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A High Resolution Pressure-Based Method for Compressible Fluid Flow

M.H. Djavareshkian1

Abstract: A pressure-based Euler scheme, based on a
collocated grid arrangement is described. The newly de-
veloped algorithm has two new prominent features: (i)
the use of normalized variables to bound the convective
fluxes and (ii) the use of a high-resolution scheme in cal-
culating interface density values to enhance the shock-
capturing property of the algorithm. The algorithm is
first tested for flows at different Mach numbers rang-
ing from subsonic to supersonic on a bump in a channel
geometry; then the results are compared with the corre-
sponding ones obtained without the bounded scheme in
the correction step. The output is also compared with
data predicted by TVD schemes based on characteristic
variables. These comparisons prove the boundedness in
prediction and correction steps leads to sharp shocks and
better resolution. The method is finally validated for ex-
ternal flow. The results of this scheme on C mesh are
compared with another numerical solution and experi-
ment data for the cases of incompressible, transonic and
supersonic flows around airfoil NACA0012. According
to the comparisons the resolution quality of present nu-
merical model is considerable.

keyword: Normalized Variable Diagram, SBIC,
Pressure-based, Aerodynamic Coefficients.

Nomenclature

A, D = finite difference coefficients
ã = cell face area
aη ,aζ = cell face area projection in the η and ζ

directions respectively
e, w, n, s = east, west, north and south cell faces
E,W,N,S = East, West, North and South center cells
F = mass flux
I = flux
K = a factor in SBIC scheme to determine a

special scheme
M∞ = free stream Mach number
q = scalar flux vector
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Su
i , Sφ = momentum and scalar source term

respectively
T = stress tensor
u, v = velocity components in x and y directions,

respectively
α = angle of attack
Γ = diffusivity coefficient
δυ = cell volume
µ = dynamic viscosity
ρ = density
ρ̃ = normalized density
φ = scalar quantity
φ̃ = normalized scalar quantity
η, ζ = local coordinates
η̃, ζ̃ = normalized local coordinates

1 Introduction

In many industrial applications (see, e.g., Deo, Starnes
and Holzwarth (2001), Sujit (2004), Corol, Jerome and
Katsuyoshi (2004) and Sean and Scott (2003)) the choice
of the appropriate material for a given application re-
quires ”a priori” knowledge of the behavior and dynam-
ics of fluids that are in contact with it. This is particularly
true for aerospace applications where the optimization of
the interplay between material strength and weight plays
a role of crucial importance.

Computational fluid dynamic can be regarded as a feasi-
ble strategy for these purposes. Since both the transonic
and supersonic regimes are very usual in aerospace ap-
plication, there are many techniques for these regimes.

The numerical solution of the transonic and supersonic
flows is usually carried out by time-marching methods
that solve the set of the coupled system of equations gov-
erning the flux of mass, momentum and energy by means
of accurate high-resolution schemes.

On the other hand, simulation of incompressible fluid
flows with engineering interest is usually pursued with
finite volume formulation, using primitive variables
in conjunction with some variant of the semi-implicit
pressure-correction method [Patankar and Spalding
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(1972)]. In this method the momentum equations are
solved in a segregated fashion while an equation for a
pressure-correction field is derived combining the dis-
crete momentum and continuity equations [Patankar and
Spalding (1972), Van Doormaal and Raithby (1984) and
Issa (1985)].

Because this procedure in its standard form results in an
elliptic equation for pressure (or pressure correction) it
cannot ”capture” the hyperbolic nature of the signal prop-
agation in compressible transonic or supersonic flows.

Several attempts have been made by incompressible fluid
flow numerical researchers, towards the unification of
numerical methods developed for incompressible and
compressible flows [Issa and Lockwood (1977), Van
Doormaal, Raithby and McDonald (1987), Shyy (1988),
Karki and Patankar (1989), McGuirk (1990) and Lien
and leschziner (1993)]. In particular, great research ef-
forts have been devoted to the development of the high-
resolution schemes in pressure-based methods [Lien and
leschziner (1993), Shyy and Thakur (1994), Thukur,
Wright, Shyy, Liu, Ouyang and Vu (1996), Issa and
Javareshkian (1998), Kobyashi and Pereira (1996) and
Batten, Lien and Leschziner (1996)].

