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On the Stability of the Hadley Flow under the Action of an Acoustic Wave
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Abstract: The effects of an acoustic wave on the in-
stabilities occurring in a lateral differentially heated cav-
ity are investigated numerically. Linear stability results
show that the acoustic wave affects significantly the in-
stability characteristics of such a Hadley flow. Indeed,
the sound field is found to stabilize both two dimensional
transverse stationary and three dimensional longitudinal
oscillatory instabilities which are the most critical modes
affecting the buoyant convection in the fluid layer. Nev-
ertheless, when stabilized by an acoustic wave, the 2D
modes turn from stationary to oscillatory, with the known
consequences of such a change on mass and heat trans-
fer, especially in horizontal Bridgman crystal growth pro-
cess. The second feature to be mentioned is that the linear
stability predicts a destabilization of 3D stationary modes
that in the absence of acoustic waves are known to be ex-
cited at threshold values of the Grashof number highly
above those of the two primary instabilities.

keyword: Instability, acoustic wave, thermally in-
duced flow.

1 Introduction

“Acoustic streaming” is used to designate a stationary
flow which occurs within a viscous fluid as a result of the
presence of a sound wave or an oscillating body. Such a
secondary flow can be of significant interest in some in-
dustrial applications, especially those involving heat and
mass transfer. Indeed, forced convection resulting from
acoustic streaming can be used to enhance heat transfer
as proved by Vainstein et al. (1995) and Loh et al. (2002)
who treated two different heat transfer problems. Vain-
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Unité de Recherche Matériaux, Mesures et Applications, INSAT,
B.P. 676, 1080 Tunis Cedex, Tunisie. E-mail : mohamedkarima-
chour@yahoo.fr
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stein et al. (1995) considered the heat transfer between
two horizontal parallel plates kept at different constant
temperatures. They proved theoretically, when neglect-
ing natural convection appearing when such a Rayleigh-
Bénard system become unstable, that the averaged Nus-
selt number is increased when an acoustic wave is prop-
agated in the longitudinal direction, indicating an en-
hancement of the heat transfer between the two horizon-
tal plates bounding the fluid layer. Loh et al. (2002) con-
sidered the problem of cooling a single aluminum plate.
They proved experimentally and by means of numerical
simulations that the cooling process is improved when
the vibrating beam amplitude is increased for a vibration
frequency of 28.4 kHz. For mass transfer problems, Suri
et al. (2002) investigated the problem of mixing in closed
containers. They pointed out the importance the position
of the transducer producing the sound wave has on the
mixing efficiency.

During the last decades, global flow control and espe-
cially the possible suppression of unsteady instabilities
have become subjects of crucial importance because in
principle they can lead to a better control of heat and
mass transfer in several industrial applications such as
crystal growth from the melt, e.g., Czochralski growth
(CZ) (see, e.g., Tsukada and Kobayashi, 2005), floating-
zone (FZ) (see e.g., Gelfgat et al., 2005) and Bridgman
growth (see, e.g., Dold and Benz, 1997).

Recently, Lappa (2005a) has presented an overview of
the two- and three-dimensional instabilities affecting low
Prandtl fluids contained in open and confined cavities
subject to different heating conditions and driving forces
(thermocapillary and thermogravitational convection, for
the latter case see also Melnikov and Shevtsova, 2005).

It is well known that transition from stationary to time
dependent flow affects considerably the grown crystal
structure and is generally responsible for the appearance
of undesirable striations (see Hurle (1966), Haddad et al.
(1999-2000)). In the last decades, different techniques
have been used to control the flow and especially to delay
the appearance of instabilities in order to preserve steady
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flow ensuring the growth of free striations crystals (see,
e.g., the review of Lappa, 2005b and Amberg and Sh-
iomi, 2005).

One of the most investigated ways of controlling and sta-
bilizing the buoyant flow during Bridgman growth tech-
nique is the use of a static (see Hurle (1974), Kaddeche
et al. (2003), Kaddeche et al. (2002)) or a rotating mag-
netic field (see BenHadid (2000), Dold and Benz (1995)-
(1997)). The constant magnetic field (see Hurle (1974),
Kaddeche et al. (2003) and Kaddeche et al. (2002)) is
an efficient tool to damp the oscillations and stabilize the
flow and consequently improve the grown crystal qual-
ity, especially when its direction is perpendicular to the
fluid layer, see Kaddeche et al. (2003), Kaddeche et al.
(2002).

