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Thermal Communication between Two Vertical Systems of Free and Forced
Convection via Heat Conduction across a Separating Wall

M. Mosaad1,2, A. 2 2

Abstract: This work deals with the problem of ther-
mal interaction between two fluid media at two different
bulk temperatures and separated by a vertical plate. The
problem is analyzed by taking into account the heat con-
duction across the separating plate. The flow configura-
tion considered is one in which the two vertical boundary
layers of free and forced convection developed on plate
sides are in parallel flow. The dimensionless parameters
governing the thermal interaction mechanisms are ana-
lytically deduced. The obtained results are presented in
graphs to demonstrate the heat transfer characteristics of
investigated phenomenon. The work reports a means to
estimate the mean conjugate Nusselt number over the en-
tire plate height as a function of controlling parameters.

keyword: Free and forced convection, Conduction,
Thermal interaction.

Nomenclature

b plate thickness
g gravitational acceleration
h heat transfer coefficient
k thermal conductivity
L plate height
l scale of free convection layer thickness, Eq. (12)
Nu mean conjugate Nusselt number, = qL/(k∆t)
Nuxc local Nusselt number of cold forced convection

side, = hxcx/kc

Nuxh local Nusselt number of hot free convection
side, = hxhx/kh

Pr Prandtl number, = ν / α
q mean heat flux over entire wall height
Ra modified Rayleigh number, Eq. (12)
Rax local Rayleigh number based on (th∞ - twh(x))
ReL Reynolds number, = u∞L/ν
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t temperature
th∞ free hot fluid temperature
tc∞ free cold fluid temperature
∆t total temperature drop across two fluid media,

= (th∞ - tc∞ )
u,v velocity components in x- and y-directions,

respectively
U,V dimensionless velocity components in x- and

y-directions, respectively
x,y vertical and horizontal coordinates, cf., Fig. 1
X ,Y dimensionless vertical and horizontal coordinates

Greek letters

∆ dimensionless thickness of forced convection
velocity layer , Eq. (7)

∆t dimensionless thickness of forced convection
thermal layer

α thermal diffusivity
β thermal expansion coefficient
β0,β1 variable coefficients, Eq. (30)
δ thickness of forced convection velocity layer
σ thickness ratio of thermal to velocity layer, =∆t/∆
γ0,γ1 variable coefficients, Eq. (30)
η inverse Oseen function, = 1/λ
λ Oseen function
ν kinematic viscosity.
θ dimensionless temperature, Eq. (3)
ω dimensionless wall parameter, Eq. (25)
ψ dimensionless function, Eq. (27)
ζ dimensionless conjugation parameter, Eq. (25)

Subscripts

c cold fluid
h hot fluid
x local value
w wall
wc wall-fluid interface of cold side
wh wall-fluid interface of hot side.
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1 Introduction

Throughout the past three decades many researchers have
concerned with the thermal interaction phenomenon be-
tween two convection systems. This is reflected in many
recent studies treating various types of conjugate convec-
tion problems. Among those types is the problem of two
convection systems separated by a vertical plate, which
may be encountered in many engineering applications
such as nuclear reactor cooling, air conditioning systems,
heat exchangers, and thermal buildings insulation. How-
ever, modeling such a conjugate convection problem is
complicated, because it is necessary to solve simultane-
ously the governing equations of two convection modes
and the wall heat conduction equation without any pre-
scription for the interfacial temperature or heat flux at
plate sides.

Conjugate convection problems may be classified based
on the type of involved convection modes into three cat-
egories: (a) two forced convection systems, (b) two nat-
ural convection systems, and (c) a forced convection sys-
tem and a free convection system. Analogous classifi-
cation can be given for the conjugation between mixed
convection and free or forced convection. The type (a)
of two forced convection systems was initially treated by
Mori et. al. (1980), who proved based on their numeri-
cal results that the heat conduction in the separating wall
relaxes the thermal interaction between the two convec-
tion systems. However, the analysis of this problem type
is less complicated than the other two types (b) & (c)
of free convection part. This is because the energy and
momentum equations of the forced convection layer can
be solved separately, while those of the free convection
layer have to be solved simultaneously.