Leonard (1988) has generalized the formulation of the
high-resolution flux limiter schemes using what is called
the NVF (Normalized Variable Formulation). The NVF
methodology has provided a good framework for devel-
opment of high-resolution schemes that combine sim-
plicity of implementation with high accuracy and bound-
edness. Gaskell and Lau (1988) introduced SMART
(Sharp and Monotonic Algorithm for Realistic Trans-
port) scheme that is combined with first and high or-
der interpolation procedures based on NVD (Normalized
Variable Diagram). The SFCD (Self Filtered Central
Differencing) scheme was presented by Ziman (1991).
Zhu and Rodi (1991) introduced the SOUCUP (Second-
Order Upwind-Central differencing first-order Upwind)
scheme. Darwish (1993) developed STOIC (Second and
Third-Order Interpolation for Convection) scheme that
is integrated from high order interpolation procedures to
control convective terms. Van Leer’s MUSCL (Mono-
tone Upstream Scheme of Conservation Laws)(1974),
Chakravarthy and Osher’s OSHER (1983) and the MIN-
MOD (minimum modulus) of Roe (1985) are other NVD
schemes. A functional relationship based on normalized
variable is given for all second and third order schemes
with nonuniform grid in Darwish & Moukalled (1994).

The above NVD methods use different differencing
schemes through the solution domain. The related pro-
cedure includes some kind of switching between the dif-
ferencing schemes; switching introduces additional non-
linearity and instability in to the computation.

The worst case is that instead of a single solution for
a steady state problem; the differencing scheme creates
two or more unconverged solutions with a cyclic alter-
nance between them. In such a case it is impossible to ob-
tain a converged solution and convergence stalls at some
level.

Non-discrete functions are used in the Van Leer’s CLAM
(Curved Line Advection Method) [Van Leer (1974)],
Leonard’s EULER [Leonard (1983)] and the SBIC
(Second and Blending Interpolation Combine) scheme
[Djavareshkian (2001)] and schemes based on the con-
vection boundedness criteria (CBC). The later scheme is
simply and extension to non-uniform meshes by Jasak,
Weller and Gosman (1999). In all of these methods, the
NVD scheme is applied in the prediction step.

The newly developed algorithm discussed in the present
article has two new features: (i) the use of normalized
variables to bound the convective fluxes in prediction
step and (ii) the use of a high-resolution scheme in cal-
culating interface density values to enhance the shock-
capturing property of the algorithm in the correction
stage. The algorithm is tested for incompressible and
compressible as well as internal and external flows. The
results have been compared with the corresponding algo-
rithm without bounded scheme. The results have also
been compared with predicted data by TVD schemes
based on characteristic variables.

2 Governing Equations

The basic equations, which describe conservation of
mass, momentum and scalar quantities, can be expressed
in Cartesian tensor form as

∂ρ
∂t

+
∂(ρu j)

∂x j
= 0 (1)

∂ (ρui)
∂t

+
∂(ρui u j −Ti j)

∂x j
= Su

i (2)

∂ (ρ φ)
∂ t

+
∂(ρu j φ −q j)

∂x j
= Sφ (3)

The stress tensor and scalar flux vector are usually ex-
pressed in terms of basic dependent variable. The stress
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tensor for a Newtonian fluid is

Ti j = −pδi j − 2
3

µ
∂uk

∂xk
δi j +µ(

∂ui

∂x j
+

∂u j

∂xi
) (4)

The scalar flux vector usually given by the Fourier-type
law:

q j = Γφ(
∂φ
∂x j

) (5)

3 Discretization

Figure 1 : Typical grid – point cluster and control vol-
ume

The discretization of the above differential equations is
carried out using a finite-volume approach. First, the
solution domain is divided into a finite number of dis-
crete volumes or cells, where all variables are stored (at
their geometric centers, see e.g. Fig. 1). The equations
are then integrated over all the control volumes by us-
ing the Gaussian theorem. The discrete expressions are
presented with reference to only one face of the control
volume, namely,e for the sake of brevity.