Recently, for a Small-scale Floating-zone Silicon Growth
process, Lan and Yeh (2005) have proven that a counter
rotation speed less than 20 rpm, has only weak effects on
both thermal field and fluid flow. Nevertheless, such a
rotation has more significant consequences on the radial
segregation for a transversal magnetic field than for an
axial field case. Rotating magnetic field are also efficient
to eliminate time dependent flow, see BenHadid (2000),
Dold and Benz (1995)-(1997) and strength of the order
of millitesla are sufficient when constant magnetic field
need to have a strength of several hundred millitesla.

One can see that despite its considerable efficiency to sta-
bilize the buoyant flow, the limitation of the magnetic
field is probably its significant consumption of electrical
energy.

Interestingly, Lappa (2005b) has also proposed the use
of high-frequency axial vibrations (g-jitters) to damp un-
stable threedimensional convection in floating zones of
silicon.

An alternative technique, more simple to implement and
probably less expensive to use is a sound wave which will
create an acoustic streaming flow. The resulting modifi-
cation of the buoyant basic flow will in turn change the
stability characteristics, namely, the critical thresholds
and instability mechanisms, of the Hadley flow occurring
in the melt

In this paper, we investigate the effects of a longitudinal
sound wave amplitude and frequency on the stability of
Hadley flow by means of a linear stability technique.

2 Linear stability

The stability of the basic flow (6-7) is investigated by
means of numerical computations based on the linear
stability theory. Such a method consists of following
the evolution of an infinitesimal perturbation of veloc-
ity, pressure and temperature(�v, p, θ)superimposed on

the solution of the stationary problem
(
�V0, P0, T0

)
re-

spectively. The evolution of these perturbations is gov-
erned by the linearized Navier-Stokes equations coupled
to the energy and the continuity equations. The sketch of
studied configuration is represented in Fig. 1, where H
is the depth of the layer. The following boundary condi-
tions are considered: No-slip, thermally insulating hori-
zontal plates.
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Figure 1 : Sketch of the studied configuration

If the variables are normalized using H, H2
/

ν, ν
/

H
and ∇T̃ H (∇T̃ is the constant horizontal temperature gra-
dient) as scales for length, time, velocity and temperature
respectively, this yields the following linearized system:

�∇ ·�v = 0 (1)

∂�v
∂t

+
(
�v0.�∇

)
�v +

(
�v.�∇

)
�v0 = −�∇p+∇2�v +Grθ�ez (2)

∂θ
∂t

+�V0.�∇θ+�v.�∇T0 =
1
Pr

∇2θ (3)

where the dimensionless numbers appearing in Eq.2 and
Eq.3 are the Grashof and Prandtl numbers:

Gr = gβ∇T̃ H4
/

ν2 (4)

Pr = ν/κ (5)

β is the thermal expansion coefficient, T0 is a reference
value for the temperature, ν is the kinematic viscosity and
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Figure 2 : Variation of Grc versus Reω for 2D modes and
different values of Pr

κ is the thermal diffusivity. The basic flow (�v0, p0,T0)
is obtained from the general equations of the stationary
Hadley natural convection problem submitted to a longi-
tudinal acoustic wave. The solution can be easily derived
and one can find the following expressions:

�v0(z) =
(

Gr
6

(
z3 − z

4

)
+2Reω

(
6z2−1

))
�ex (6)

T0(x, z) = x+
GrPr

6

(
z5

20
− z3

24
+c1z+c2

)

+2ReωPr
(
8z4−4z2 +1

)
(7)

Where z is the coordinate perpendicular to the fluid layer,

Reω = u∞H
ν is the acoustic Reynolds number, u∞ = 3u2

0
8c0

where u0 is the amplitude of the sonic wave and c0 is
the speed of sound in the considered fluid. The constants
c1and c2are given according to the thermal boundary con-
ditions, namely: c1 = 7

960 and c2=0 for thermally con-
ducting boundaries, and c1 = 1

64 for thermally insulating
boundaries. The constant c2is not involved in the linear
stability calculations and consequently we do not need to
have its exact value. The perturbation (�v,p,θ) is consid-
ered as a normal mode, so it can be written as follows:

(�v,p,θ) = (�v(z), p(z),θ(z))ei(hx+ky)+ωt (8)

where h and k are the wave numbers in the x and y di-
rections respectively and ω is a complex pulsation. Us-
ing Eq. 8, an eigenvalue problem is derived, namely:

Figure 3 : Variation of the critical frequency fc versus
Reω for 2D modes and different values of Pr

