite
frequency with eccentric finger 4 on it. The finger is
connected with the pendulum platform 5 by the spheri-
cal bearing 6. The special mechanism 7 is used for pen-
dulum hanging in order to prevent the pendulum rotation
around the vertical axis. The length of pendulum handle
- from the point of hanging up to the cavity center - is
r0 ∼ 50 cm. The angular amplitude of pendulum oscilla-
tions could be varied in the range ϕ0 = 0−0.1 radian by
changing the distance between the finger 4 and an axis of
rotating disk 3. Rotation of disk with constant frequency
in an interval f ≡ Ω/2π = 0.2−11 Hz is set by the en-

gine of a direct current 8. The vibrator is collected on a
massive metal frame 9.

The frequency of vibrations is measured by means of an
electronic tachometer with accuracy 0.01 Hz. The ampli-
tude of angular pendulum oscillations is measured using
the track of the laser beam on the screen (diode laser is
fastened on the pendulum handle); with an accuracy not
lower than 10−3radian.

9

9

8

34
6

5

7

1

2

10

Figure 4 : The sketch of the vibrator (spherical pendu-
lum).

The plane layer is formed by aluminum heat-exchanger
1 (Fig. 5), plexiglas walls 2 and the glass plate 3. The
heat-exchanger has the channels inside it for circula-
tion of thermostatic liquid; its internal surface (isother-
mal boundary of the layer) is electrically insulated by
thin plastic film, thickness 0.1 mm. Copper electrodes
4 are mounted on the opposite face walls of the layer.
Glass plate (the top border of the cavity) is covered with
thermo-insulating material 5. The cavity size varies:
8.25×5.73×0.44, 7.70×5.70×0.32 or 7.40×5.78×
0.21cm3.

The temperature of the metal border is set constant; the
temperature of the adiabatic one is determined by the
intensity of internal heat sources. The uniform internal
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thermal emission is provided by electric current of indus-
trial frequency, the voltage on the electrodes is adjusted
by means of a transformer. Water with the small contents
of copper salt (3-5 %) is used in experiment. The electric
current through the liquid and the voltage are measured
by digital voltmeters.

For temperature measurements the TERMODAT-15M1
(accuracy 0.1 k) is used. Copper resistance thermome-
ters are used. A thermal sensor 9 is mounted into the
heat-exchanger body and takes its temperature; another
integrating thermometer is pasted on the internal side of
the glass plate (adiabatic boundary).

Observation and video registration of convective flows
are carried out through the transparent cavity glass bor-
der (in this case the external heat insulator is absent) by
means of a miniature video camera 10 (Fig. 4). The cam-
era is fastened on the pendulum and performs vibrations
together with it.

1

3

2

4

5

8

9

8

2

6

7

Figure 5 : The scheme of the cavity (vertical cross-
section view): 1 – heat exchanger, 2 and 3 – lateral and
upper heat-insulated borders, 4 – electrodes, 5 – heat-
insulating cover, 6 – pipes for filling the cavity with liq-
uid, 7 – the entrance for thermostatic liquid, 8 – fixing
elements, 9 – temperature sensor.

The experimental technique is the following. At some
definite intensity of internal thermal emission Q and am-
plitude of pendulum oscillations the temperature of the
adiabatic border Ta is measured depending on vibrations
frequency f . The temperature measurement is carried out
in the established mode. The intensity of thermal emis-
sion, amplitude of vibrations and thickness of the layer
are varied in experiments.

The experiments correspond to the stable stratification of
liquid in gravity field; gravitational Rayleigh number Ra
has negative value. The excitation of thermal convec-
tion is possible only due to vibrational mechanisms de-

termined by dimensionless parameters Rv and Rk (the last
one has the positive value). The convection excitation
due to quasi-equilibrium instability results in increase of
heat flux through the layer and in decrease of the temper-
ature of the adiabatic boundary.

5 Experimental results

The temperature of the adiabatic border Ta varies (Fig. 6)
with increase of vibrations frequency at some definite
amplitude of vibration ϕ0 and thermal emission Q inten-
sity.