For any variable φ (which may also stand for the velocity
components), the result of the integration yields

δυ
δt

[(ρφ)n+1
p − (ρφ)n

p]+ Ie − Iw + In − Is = Sφ δυ (6)

WhereI’s are the combined cell-face convection,Ic and
diffusion,ID fluxes. The diffusion flux is approximated
by central differences and can be written for cell-face e
of the control volume in Fig. 1 as:

ID
e = De(φp−φE )−Sφ

e (7)

WhereSφ
e stands for cross derivative arising from mesh

nonorthogonality. The discretization of the convective
flux, however, requires special attention and is the core

of the various schemes developed in the literature. A rep-
resentation of the convective flux for cell-face e is:

Ic
e = (ρ.V.A)eφe = Feφe (8)

The value of φe is not known and should be estimated by
interpolation, from the values at neighboring grid points.
The expression for φe is determined by the SBIC scheme,
that is based on the NVD technique, used for interpola-
tion from the nodes E, P and W. The expression φe for
positive direction of the velocity can be written as

φe = φW +(φE −φW ) ·φe (9)

The functional relationship used in the SBIC scheme for
φ̃e is given by:

φ̃e = φ̃P if φ̃C /∈ [0,1]

φ̃e = − η̃P − η̃e

K(η̃P −1)
φ̃2

P +
(

1+
η̃P − η̃e

K(η̃P −1)

)
φ̃P

if 0 ≤ φ̃P ≤ K

φ̃e =
η̃P − η̃e

η̃P −1
+

η̃e −1
η̃P −1

φ̃P if K < φ̃P ≤ 1 (10)

where

φ̃P =
φP −φW

φE −φW
, φ̃e =

φe −φW

φE −φW

η̃e =
ηe −ηW

ηE −ηW
, η̃P =

ηP −ηW

ηE −ηW

The limits on the selection of K can be determined in the
following way. Obviously the lower limit isK = 0 which
would represent switching between upwind and central
differencing. This is not favorable because it is essential
to avoid abrupt switching between the schemes in order
to achieve the converged solution. The value of K should
be kept as low as possible in order to achieve maximum
resolution.

When all other fluxes at the various cell faces are calcu-
lated according to the equations (7), (8), (9), (10) and in-
troduced into the equation (6), the discretized equations
resulting from each approximation take the form:

AP.φP = ∑
m=E,W,N,S

Am.φm +S′φ +Sdc (11)

WhereA ′s are the convection-diffusion coefficients. The
term S′φ in Eq. (11) contains quantities arising from non-
orthogonality, numerical dissipation terms and external
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sources, and (ρδυ/δt)φP of the old time-step/iteration
level (for time dependent equation). For the momen-
tum equations it is easy to separate the pressure-gradient
source from the convected momentum fluxes. Sdc is
the contribution due to the correction procedure. The
convection-diffusion coefficients for positive direction of
the velocity are:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AE = De

AW = Dw +Fw

AN = Dn φ̃P /∈ [0,1]
AS = Ds +Fs

AP = AE +AW +AN +AS

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AE = De − (η̃P − η̃e)/(η̃P −1)×Fe

AW = Dw +(1− (η̃W − η̃w)/(η̃W −1))×Fw

AN = Dn− (ζ̃P − ζ̃n)/(ζ̃P−1)×Fn

AS = Ds +(1− (ζ̃S − ζ̃s)/(ζ̃S −1))×Fs

AP = AE +AW +AN +AS K < φ̃P ≤ 1
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