LX = ωMX , where x = (�v(z), p(z),θ(z)), L is a linear
operator which depends on h, k, Gr, Pr and Reω, and
M is a constant linear operator. Such an eigenvalue
problem is solved using the spectral Tau Chebyshev col-
location method. From the thresholds Gr0(Pr, Reω,h,
k), the critical Grashof number Grcis obtained after a
minimization procedure with respect to h and k: Grc=
Inf (h,k)∈R2Gr0(Pr, Reω,h, k)

3 Results

The Hadley flow (flow generated between infinite hor-
izontal walls by a horizontal temperature gradient) is
known to become unstable when the Grashof number Gr
goes over a critical value Grc. For the situation consid-
ered in our study and relating to a confined cavity with
thermally insulating boundaries, two major instabilities
types are known. The first unstable modes which are
two-dimensional and stationary appear for Pr ≤ 0.034.
For Pr ≥ 0.034, three-dimensional oscillatory modes
occur and become the most critical instabilities. A third
kind of instabilities has to be mentioned, especially in the
context of combined buoyancy-acoustic streaming driven
convection, as it will be shown below. This last instabil-
ity type consists of a stationary three-dimensional mode
characterized by the values of critical thresholds which
are highly above those of the two first primary instabili-
ties. The aim of the following investigations is to study
the effect of an acoustic wave on these three instability
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Figure 4 : Variation of the critical wave number hc ver-
sus Reω for 2D modes and different values of Pr

Figure 5 : Variation of Grc versus Reω for 3D instabili-
ties and different values of Pr

types to discern whether such a wave will stabilize or
destabilize the Hadley natural convection.

3.1 Effect of an acoustic wave on the two-dimensional
stationary instabilities

Initially, we begin our investigations by considering the
effect of an acoustic wave on the two-dimensional insta-
bilities which are dominant for Pr ≤ 0.034 in the pure
thermal case (when no acoustic wave is applied). Our
aim is to determine the influence of such a wave charac-
teristics on the critical thresholds of the two-dimensional
stationary modes. The conducted numerical computa-
tions allow us to conclude that the acoustic wave stabilize
the 2D modes by increasing the critical Grashof number
values Grc. Indeed, Fig. 2, illustrating the variation of
Grc versus Reω, shows an increase of that critical param-
eter as Reω goes from 0 to 104. It is also worth noting that
this stabilization of the flow seems to occur in three dif-
ferent stages, depending on the values of Reω. For Reω <
10, the critical Grashof number Grc varies very slightly
and remains almost equal to its value for Reω=0 (when no
acoustic wave is applied), namely: Grc ∼ Grc(Reω=0).
For Reω > 100, or even Reω > 200 and Pr > 0.01, the
critical Grashof number Grc is found to vary linearly with
Reω. Consequently, for Reω > 200, the stabilization law
can be written as follows: Grc ∼ Reω. For the high values
of Reω, and more precisely for Reω >5000, the acoustic
wave is seen to be less efficient in stabilizing the flow.
Indeed, the increase of the thresholds Grc has been char-

acterized by fitted law which scales as: Grc ∼ Re0.5
ω . The

Fig. 3 illustrates a fundamental change affecting the na-
ture of the two-dimensional instabilities when an acous-
tic wave is applied. One can notice that such 2D modes
which where stationary for Reω = 0 (when no acous-
tic wave is applied), become oscillatory when an acous-
tic wave is applied (Reω > 0). Moreover, the increase
of the critical frequency fc which remains moderate for
Reω < 100, becomes extremely sharp for Reω > 1000.
For the critical wave number hc, its variation with Reωis
more complex compared to that of Grc, in particular for
Reω > 1000 where the function hc= f(Reω) is no more
monotonous as illustrated in Fig. 4. Nevertheless, for
Reω < 1000, one can note, that globally, the size of the
marginal cells increases. For Reω > 1000, after a stage
where the marginal cells shrink, they start to lengthen
again. Finally, we can notice in Fig. 8, that the stabiliza-
tion process seems to be almost the same regardless of
the value of the Prandtl number Pr.