One can see three characteristic sites on the tempera-
ture curves Ta( f ). At the first (site I, Fig. 6 ) the tem-
perature does not depend on the frequency of vibrations
f , that corresponds to a condition of mechanical quasi-
equilibrium. The temperature Ta is in agreement with
the corresponding theoretical values for purely thermal
diffusive conditions within several percent, testifying the
absence of convective flows in the layer.

With increase of the vibration frequency the temperature
of the adiabatic boundary at first goes down in a threshold
way (it testifies the increase of heat transfer and convec-
tion occurrence) then goes up near to the initial value.
The area of local change (increase) of heat transfer is
marked as site II in Fig. 6. A further increase of fre-
quency results in the next critical growth of heat transfer:
the temperature of the adiabatic boundary quickly and
monotonously reduces (site III).
The temperature of the adiabatic boundary and the depth
of the second site increase with Q. A variation of the
layer thickness and the amplitude of vibrations results
in a deformation of the temperature curves, however,
the curves keep their shape (three sites still exist on the
curves).

6 Discussion of results

The excitation of convective flow in a layer of liquid
steadily stratified in gravity field (Ra < 0) under a pendu-
lum vibration is connected to the action of vibroconvec-
tive mechanisms and is accompanied by an increase of
heat transfer through the layer. The Nusselt number Nu
as a function of the vibrational parameter Rk is shown
in the Fig. 7. The parameter Nu is defined as the ra-
tio of the adiabatic boundary temperature in the absence
of convection and the temperature, measured during the
vibrational experiment. At small values of Rk the Nus-
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Figure 6 : Temperature of the adiabatic border Ta versus
the frequency of vibration f (the layer thickness h = 0.44
cm) at amplitude of vibrations ϕ0 = 0.097 (a) and 0.069
rad (b), Q = 2.06, 1.63, 0.82, 2.17, 1.99, 1.44 W/cm3

(marks 1–6).

selt number is about the unit. This site corresponds to
a quasi-equilibrium condition (the absence of mean con-
vection in the layer). With increase of Rk the parameter
Nu grows up to some value and after it smoothly goes
down (the dashed line corresponds to Nu = 1). With a
further increase of Rk a monotonous growth of the Nus-
selt number takes place, demonstrating the development
of thermal convection. The curves Nu(Rk) for the layers
of different thickness h = 0.32 and 0.21cm have a similar

form.

One can find the threshold values of vibrational parame-
ters Rv and Rk at definite negative values of Ra using the
critical frequencies of convection excitation (Fig. 6).

The increase of heat transfer in the areas II and III is
caused by vibrational mechanisms of a different nature.

Let’s consider the area III in which the critical growth of
heat transfer with increase of vibration intensity is caused
by the development of pendulum thermal convection (see
the theoretical parts 2–3). The threshold of excitation of
thermal convection can be found by crossing the dashed
lines on Fig. 6. The experimental points corresponding
to various conditions of internal heating and the different
cavity size h, are in good agreement one with another on
the plane of theoretically predicted dimensionless com-
plexes Ra+2Rk, Rv (Fig. 8).

Let’s note that the complex Ra +2Rk is determined by the
sum of two large parameters of opposite signs (convec-
tion takes place in the liquid steadily stratified in grav-
ity field at large negative values of gravitational Rayleigh
number). The deviation of the experimental critical value
Rk from theoretically predicted at given Ra and Rv values
is about 25 % (Fig. 9).

The experimental stability threshold is below the theo-
retically predicted one. The nature of this phenomenon
could be connected to the difference of experimental con-
ditions and theoretical assumptions. The surface of the
cold heat-exchanger is covered with thin plastic film for
the purpose of electrical isolation. The thickness of the
cover together with gluing substance is about 0.3 mm.
Thus the assumption of a high heat conductivity of the
boundary is not provided. This could be important for
the perturbations. In Gershuni & Zhukhovitsky (1972)
it was shown, that thermal perturbations penetrate into
boundaries of a low heat conductivity that results in a sig-
nificant reduction of the threshold of thermal convection
excitation. The well known critical value of Rayleigh
number Racr = 1708 (onset of convection in horizontal
layer with borders of different temperature) corresponds
to the case of high heat conductivity of the boundaries.
The temperature perturbations vanish at the boundaries
in this case. If the borders have the same heat conductiv-
ity as the liquid the stability threshold is one and a half
time lower compared with the case of high heat conduc-
tivity of borders. It could be the reason why the theoreti-
cal curve in Fig. 8 corresponding to the case of boundary
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Figure 7 : The Nusselt numbers Nu as a function of the
vibrational parameter Rk for the layer h = 0.44cm; the
experimental data correspond to Figure 6.

of high heat conductivity goes above the experimental
points.