With respect to the thermal communication between two
natural convection systems, many studies have recently
been published. The first work was done by Lock and Ko
(1973), who used the similarity transformation technique
with the finite difference method to solve the problem by
taking into account the transversal heat conduction in the
separating wall. They stated that the wall heat conduc-
tion has a remarkable effect on the thermal interaction
between the two convection systems. Later, Viskanta and
Lankford (1981) analyzed the same problem by using
the superposition technique, and derived results that were
similar to those obtained by Lock and Ko. However, in

a subsequent study, Sakakibara and Amaya (1992) men-
tioned that the superposition technique is not adequate
to treat such a conjugate problem because of the nonlin-
earity in the fundamental equations of free convection.
Perhaps the most important contribution in this research
point could be attributed to Bejan and Anderson (1980-
1983, who used the Oseen analytic technique (modified
originally by Gill 1966), to treat three cases of this ther-
mal conjugation type between: (a) two newtonian flu-
ids, (b) two porous fluids, and (c) a porous fluid and a
newtonian fluid. In their models, the separating wall was
assumed either as a partition with negligible thermal re-
sistance or with finite thickness of considerable heat con-
duction resistance only in the transversal direction. Fol-
lowing Bejan and Anderson, the technique of Oseen has
been used in a number of subsequent studies.

Regarding the thermal interaction between free convec-
tion system and forced convection system, a few studies
have recently been published. The first work was done by
Sparrow and Faghri (1980), who treated numerically the
coupled heat transfer between upward fully developed
forced flow inside a vertical circular tube and upwards-
induced ambient natural convection, with neglecting the
tube wall resistance.

In a more recent study, Mosaad and Ben-Nakhi (2003)
developed an analytical model for the conjugate heat
transfer between two vertical free and forced convection
layers, in parallel flow on the opposite sides of a vertical
wall. Following Bejan and Anderson (1980), the separat-
ing wall was assumed as a partition without thermal resis-
tance. So, the problem was simplified into two adjacent
free and convection layers, whose solutions were derived
from using the same set of boundary conditions at the
common fluid-fluid interface. Despite this extreme sim-
plification, the main advantage of such an analytical ap-
proach is that the parametric dependence of the interac-
tive heat transfer mechanisms is considerably more visi-
ble than in a numerical solution. However, to achieve bet-
ter modeling for the physical reality of the investigated
phenomenon, the wall heat conduction effect, neglected
in our previous simple model, has been considered in the
present approach.

2 Analysis

The physical model and coordinate systems used are
sketched in Fig. 1. Two semi-infinite fluid media at
two different free temperatures communicate thermally
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Figure 1 : Physical model

across a vertical separating plate of height L and thick-
ness b. The cold fluid is at free temperature tc∞ and flows
downwards with free velocity u∞along one of two verti-
cal plate sides. The hot fluid on the opposite side is stag-
nant and at temperature th∞ >> tc∞. As a result of heat
transfer from the hot to the cold medium, free convec-
tion layer is induced on the hot plate side with downward
flow.

In such a situation, the development of two thermal
boundary layers on the opposite plate surfaces depends
on the interfacial temperature on both sides, which can-
not be prescribed in the analysis, rather, determined from
the conjugate solution which requires the coupling be-
tween the fundamental equations of two convection lay-
ers and plate heat conduction. Thus, the stated problem
seems to be complicated.

Therefore, the following simplifications of boundary
layer theory are introduced in order to simplify the anal-
ysis of two convection layers:

1. Steady, laminar, two-dimensional flow in both lay-
ers

2. Negligible axial conduction and viscous dissipation
in both layers

3. Zero pressure gradients outside two layers

4. Constant physical properties with applying Boussi-
nesq approximation on the free layer

5. Hot stagnant fluid of Prh >>1, and cold forced-flow
fluid of Prc = O(1)

Moreover, the heat conduction in the plate is assumed
only in the transverse direction. Just as a brief conclu-
sion of the analysis, presented in next subsections, the
free convection layer has been analyzed by the Oseen an-
alytical technique, while the forced convection layer has
been analyzed by the integral technique. Then, the two
analyses have been coupled with the plate heat conduc-
tion solution to yield the conjugate solution. For the sake
of clarity in presentation, subscripts “c, h, w” have been
used to sign to the cold fluid, the hot fluid and the wall,
respectively.