3.2 Effect of an acoustic wave on the three-
dimensional oscillatory instabilities

The acoustic wave has also a stabilizing effect on the os-
cillatory longitudinal three-dimensional instabilities, but
contrary to the case of the two-dimensional modes, the
oscillatory nature of 3D instabilities is preserved. Fig. 5,
where we report the variation of Grc versus Reω, shows
that Grc increases with Reω. In Fig. 5, two types of
behaviors can be noted depending on the values of Reω.
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Figure 6 : Variation of the critical frequency fc versus
Reω for 3D instabilities and different values of Pr

Figure 7 : Variation of the critical wave number kc ver-
sus Reω for 3D instabilities and different values of Pr

For Reω < 100, the critical Grashof number Grc varies
very slightly and remains almost equal to its value for
Reω = 0 (when no acoustic wave is applied), namely:
Grc∼ Grc(Reω = 0). For Reω > 500 and Pr > 0.04, the
critical Grashof number Grc is found to vary linearly with
Reω : Grc∼ Reω. The critical frequency fc illustrated
on Fig. 6 is seen to vary very slightly with the acoustic
Reynolds number Reω. For the considered range of Reω,
one can note that the critical frequency takes two values
which are almost constant: for Reω < 100 we have fc

∼ 6, and for Reω > 1000 the critical frequency has an-
other constant value, namely: fc ∼ 5. For the critical
wave number kc, its variation with Reω can be divided in
two stages as illustrated on Fig. 7: during the first stage
corresponding to Reω < 100, the values of kc are almost
constant, and then kc begins to decrease according to the
scale law kc ∼Re−1

ω , which indicates a lengthening of the
marginal cells size. In addition, and contrary to what was
noted for the two-dimensional instabilities, one can re-
mark from Fig. 8, that the stabilization is more efficient
when Pr increases. Finally, we can clearly note, when
observing Fig. 8, that the values of Grc for Reω = 0 and
Reω = 5000, are very close when P r →0 , confirming
the thermal origin of these instabilities.

3.3 Effect of an acoustic wave on the three-
dimensional stationary instabilities

The consideration of such three-dimensional stationary
instability would present only little interest if the consid-

Figure 8 : Variation of Grc versus Pr for different values
of Reω

ered Hadley flow was not submitted to an acoustic wave.
Indeed, when no acoustic wave is applied (Reω = 0),
these stationary three-dimensional modes are character-
ized by thresholds critical values which are highly above
those of the two first instabilities (2D stationary and 3D
oscillatory). When an acoustic wave is applied, such 3D
stationary modes are destabilized and become the most
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dangerous mode for certain values of the Prandtl number
Pr and the acoustic Reynolds number Reω. This result
is well illustrated in Fig. 8 where we notice a signifi-
cant decrease of Grc when Reω reaches the value of 5000.
One can remark that in such conditions, the 3D stationary
modes become the most critical instabilities for 0.002 ≤
Pr ≤ 0.06. It is also worth pointing out that such instabil-
ities preserve their stationary character when an acoustic
wave is applied ( fc = 0, ∀ Reω ≥ 0), and that for a given
Pr their size increases with Reω. It’s also worthwhile to
notice, as illustrated in Fig. 9, that the destabilization
efficiency of the acoustic wave on these modes is very
significant for Reω ≤ 500 and become relatively mod-
erate for Reω ≥ 1000.

Figure 9 : Variation of Grc versus Reω for 3D stationary
instabilities and different values of Pr

4 Discussion

We have characterized the effect of an acoustic wave on
the stability of the Hadley natural convection through a
linear stability analysis. The conducted numerical com-
putations allow us to prove that applying an acoustic
wave will stabilize both the two-dimensional stationary
and three-dimensional oscillatory modes. These two
stabilization processes are quite different. The acous-
tic wave preserve the oscillatory character of the 3D
modes, but it fundamentally changes the 2D stationary
modes which become oscillatory. This capital result can
have harmful consequences on the crystal growth process

where it is known that oscillations can produce undesir-
able striations in the grown crystal. A second result in
connection with the influence of the Prandtl number on
the stabilization process has to mentioned: even though
Pr does almost have no impact on the 2D modes stabi-
lization, it appears to be a significant parameter in influ-
encing the stabilization of the 3D oscillatory modes.

Finally, another fundamental result has to be pointed out,
it is related to the behavior of the three-dimensional sta-
tionary instabilities with respect to an acoustic wave. Un-
like the two first instabilities (2D modes and 3D oscilla-
tory modes) which are stabilized, this last instability (3D
stationary mode) is destabilized under the action of an
acoustic wave and becomes the most dangerous mode for
a certain range of the Prandtl number Pr and the acoustic
Reynolds number Reω.

References

Amberg, G.; Shiomi, J. (2005) : Thermocapillary flow
and phase change in some widespread materials pro-
cesses. FDMP, vol 1, pp. 81-95.