AE = De − φ̃Pη
K ( η̃P−η̃e

η̃P−1 )×Fe

AW = Dw +(1− φ̃W η
K ( η̃W−η̃w

η̃W−1 ))×Fw

AN = Dn− φ̃Pζ
K ( ζ̃P−ζ̃n

ζ̃P−1
)×Fn

AS = Ds +(1− φ̃Sζ
K ( ζ̃S−ζ̃s

ζ̃S−1
))×Fs

AP = AE +AW +AN +AS 0 ≤ φ̃P ≤ K

(12)

With higher-order schemes, the evaluation of φe may in-
volve a large number of neighboring grid points. There-
fore, in order to simplify the solution of the resulting
system of algebraic equations, a compacting procedure
is usually used. The correction procedure of Rubin and
Khosla (1982) adopted in this work, is based on replacing
the convective flux at control volume face by an equiva-
lent flux given by

Ic
e = Feφe = FeφU

e −Fe(φU
e −φe) (13)

Where the superscript U denotes values obtained by the
first-order upwind scheme and φe represents the cell face
value computed by the SBIC scheme. For the positive
direction of the velocity, φU

e on the cell face e will be
equal to φP. With the preceding assumption, each dis-
cretized equation contains five unknowns (in two dimen-
sions), and the matrix of coefficients of the resulting sys-
tem of equations is pentadiagonal and always diagonally-
dominated since it come from the first order upwind
scheme.

4 Solution algorithm

The set of (11) is solved for the primitive variables (ve-
locity components and energy) together with the continu-
ity equation by means of pressure-based implicit sequen-
tial solution methods. The technique used is the SIMPLE
scheme presented below. In this technique, however, the
methodology has to be adapted in order to handle the way
in which the fluxes are computed in Eq. (8).

The adapted SIMPLE scheme consists of a predictor and
corrector sequence of steps at each iteration. The pre-
dictor step solves the implicit momentum equation using
the old pressure field. Thus, for example, for the u com-
ponent of velocity, the momentum predictor stage can be
written as

u∗ = H(u∗)−D∇po +S′u (14)

where

H(u∗) = (AEu∗E +AW u∗W +ANu∗N +ASu∗S)/AP (15)

and

−D∇po = −(
∂ po

∂x
)P.δv/AP

≡ (−aη.(po
e − po

w)+aζ.(po
n− po

s ))/AP (16)

Superscripts * and o denote intermediate and previous
iteration values, respectively. Note that the pressure-
gradient term is now written explicitly; it is extruded
from the total momentum flux by simple subtraction and
addition. The corrector-step equation can be written as

u∗∗ = H(u∗)−D∇p∗ +S′u (17)

Equations (14) and (17) can be written for the ecell-face
velocities as:

u∗e = H̃(u∗)− D̃∇̃po + S̃′u (18)

u∗∗e = H̃(u∗)− D̃∇̃p∗ + S̃′u (19)

Hence, from (18) and (19)

u∗∗e −u∗e = −D̃∇̃(p∗ − po) or δu = −D̃∇̃δp (20)

Now the continuity equation demands that

∇(ρ∗u∗∗) = 0 (21)
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For compressible flows it is essential to account for the
effect of change of density on the mass flux as the pres-
sure changes. This is accounted for by linearizing the
mass fluxes [Karki and Patankar (1989)]

ρ∗u∗∗ ≈ ρou∗ +(ρo)HR δu+u∗δρ (22)

or

ρ∗u∗∗ ≈ ρou∗ − (ρo)HR D∇δp+u∗(
dρ
dp

)δp (23)

where equation (20), invoked to eliminate δu and δρ, is
related to δp by the appropriate equation of state. Substi-
tution of (23) into (21) yields a pressure-correction equa-
tion in the form

AP.δp∗P = AE.δp∗E +AW .δp∗W +AN .δp∗N
+AS.δp∗S +SP (24)

Where SP is the finite difference expression of∇(ρou∗),
that vanishes when the solution is converged. The A co-
efficients in (24) take the form (the expression for AE is
given as an example)

AE = (ρo
e)

HR (ãD̃)e −λe(ãu∗)e.(
dρ
dp

)e (25)

where

(ρo
e)