2.1 Forced convection

The integral momentum and energy equations of forced
boundary layer can be expressed in the dimensionless
forms:

d
dX

∆∆∆Z

0

Uc(Uc−1)dYc = − ∂Uc

∂Yc

∣∣∣∣
Yc=0

(1)

d
dX

∆tZ

0

Uc(θc +1/2)dYc = − 1
Prc

∂θc

∂Yc

∣∣∣∣
Yc=0

(2)

The dimensionless variables introduced above are de-
fined as

X =
x
L

, Yc =
yc

L
Re

1/2

L ,

∆ =
δ
L

Re
1/2

L , ∆t =
δt

L
Re

1/2

L ,

Uc =
uc

u∞
, θc = (tc−0.5(th∞ + tc∞))/∆t (3)

where X and Yc are the dimensionless coordinates on the
cold side, ∆ and ∆t are the dimensionless local thickness
of velocity and thermal layers, and Uc and θc are the di-
mensionless local velocity and temperature, respectively.
The symbol ∆t(= th∞ − tc∞) denotes the total tempera-
ture drop across the two media, Re (=uωL/νc) is Reynolds
number, and Prc is Prandtl number of the cold fluid.



304 Copyright c© 2005 Tech Science Press FDMP, vol.1, no.4, pp.301-313, 2005

The appropriate velocity and temperature boundary con-
ditions are

at Yc = 0; Uc = 0,

∂2Uc/∂Y 2
c = 0, θc = θwc(X), ∂2θc/∂Y 2

c = 0

at Yc = ∆;Uc = 1,

∂Uc/∂Yc = 0, Yc = ∆t ; θc = −1/2, ∂θc/∂Yc = 0.

(4)

where θwc = (twc −0.5(th∞ + tc∞))/∆t is the dimension-
less local temperature of plate side facing the cold fluid,
which is a function of X-coordinate to be determined.

The cubic velocity and temperature profiles satisfying
boundary conditions (4) are, respectively,

Uc =
3
2

(
Yc

∆

)
− 1

2

(
Yc

∆

)3

; 0 ≤ Yc ≤ ∆ (5)

(θc +1/2)
(θwc +1/2)

= 1− 3
2

(
Yc

∆t

)
+

1
2

(
Yc

∆t

)3

; 0 ≤ Yc ≤ ∆t

(6)

Solving Eqs. (1) and (2) for above velocity and tempera-
ture profiles yields, respectively,

∆ =
√

280X/13 (7)

d
dX

[∆t(θwc +1/2)] =
10(θwc +1/2)

{(σ−σ3/14)Prc∆t}
≈ 10(θwc +1/2)

{σPrc∆t} (8)

where σ (=∆t/∆) is the thickness ratio of thermal to ve-
locity layer.

2.2 Free convection

The mass, momentum and energy equations of the free
convection layer may be written, respectively, in the di-
mensionless forms:

∂Uh

∂X
+

∂Vh

∂Yh
= 0 (9)

∂θh

∂Yh
= −∂3Uh

∂Y 3
h

(10)

Uh
∂θh

∂X
+Vh

∂θh

∂Yh
=

∂2θh

∂Y 2 (11)

The dimensionless variables and parameters introduced
above are defined as

Yh = yh/l, Uh = u/(αhL/l2),
Vh = vh/(αh/l), Prh = υh/αh,

l = LRa−1/4, Ra = gβhL3∆t/(υhαh),
θh = (th−0.5(th∞ + tc∞))/∆t (12)

In above, Uh and Vh are the velocity components in the
X− and Yh− direction, respectively, Ra is the modi-
fied Rayleigh number based on total wall height L and
total temperature drop ∆t across the two media. The
variables βh, υh, αh and Prh are, respectively, the ther-
mal expansion coefficient, kinematic viscosity, thermal
diffusivity and Prandtl number of the hot fluid.

The scale of free layer thickness;introduced by l =
LRa−1/4, satisfies the requirement of boundary layer the-
ory that the ratio l/L << 1. Equation (10) is derived by
eliminating the pressure gradients between the x- and y-
momentum equations; after cross differentiating and sub-
tracting those two equations. Further, In this simplified
momentum equation, the inertia terms are neglected rel-
ative to the body force and the viscous shear force. This
scaling is valid for Prandtl number >>1 (Baehr (1998)).

The appropriate velocity and temperature boundary con-
ditions are:

at Yh = 0, Uh = Vh = 0 and θh = θwh(X) (13)

as Yh → ∞, Uh = 0, θh = 1/2. (14)

where θwh = (twh −0.5(th∞ + tc∞))/∆t is the dimension-
less local temperature of the wall side facing the hot fluid,
which is a function of X-variable to be determined.