Ben Hadid, H. (2000) : MHD damped buoyancy driven
flows. In: H. Aref and J.W. Philips (ed), Mech. New
Mellenium, Proc. ICTAM, Kluwer, pp. 289.

Dold, P.; Benz, W. (1995) : Convective temperature fluc-
tuations in liquid gallium in dependance on static and ro-
tating magnetic fields. Crystal Res. Technol. Vol 30, pp.
8.

Dold, P.; Benz, W. (1997) : Modification of Fluid Flow
and Heat Transport in Vertical Bridgman Configurations
by Rotating Magnetic Fields. Crystal Res. Technol. Vol
32, pp. 51.

Gelfgat A.Yu., Rubinov A., Bar-Yoseph P.Z. and
Solan A., (2005), ”On the Three-Dimensional Instabil-
ity of Thermocapillary Convection in Arbitrarily Heated
Floating Zones in Microgravity Environment” , FDMP,
Vol. 1, no.1, pp. 21-32

Haddad, F.Z.; Garandet, J.P.; Henry, D.; Ben Hadid,
H. (1999) : Analysis of the unsteady segregation in crys-
tal growth from a melt: I. Fluctuating interface velocity.
J. Crystal Growth, vol 204, pp. 213-223.

Haddad, F.Z.; Garandet, J.P.; Henry, D.; Ben Hadid,
H. (2000) : Analysis of the unsteady segregation in crys-
tal growth from a melt Part II: Fluctuating convection ve-
locity. J. Crystal Growth, vol 220, pp. 166-175.



The Stability of the Hadley Flow 283

Hurle, D.T.J. (1966) : Temperature oscillations in
molten metals and their relationship to growth striae in
melt-grown crystals. Phil. Mag. Vol 13, pp. 305.

Hurle, D.T.J. (1974): Convective temperature oscilla-
tions in molten gallium. J. Fluid Mech. Vol 64, pp. 565-
576.

Kaddeche, S.; Henry, D.; Ben Hadid, H. (2003) : Mag-
netic stabilization of the buoyant convection between in-
finite horizontal walls with a horizontal temperature gra-
dient. J. Fluid Mech. Vol 480, pp. 185-216.

Kaddeche, S.; Henry, D.; Putelat, T.; Ben Hadid, H.
(2002) : ] Instabilities in liquid metals controlled by con-
stant magnetic field—Part I: vertical magnetic field. J.
Crystal Growth, vol 242, pp. 491-500.

Kaddeche, S.; Henry, D.; Putelat, T.; Ben Hadid, H.
(2002) : Instabilities in liquid metals controlled by con-
stant magnetic field—Part II: horizontal magnetic field.
J. Crystal Growth, vol 242, pp. 501-510.

Lan, C.W.; Yeh, B.C. (2005) : Effects of rotation on
heat flow, segregation, and zone shape in a small-scale
floating-zone silicon growth under axial and transversal
magnetic fields. FDMP, vol 1, no.1, pp. 33-43.

Lappa, M. (2005a): On the nature and structure of pos-
sible three-dimensional steady flows in closed and open
parallelepipedic and cubical containers under different
heating conditions and driving forces. FDMP, vol 1, no
1, pp. 1-19.

Lappa M. (2005b): Review: Possible strategies for the
control and stabilization of Marangoni flow in laterally
heated floating zones, FDMP, vol.1, no.2, pp. 171-188.

Loh, B.K.; Hyun, S.; Ro, P. I.; Kleinstreur, C. (2002):
Aoustic streaming induced by ultrasonic flexural vibra-
tions and associated enhancement of convective heat
transfer. J. Acoust. Soc, Am, vol 111, pp. 875-883.

Melnikov D. E.; Shevtsova V. M. (2005): Liquid Parti-
cles tracing in three-dimensional buoyancy-driven flows,
FDMP, vol.1, no.2, pp. 189-199.

Suri, C. ; Takenaka, K. ; Yanagida, H. ; Kojima,
Y. ; Koyama, K. (2002) : Chaotic mixing generated by
acoustic streaming. Ultrasonics, vol 40, pp. 393-396.

Tsukada, T.; Kobayashi, M.; Jing, C.J.; Imaishi, N.
(2005): Numerical simulation of CZ crystal growth of
oxide. FDMP, vol 1, no.1, pp. 45-62.

Vainstein, P.; Fichman, M.; Gutfinger, C. (1995):
Acoustic enhancement of heat transfer between two par-

allel plates. Int. J. Heat Mass Transfer, vol 38, pp. 1893-
1899.