HR = ρo
W + ρ̃o

e(ρo
E −ρo

W ) (26)

and

ρ̃o
e =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ̃o
P ρ̃o

P /∈ [0,1]

− η̃P−η̃e
K(η̃P−1) ρ̃o 2

P +(1+ η̃P−η̃e
K(η̃P−1))ρ̃o

P 0 ≤ ρ̃o
P ≤ K

η̃P−η̃e
η̃P−1 + η̃e−1

η̃P−1 ρ̃o
P K < ρ̃o

P ≤ 1

(27)

Where λ is a factor whose role is explained subsequently.
Because the mass flux at a cell face is computed directly
from nodal values of density and velocity, the cell-face
values of (ρo

e)HRand u∗e in (25) are not readily available.
To compute those values, assumptions concerning the

variations of ρneed to be made. For example, λeis cal-
culated according to Eq. (28); it depends on the flux di-
rection and the normalized density at nodal value as:

λe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i f Fe > 0 and ρ̃P /∈ [0,1]

0 i f Fe < 0 and ρ̃o
P /∈ [0,1]

1− (1− η̃P−η̃e
η̃P−1 ) ρ̃P

K i f Fe < 0 and 0 ≤ ρ̃o
P ≤ K

η̃P−η̃e
η̃P−1

ρ̃ηP

K i f Fe > 0 and 0 ≤ ρ̃o
P ≤ K

η̃P−η̃e
η̃P−1 i f K < ρ̃o

P ≤ 1

(28)

On the other hand, when ρ̃o
P /∈ [0,1], then λewould take

the value of 1 when u is positive; otherwise it would be
zero. Alternatively, ifK < ρ̃o

P ≤ 1, a central difference
formula is used. For 0 ≤ ρ̃o

P ≤ K and according to the
flow direction, it is calculated by SBIC scheme, first and
second order interpolation procedures.

The structure of the coefficients in eq. (24) simulates
the hyperbolic nature of the equation system. Indeed, a
closer inspection of expression (25) reveals an ”upstream
bias” of the coefficients (A decreases as u increases), and
this bias is proportional to the square of the Mach num-
ber. It should be also noted that the coefficients tend to
their incompressible form in the limit of zero Mach num-
ber.

The overall solution procedure follows the same steps as
in the standard SIMPLE algorithm, with the exception
of the solution of the hyperbolic-like pressure-correction
(24). To ensure convergence of the iteration process,
under-relaxation factors between 0.1 and 0.2 for pressure
correction and between 0.2 and 0.5 for the other variables
are employed.

5 Results

Computational results are shown in subsequent figures
for a series of test cases. The results of internal subsonic,
transonic and supersonic flow calculations over a bump
in a channel as well as external incompressible, transonic
and supersonic compressible flow calculations are pre-
sented.

For these tests, at the inlet of the domain all flow vari-
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ables are specified if supersonic flow is considered. For
subsonic inlet flow, stagnation pressurePo, stagnation
temperature To and the inlet angle are specified. At the
outlet, all the flow variables are given by extrapolation for
supersonic velocity, whereas the static pressure is fixed in
the case of a subsonic outlet.

Figure 2 : Bump Geometry

For internal flows, a non-uniform grid of 98 × 25 in
which the grid lines are closely packed in and near the
bump region is chosen (Fig. 2) and slip boundary condi-
tions are used on the upper and lower walls.

In order to assess the boundedness properties in the
prediction and correction steps of the algorithm, three
schemes are chosen. 1- the first order upwind scheme is
used to calculated velocity components, energy and den-
sity (D−U pwind and M−U pwind) 2- the SBIC scheme
is used to evaluate velocity components and energy, and
the density is calculated by first order upwind schemes
(M−SBICand D−U pwind ) 3- the SBIC scheme is ap-
plied to calculate the above-mentioned parameters (M −
SBICand D−SBIC).