Following previous studies (e.g., Poulikakos (1986) and
Mosaad (1999) among others), the modified Oseen tech-
nique of Gill can be employed to solve Eqs. (9)-(11) sub-
ject to above boundary conditions. In this technique, the
horizontal velocity component Vh and temperature gradi-
ent (∂θh/∂X) in energy Eq. (11) are considered as func-
tions of Yh-coordinate only. Consequently, this equation
can be coupled with momentum Eq. (10) to yield an ordi-
nary differential equation that can be solved analytically
to yield the following velocity and temperature profiles:

Uh = (1/2−θwh)
(e−λYh sinλYh)

2λ2
(15)
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θh = 1/2+(θwh−1/2)e−λYh cosλYh (16)

Subject to Eqs. (13) & (14), examining above velocity
and temperature profiles reveals that the unknown Os-
een function λ (X) plays the role of the inverse of free
layer thickness. Therefore, λ has to assume positive val-
ues only.

Integrating energy equation (11) across the boundary
layer from Yh = 0 to ∞ by using the above Uhand θh pro-
files yields:

d
dX

[
(1/2−θwh)2

16λ3

]
= λ(1/2−θwh) (17)

For more detail on Oseen procedure, the reader can re-
fer to Anderson and Bejan (1980) among other sources.
Here it is important to state that above (θwh, λ )-relation
and (θwc, ∆t )-relation (8) involve four unknown parame-
ters: θwh, λ, θwc and ∆t .

2.3 Plate heat conduction

The height of the solid plate is assumed much greater
than its thickness, i.e. L/b<<1. Thus, the longitudinal
heat conduction in the plate may be neglected relative to
the transverse conduction. Thus, the heat conduction in
the plate can be modeled by

∂2θw

∂y2
w

= 0; (18)

subject to the boundary conditions:

θw = θwh(X) at Yw = 0, (19)

θw = θwc(X) at Yw = 1. (20)

The dimensionless variables introduced above are de-
fined,

Yw = yw/b, θw = (tw −0.5(th∞ + tc∞))/(th∞− tc∞) (21)

Solving Eq. (18) according to boundary conditions (19)
& (20) gives

θw = θwh − (θwh −θwc)Yw (22)

2.4 Interfacial conditions

At a certain vertical position (x), the continuity of heat
flux and temperature at plate sides reads:

kh
∂th
∂yh

∣∣∣∣
yh=0

= −kc
∂tc
∂yc

∣∣∣∣
yc=0

= −kw
∂tw
∂yw

∣∣∣∣
yw=0

(23)

Above relation can be expressed in the dimensionless
form:

ζ
∂θh

∂Yh

∣∣∣∣
Yh=0

= − ∂θc

∂Yc

∣∣∣∣
Yc=0

=
θwh −θwc

ω
(24)

The two dimensionless parameters appeared above are
defined,

ω =
bkc

Lkw
Re1/2

L and ζ =
khRa1/4

L

kcRe1/2
L

(25)

ω−parameter relates plate thermal resistance to forced
convection resistance, and ζ−parameter represents the
thermal resistance ratio of forced and free convection lay-
ers.

Inserting Eqs. (6) and (16) into (24), this yields after
variables separation process the two relations:

θwc +1/2 =
2ζ∆t

3ψ
(26)

θwh −1/2 = −η
ψ

(27)

wherein: ψ = [η+ζ(ω+ 2
3∆t)]; η = 1/λ.

Substituting Eq. (26) into Eq. (8), and Eq. (27) into Eq.
(17) yields; after performing differentiation and variables
separation, the following two differential equations:

d∆t

dX
=

γ0 + γ1β0

1− γ1β1
(28)

dη
dX

=
β0 + γ0β1

1− γ1β1
(29)

The variable coefficients in Eqs. (28) and (29) are defined
as

γ0 =
15ψ

/0prc(3ψ−ζ∆t )∆t
, γ1 =

3∆t

2(3ψ−ζ∆t)
,

β0 =
16ψ2

(5ψ−2η)η4 , β1 =
4ζη

3(5ψ−2η)
. (30)
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So far, Eqs. (26)-(28) are considered the more important
results of the analysis, because their solutions will pro-
vide the X-distributions of ∆t , η, θwh and θwc along the
wall as functions of ζ, ω and Prc.