Another theoretical position, which is not always valid in
the experiment, is the approximation of high frequencies
(dimensionless frequency of vibrations ω ≡ Ωh2/ν >>

1). The Stokes boundary layers are supposed to be neg-
ligibly thin. The conditions of the present experiment
correspond to moderate frequencies ω ≈ 500−1500.

We shall discuss the nature of local heat-transfer increase
in the area II (Fig. 6a) only briefly, as it is not connected
with thermal convection and leaves the frameworks of the
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Figure 8 : The threshold value of vibrational parameter
Rv versus the complex Ra+2Rk for h = 0.32 (marks 1)
and 0.44 cm (2), dashed line – the theoretical stability
border (Figure 3).
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Figure 9 : The ratio ε ≡ Rk(exp)/Rk(theor) versus the
Rv; the data correspond to Figure 8.

present work. As follows from observations the growth
of heat-transfer in area II is caused by the occurrence of
regular spatial vortical structures (Fig. 10). The lattice
is observed in a limited area of frequencies. The form
and the spatial period of structures is identical in both
isothermal and nonisothermal cases.

In case of thermal convection the liquid flow was visual-
ized with a suspension of aluminum powder, in isother-
mal liquid – plastic particles of practically neutral buoy-
ancy of diameter ∼ 0.06 mm. The amount of visualizing
matter was insignificant; in the absence of vibrations the
layer of particles on the cavity bottom did not exceed one
caliber.

The dimensionless periods of the structures in experi-
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Figure 10 : Photo of vibrational vortexes near the cavity
bottom, the top view (isothermal case, water, rectangular
cavity 9.2×9.2×1.05cm3, ϕ0 = 0.097rad, f = 5.12Hz).
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Figure 11 : Wave number k = 2πh/λ (λ – the distance
between the neighboring vortexes) as a function of di-
mensionless frequency (water; amplitude of vibration
ϕ0 = 0.097rad). Points 1–5 correspond to experiments
with isothermal liquid and layer thickness h = 0.21, 0.32,
0.52, 0.85 and 1.05 cm; 6 and 7 – to non-isothermal
case: h = 0.44cm, Ra = −75 · 103; h = 0.21cm, Ra =
−6.2 ·103.

ments with layers of various thickness are in good agree-
ment among themselves on the plane ω, k (Fig. 11). The
wave number (the layer thickness plays the role of the
length unit) monotonously grows with increase of the di-
mensionless frequency. The typical discrepancy of wave-
number is shown by error bars. At ω > 103 the growth

rate decreases. It’s worth noting that the wavelength
varies in a wide interval, at low ω it is few times larger
than the layer thickness, at high frequencies – smaller.
The formation of such structures is specific for pendu-
lum (combined translational – rotary) vibrations and do
not manifest itself in the absence of one vibrational com-
ponent, in case of pure translational vibrations of circu-
lar polarization or pure rotational oscillations (Kozlov &
Selin, 2005).

7 Concluding remarks

Thermal vibrational convection in a plane layer under-
going high-frequency oscillations induced by a spherical
pendulum has been investigated.

It has been theoretically shown, that the average action
of oscillating Coriolis and centrifugal forces on the non-
isothermal liquid (in the specific case of a sector of a thin
spherical layer) is equivalent to the action of a static force
field directed to the center of the spherical pendulum. Ex-
perimental results confirm this conclusion. In case of ex-
periments carried out in the gravity field the vibrational
convection in the plane layer is determined by the param-
eter Rv and the complex one Ra +2Rk.

Besides the threshold excitation of thermal pendulum vi-
brational convection a new kind of instability has been
observed experimentally, i.e. the occurrence of regular
spatial vortical structures. It has been shown that the for-
mation of such structures has not a thermal nature – it is
observed in isothermal liquids too.

The pendulum (combined rotary-translational) type of vi-
bration has been found to play the most important role.
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