In the first test, static to stagnation pressure ratio was se-
lected in order to give a Mach number of 0.5 at inlet. The
value of the K in SBIC scheme for this case is 0.1. The
Mach number distribution on the lower and upper walls
for the three present schemes are compared with TVD
scheme [Issa and Javareshkian (1998)] in Figs. 3(a-c).
As it is seen, when the SBIC scheme is used to calculate
the density on the cell face for subsonic flows, the results
do not change.

The results of transonic flow with inlet Mach number
equal to 0.675 for the same test case and schemes are
shown in Figs. 4(a-h). The Mach number and pressure
ratio distributions on the lower and upper walls for three
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Figure 3 : Subsonic flow over 10% thick bump, inlet M∞
=0.5
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Figure 4 : Transonic flow over 10% thick bump, inlet M∞=0.675
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Figure 5 : Supersonic flow over 4% thick bump, inlet M∞=1.4

present schemes are compared with TVD schemes [Issa
and Javareshkian (1998)] in Figs. 4(a-c) and 4(d-f), re-
spectively. Figs 4(g,h) show the Mach contours for the
present and the TVD schemes. It can be observed that
when the SBIC scheme is applied to calculate velocity
components, energy and density, in prediction and cor-
rection steps, the transonic shock is sharper.

The third case is supersonic flow over 4% thick bumps on

a channel wall. The computations were performed on a
grid90×30. Figs 5(a,b,c) and 5(d) show the Mach num-
ber and pressure ratio distribution on the upper and lower
surfaces for the three present schemes. These results
are also compared with the TVD [Issa and Javareshkian
(1998)] prediction. Such a comparison shows the de-
velopment of present scheme in prediction and correc-
tion steps leads to better resolution for supersonic shock
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Figure 6 : a) Domain b) Part of the C grids used for the NACA 0012 airfoil
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Figure 7 : a) Surface pressure ratio b) Mach contour for α =0 and M∞ =0.281
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Figure 8 : a) Surface pressure ratio b) Mach contour for α =4 and M∞ =0.281
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Figure 9 : (a) Surface pressure coefficient distribution(b)
Pressure coefficient contours (c) Grid dependence test for
α=0 and M∞=0.85

wave. The Mach contour distributions and convergence
histories for the three equations are shown in Figs. 5(e)
and 5(f), respectively.

As anticipated, the proposed pressure based method has
been also applied to many airfoil flow cases. Figs. 6(a)
and 6(b) display the global view of the computational do-
main and enlargement of regions close to the surface of a
NACA0012 airfoil, respectively. As it can be seen, a non-
uniform grid in which the grid lines are closely packed
near the airfoil surface is chosen. The value of K in SBIC
method for all cases is 0.2, and the SBIC scheme for
these cases is applied in prediction and correction steps.

Figs. 7 and 8 show computed results for free stream
Mach number M−∞= 0.281 with α = 0 and α = 4 on a
255×83 grid, respectively. The pressure distribution co-
efficient on the upper and lower surface of the airfoil and
the contours of the pressure coefficient for two attack an-
gles are shown in Figs. 7(a), 7(b), 8(a) and 8(b).

The present results with pressure based algorithm and
SBIC scheme are compared with experimental results
[Neel (1997)]. These comparisons are considerable.

The third external case considered is transonic flow
around the aforementioned NACA 0012 airfoil in a free
stream with Mach number M=0.85, and angle of attack
α=0 deg. The far-field boundary placed at 15 chord
lengths away from the airfoil surface and a grid with
500×80 nodes are used. The distribution of pressure co-
efficients on the upper surface of the airfoil and the con-
tours of pressure coefficient are shown in Figs. 9(a) and
9(b) respectively. The present results are compared with
numerical data [Rizzi (1984)]. It can be seen that the
computed results show good agreement.

A sharp discontinuity is achieved successfully for both
shock strength and location. The grid dependence test is
indicated in Fig. 9(c). As can seen, the results of these
meshes do not change much, indicating that an accept-
able solution can be obtained even on the coarse mesh.
Also, aerodynamic coefficients for this case are presented
in Tab. 1. Accuracy of these coefficients is good.