The local Nusselt number of free convection side, Nuxh =
(hxhx/kh), can be calculated by

Nuxh

Ra1/4
x

=
X0.5

(0.5−θwh)
∂θc

∂Yh

∣∣∣∣
Yh=0

(31)

Similarly, the local Nusselt number of forced convection
side, Nuxc = (hxcx/kc), is defined as

Nuxc

Re1/2
x

= − X0.5

(θwc +0.5)
∂θc

∂Yc

∣∣∣∣
Yc=0

(32)

However, the work should, most importantly, provide the
average wall heat flux over the entire plate height, which
is defined as

q =
kh

L

1Z

0

∂th
∂yh

∣∣∣∣
yh=0

dX = −kc

L

1Z

0

∂tc
∂yc

∣∣∣∣
yc=0

dX (33)

The above relation can be expressed in a dimensionless
form related to the forced convection side, in terms of the
mean conjugate Nusselt number Nu = qL/(kc∆t), as

Nu

Re1/2
L Pr1/3

c

=
−1

Pr1/3
c

1Z

0

∂θc

∂Yc

∣∣∣∣
Yc=0

dX (34)

Or related to the free convection side, in terms of Nu =
qL/(kh∆t), as

Nu

Ra1/4
=

1Z

0

∂θh

∂Yh

∣∣∣∣
Yh=0

dX (35)

3 Solution and results discussion

Equations (27) and (28) are implicit and dependent dif-
ferential equations involving two unknown parameters ∆t

and η. Therefore, they have to be solved simultaneously
to determine the X-distributions of these two parameters
over the entire wall height as functions of ζ, ω and prc.
However, a simultaneous numerical integration of these
two equations requires that the initial boundary values of
∆t and η at the start point of boundary layer at X=0 have
to be known. Investigating Eqs. (15) and (16) proves that

the inverse Oseen function η (=1/λ) plays the role of the
dimensionless thickness of free convection layer. Based
on Fig. 1, ∆t and η have to assume zero values at X=0.
However, the singularity problem in solving Eq. (27) &
(28) for η=0 and ∆=0 requires using another appropriate
initial values to overcome this problem.

Solving Eqs. (27) & (28) for the limits: ∆t →0 and η → 0
as X → 0, yields, respectively,

∆t0
= 0.9756∆0/pr1/3

c and η0 = (64X0/3)1/4 (36)

where Xo is very small value of X and ∆o is calculated by
Eq. (7) for X = Xo.

The fourth-order Runge-Kutta integral procedure was
employed to solve Eqs (27) and (28) numerically using
the above initial values ∆o and η0. It was found that the
solution with Xo= 0.00001 and step size∆X= 0.005 gives
stable and accurate results. Numerical results have been
obtained for wide ranges of ζ , ω and Prc.

At first, the results obtained for the thin-wall case are
discussed. For this case of ω →0, Eqs. (26) & (27)
yieldsθwc →−1/2 & θwh →−1/2 as ζ →0, respectively.
Consequently, Eq. (6) shows that θc → −1/2 . This
means that on this ζ →0 limit, the temperature in the
plate and the forced convection layer becomes uniform
and takes the low extreme value –1/2 of the cold medium
temperature. So, on this limit, the two-fluid problem
collapses to the classical one-fluid problem of free con-
vection on an isothermal vertical surface. The relevant
analytical solution of this limit, derived in appendix (I),
yields the mean Nusselt number result:

Nu/Ra1/4 = 0.621 (37)

This result agrees within 2.5% with the exact result of
free convection on isothermal vertical surfaces, obtained
by a similarity solution for Prh →>>1 (Baehr (1998)).

On the opposite limit: ζ → ∞, Eqs. (26) & (27) for ω →
0 yield θwc → 1/2 and θwh → 1/2, respectively. Hence,
Eq. (16) shows that θh → 1/2. This implies that the tem-
perature in the wall and free convection layer region as-
sumes the extreme value 1/2 of the hot side temperature.
This means making the free convection layer on the hot
side to disappear and, so reducing the conjugate prob-
lem to the classical problem of forced convection on an
isothermal vertical surface. The related solution can be
deduced by reworking the analysis part of forced con-
vection for θwh= 1/2, as described in appendix I. This



Heat Conduction Across The Separating Wall 307

solution yields the result:

Nu/(Re1/2
L Pr1/3

c ) = 0.664 (38)

This result is the same known similarity solution of
forced convection on an isothermal surface, recom-
mended for 0.6 ≤ Prc ≤ 10 (Sparrow and Gregg (1965)).

The above two asymptotic results (37) & (38) of thin-
wall case prove the validity of present analytical ap-
proach. Here, it is important to point out that in the pre-
liminary tests of employed numerical technique; these
two exact results were used as a reference to adjust the
accuracy of the numerical solution as well as to ensure
its reliability.
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wc & wh
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Figure 2 : Interfacial temperature distribution at inter-
face sides for various ζ at ω=0.

Numerically obtained results for the thin-wall case of
ω=0 are displayed in Fig. 2, where the distribution of
temperature at both interface sides θwhand θwc are plot-
ted for various values of ζ. In this case, the separating
wall acts as a partition of zero thermal resistance. There-
fore, the two predicted profiles of θwhand θwcare identical
and represented by a common curve in Fig.2. It was also
found that for ζ → 0 or ζ → ∞, both θwhand θwc take
nearly a uniform value over the entire wall height. This
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                                                              wh

0.0

0.5

1.0

  
  

  
  X

           wc

0.0

0.5

1.0

  
  

  
  X

                             

                        

Figure 3 : Interfacial temperature distribution at both
plate sides for various ζ, at ω=2.
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Figure 4 : Temperature profile across two convection
layers and solid plate for various ζ at X=0.5, for ω=0.5
& Prc =1.

value is very close to –1/2 as ζ → 0, and very near to
1/2 when ζ → ∞. However, for more clarity in presen-
tation, the data plotted in Fig. 2 are restricted for: 0.01
≤ ζ ≤ 200.

Now, our comment on the solution of finite thickness
plate case of ω > 0 is reported. Figures 3-11 demon-
strate graphically the heat transfer characteristics of this
real and more practical case. The variation of two inter-
facial temperatures θwhand θwc along plate sides with the
convection interaction parameter ζ is displayed in Fig. 3
for ω= 0.2 and Prc=1. It is noted that for a fixed verti-
cal position X , both θwhand θwc rise with the increase in
ζ. The effect of ζ-parameter is more clear shown in Fig.
4, where typical temperature profiles across the three re-
gions are plotted at plate mid height (X= 0.5) for various
ζ at Prc=1 and ω= 0.5. These results show that the lo-
cal interfacial temperature on both sides rises with the
increase in ζ-value. The results of Fig. 5 indicate that
for a higher value of ζ, the local fluid temperature gradi-
ent at wall surface assumes a higher value on the forced
convection side and a lower value on the free convection
side. This means that the heat transfer effectiveness of

0.8 0.4 0.0 -0.4 -0.8
                                    ( h/ yh)yh=0                        ( c/ yc)yc=0          

         Fig. 5. Effect of -parameter on  fluid temperature gradients

         at wall sides (Prc=1, =1)
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Forced
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yy
0c

y
0h

y c

c

h

h

Figure 5 : Effect of ζ-parameter on fluid temperature
gradient at both plate sides, for Prc=1 and ω=1.

the forced convection layer increases while that of the
free layer decreases with increasingζ. This explains the
physical significant of ζ-parameter defined by Eq. (25).

The influence of ω-parameter on the interfacial temper-
ature at both sides is shown in Fig. 6. It is clear that
at a fixed vertical position, increasing ω decreases θwc

while increasesθwh. This means that the temperature
drop across the plate increases with ω due to the increase
in the thermal resistance of the plate that acts as a thermal
insulator between the two fluid media. The data plot-
ted in Fig. 7 show that for a higher ω-value, the local
fluid temperature gradient at both plate sides assumes a
lower value over the entire height. It is also noted that
for a fixed ω-value, this gradient assumes a max. value
at the start point of boundary layer on both sides, which
decreases with altitude due to the development of layer
thickness (cf., Fig. 8).

The effect of Prandtl number Prc of the cold fluid on the
thickness of convection layer on both sides is presented
in Fig. 8. It is clear that for higher Prc, the thickness
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Figure 6 : Effect of ω-parameter on interfacial tempera-
ture at both plate sides, for Prc=1 and ζ=1.

of forced convection layer is thinner, while no significant
effect on the thickness of free layer is noted.