The fourth external case is transonic flow around the
NACA0012 airfoil at M=0.85, α=1 deg. The number
of nodes is the same as the previous case. For this case
the distribution of pressure coefficient on the upper and
lower surfaces of the airfoil and the contours of pressure
coefficient are shown in Figs. 10(a) and 10(b), respec-
tively. The results are compared with those of Zhou &
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Table 1 : Aerodynamic coefficients NACA0012: M∞= 0.85, α= 0

CM CD CL Method
0 0.0471 0 Rizzi(1984)
0 0.0559 0 Zhou & Davidson(1995)
0.001 0.047 -0.002 Present
0 0.049 0 Djavareshkian & Baheri (2004) (H grid)

Table 2 : Aerodynamic coefficients NACA0012: M∞= 0.85, α=1

CM CD CL Method
-0.1282 0.0662 0.3890 Zhou & Davidson(1995)
- 0.0418 0.3520 Dervieux & Debiez (1996)
- 0.0582 0.3861 Jameson (1998)
-0.1166 0.0576 0.3700 Present
-0.119 0.0584 0.331 Djavareshkian & Baheri (2004)

Table 3 : Aerodynamic coefficients NACA0012 M∞ = 0.8, α= 1.25

CM CD CL Method
-0.0377 0.023 0.3513 Rizzi (1984)
-0.0375 0.022 0.3575 Zhou & Davidson (1995)
- 0.0232 0.3654 Jameson (1998)
-0.0320 0.0255 0.3281 Present
-0.041 0.025 0.334 Djavareshkian & Baheri (2004)
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Figure 10 : a) Surface pressure coefficient distribution b) Pressure coefficient contours for α=1 and M∞=0.85.
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Figure 11 : a) Surface pressure coefficient distribution b) Pressure coefficient contours for α=1.25 and M∞=0.8.
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Figure 12 : a) Pressure coefficient b) Mach contours for the NACA airfoil withM∞=1.2, α=7

Davidson (1995). Also, aerodynamic coefficients for this
case are presented in Tab. 2. These comparisons are con-
siderable.

Fifth external case is for M=0.8, α=1.25 deg and with the
same previous grid. The distribution of pressure coeffi-
cient on the upper and lower surface of the airfoil and the
contours of pressure coefficient are shown in Figs. 11(a),
11(b). In this case results are compared with those of
Anderson (1986). Also, aerodynamic coefficients for this
case are presented in Tab. 3. This comparison shows the
results (especially shock gradients) of the present scheme
are considerable

Finally, Fig. 12 shows the results for the pressure coeffi-

cient distribution and the Mach contours for a supersonic
external flow with M−∞=1.2, α = 7. The present results
with pressure based algorithm are compared with the re-
sults of Yee (1986) based on density based algorithm and
TVD scheme. The comparison is considerable. Both
bow shock as well as typical fishtail shock are shown
in these figures. Note that the predicted bow shock is
thicker than it should be. This is due to insufficient mesh
resolution in this region. The sharp tail shocks are rea-
sonably well captured.



A High Resolution Pressure-Based Method for Compressible Fluid Flow 341

6 Conclusions

In this paper, a high-resolution scheme has been devel-
oped in the context of an existing finite-volume pro-
cedure that uses a nonorthgonal mesh, and a pressure
correction type of solution algorithm. A scheme based
on normalized variable has been introduced to calculate
the velocity component and energy; this scheme is also
used to calculate interface density values in the correc-
tion step.

The method has been applied to internal and external
flows and the results have been compared with predicted
data by either other bounded schemes or experimental
values. These comparisons show 1- when the present
scheme is used in prediction and correction steps, the
results of transonic and supersonic cases are better than
those obtained by limiting the scheme to the prediction
step. 2- the present bounded scheme predicts shock
waves with high accuracy in internal and external flows
3- the proposed scheme can be used in compressible and
incompressible flows. 4- the agreement between the re-
sults of the SBIC scheme in the pressure based algorithm
and TVD schemes (in density-based methods) is excel-
lent.
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