Numerical data obtained for the local Nusselt number
of forced convection side Nuxc,calculated by Eq. (32),
are displayed in Fig. 9 for various values of ω. These
data are bounded by the two known exact solutions of
forced convection on surfaces with uniform temperature
and uniform heat flux. It is noted that the numerical so-
lution approaches the exact uniform heat flux solution as
ω increases. A similar conclusion can be made on the ef-
fect of ω-parameter on the local Nusselt number of free
convection side Nuxh,calculated by Eq. (31). However,
the results of this case are not presented in the interest of
space as well as to avoid repetition.

The dependence of the local Nusselt number of the free
convection side Nuxh on the Prandtl number Prc of the
forced–flowing cold fluid is shown in the lower part of
Fig. (10). It is clear that Prc has a negligible effect.
However, this is not the fact for the effect of Prc on the
local Nusselt number of the forced convection side Nuxc,

1.0 0.5 0.0 -0.5 -1.0
( h/ yh)yh=0 ( c/ yc)yc=0

Fig. 7. Effect of -parameter on fluid temperature
gradients at wall sides (Prc=1, =1)
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Figure 7 : Effect of ω-parameter on fluid temperature-
gradient at both plate sides, for Prc=1 and ζ=1.

shown in the upper part of Fig. 10, where this effect
could be well correlated by introducing the factor Pr1/3

c .
The results plotted in Fig. 8 confirm those of Fig. (10).

Numerically obtained values of mean conjugate Nusselt
number Nu, defined by Eq. (34), are displayed in Fig.
(11) as a function of ω- and ζ-parameters. It is clear
that the first upper curve of ω=0, is bounded by the two
asymptotic lines of two exact results (37) & (38) of free
and forced convection on vertical isothermal surfaces.
This result of ω =0 is the same one of our previous sim-
ple model, in which the separating wall was assumed as
a partition of zero thermal resistance. This again proves
the validity of present approach. In general, the results
of Fig. 11 show that the mean conjugate Nusselt number
increases with ζ and decreases with ω.

Using a data fitting process, numerical values of mean
conjugate Nusselt number, obtained for 0 ≤ ω ≤
5and 0 ≤ ζ ≤ 100, could be correlated within ± 9.2 %
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and ζ=1.

by:

Nu/(Re1/2Pr1/3)

=
[
0.621ζe−ζ0.531

+0.664(1−e−0.092ζ0.930
)
]

F(ω);

(39)

Fω = 1−0.0014
(
1+0.267ω0.15ζ0.1)20.743

; 0 ≤ ζ ≤ 1

(40)

F(ω) = 1−0.000367

(
1+

0.5ω0.149ζ0.025

(1+ω0.149ζ0.025)

)29.923

;

1 < ζ < 100 (41)

For the thin-wall limit, the above correlation reduces to
relations (37) & (38) of free and forced convection on
isothermal surfaces, for ζ → 0 and ζ → ∞, respectively

Comparison of above correlation (39-41) against corre-
lated data (1450 points) is demonstrated in Fig. 12,
where every fourth data point was only printed.
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4 Fluent Test

So far, it has been proven that for the thin-wall limit
of ω = 0, the present model validates our previous sim-
ple model of negligible wall resistance. Furthermore, it
yields, as special solutions, the well-known relations (37)
& (38) of free and forced convection on isothermal sur-
faces. However, there is no another relevant work avail-
able in literatures (to authors’ knowledge) that can be
used to do comparison with to do further tests on present
model validity. Therefore, a special model problem has
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Figure 11 : Mean conjugate Nusselt number as a func-
tion of ζ- and ω-parameters.

been constructed and solved numerically by Computer
Code Fluent V 4.4. This numerical software was used by
some authors (e.g., Chen (2002) among others) for solv-
ing similar conjugate problems. With reference to Fig.
1, the boundary data as well as solid and fluid parame-
ters used in constructing this problem are: Standard oil
engine at Th∞= 100oC as the hot fluid, water with Tc∞=
60oC and u∞= 0.1 m/s as the cold fluid, and steel slab
(L=0.3, b= 2 mm or 5 mm, k =14 W.m−2.K−1 ) as the
separating wall. The thin and thick plates were chosen
from the same material in order to highlight the effect
of longitudinal heat conduction that was neglected in the
analytical model. The comparison between Fluent and
model results for the two cases are presented in Figs. (13)
and (14). For the case of thin-plate (b=2 mm, ω=0.09, ζ=
0.18), the comparison (cf., Fig. 13) indicates well agree-
ment between the two solutions with a mean relative de-
viation of less than 2%. However, for the thick plate case
(b= 5 mm, ω = 0.23, ζ= 0.18), the comparison (cf., Fig.
14) shows a considerable difference between the two so-
lutions, especially over the start region of two convection
layers, where the longitudinal variation in the slab tem-
perature is relatively significant. Therefore, the discrep-
ancy between the two solutions may be attributed to the
longitudinal heat conduction effect that was neglected in
the analytical model.

As a brief conclusion for the Fluent solution, the equa-
tions governing mass, momentum and energy in the
two convection layers were solved numerically, under
the same boundary layer conditions and simplifications
adopted in the analytical model, by using a control vol-
ume discretization procedure. A second order upwind

formula was used for the discretization of energy and
momentum equations. The body force weighted scheme
was used as the pressure interpolation scheme. A SIM-
PLEC algorithm was used as the method for pressure-
velocity coupling. A segregated solver was employed for
simultaneous solution of discretized equations. Under-
relaxation factors were employed to control the solution
convergence. The adopted convergence criterion was
a variation of less than 10−7 in temperature, and less
than 10−6 in velocity over all grid points. A quadrilat-
eral cell with successive ratio of 1.02 was decided for
all edges throughout the fluid domain, whereas equally
spaced nodes were used in the solid slab. The numerical
solution was validated with the known exact solutions of
laminar free and forced convection on isothermal vertical
surfaces.
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Figure 12 : Correlation (39) against correlated numerical
data.

5 Conclusions

Coupled heat transfer between two parallel-flow bound-
ary layers of free and forced convection on vertical plate
sides has been analyzed by considering the heat conduc-
tion across the plate. The free convection layer was ana-
lyzed by the Oseen technique, while the forced layer was
treated by the integral technique. The main points that
can be summarized from this work are:
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Figure 13 : Comparison of model predictions with Flu-
ent results for thin-plate case (b= 2 mm, ω = 0.09, ζ=
0.18)
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Figure 14 : Comparison of model predictions with Flu-
ent Results for thick plate case (b= 5 mm, ω = 0.23, ζ=
0.18)

1. Thermal communication between two convection
layers is mainly controlled by two dimensionless
parameters: ω values the thermal resistance of solid

plate to forced layer resistance, and ζ relates the
thermal resistance of free layer to forced layer.

2. Present model verifies a previous simple model of
negligible wall thermal resistance

3. As special solutions, the model yields the known re-
lations of free and forced convection on isothermal
vertical surfaces.

4. Interfacial temperature on both plate sides rises with
ζ-value.

5. Temperature drop across the plate rises with ω-value

6. Comparison between model predictions and Fluent
results indicates a reasonable agreement at low val-
ues of ω-parameter.

7. An implicit expression has been found by means
of data-fit procedure for calculating mean conjugate
Nusselt number as a function of ω and ζ parameters.
This number increases with ζ while decreases with
ω.
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Appendix A:

For θwh= -1/2 in Eqs. (16) & (17), one gets, respectively,

∂θh

∂Yh

∣∣∣∣
Yh=0

= λ, (42)

λ =
(

3
64X

)1/4

. (43)

Substituting Eqs. (42) & (43) into Eq. (35) yields

Nu

Ra1/4
=

1Z

0

λdX =
1Z

0

(
3

64X

)1/4

dX = 0.621 (44)

The above result is the same one of laminar free con-
vection on an isothermal vertical surface, obtained by a
similarity solution for Prh >>1.

Appendix B:

For θwc= +1/2 in Eqs. (6) & (8), one gets, respectively,

∂θc

∂Yc

∣∣∣∣
Y c=0

= − 3
2∆t

, (45)

∆t = 0.9756Pr−1/3
c

(
280
13

X

)1/2

. (46)

Substituting Eqs. (46) & (47) into Eq. (33) yields

Nu

Re1/2Pr1/3
c

=
−1

Pr1/3
c

1Z

0

− 3
2∆t

dX

=
1Z

0

3/2

0.9756
(

280
13 X

)1/2
dX = 0.664 (47)

This result is the same known similarity solution of
forced convection on an isothermal surface.




