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A Model for Electromagnetic Control of Buoyancy Driven Convection in Glass
Melts
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Abstract: Buoyancy driven motion of a highly vis-
cous electrically conducting fluid under the influence of
Lorentz forces is investigated theoretically and experi-
mentally. This problem is relevant to the processing
of glass, where it is of considerable interest to know
whether electromagnetic forces can effectively improve
mixing and help to avoid undesired flow patterns in glass
melting furnaces. Two highly simplified models are pro-
posed in which the fluid is assumed to be confined in a
circular loop containing several localized resistive heat-
ing, convective cooling, and electromagnetic forcing el-
ements. The first model is used to derive the scaling
laws of the mean velocity and maximum temperature
depending on the electric current density and magnetic
field. The predictions of this model are found to be in
agreement with numerical simulations and with experi-
ments in a small-scale glass melting furnace. Using the
second model which contains two cooling elements we
demonstrate that the steady-state velocity in the general
case is determined by a single nonlinear algebraic equa-
tion whose bifurcation structure reveals an unexpectedly
subtle influence of the Lorentz force on buoyancy driven
convection. It is shown that the system undergoes a tran-
sition from a nearly stably stratified ”slow” mode for
weak Lorentz forces, in which the velocity v and tem-
perature θH scale with the electric current density J0

as v ∼ const. and θH ∼ J2
0 to a ”fast” mode for strong

Lorentz forces in which the scaling on the magnetic field
B0 is v ∼ J0B0 and θH ∼ J4/3

0 B−2/3
0 . In a wide range of

parameters this transition depends discontinuously on the
magnetic field and has the character of a subcritical bifur-
cation involving hysteresis. The scaling laws imply that
already a comparatively weak electromagnetic force can
strongly modify buoyancy driven convection. The con-
sequences of this finding for electromagnetic control of
glass melting processes are briefly discussed.
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1 Introduction and technical background

Glass is a ubiquitous material whose reliable produc-
tion requires a comprehensive understanding and accu-
rate prediction of its flow when it is in its liquid phase
at temperatures between 1200oC and 1600oC . Although
there have been intensive efforts in the glassmaking in-
dustry (Krause & Loch 2002) and from the side of com-
mercial computational fluid dynamics (CFD) software
developers (Prasad et al 1999) to implement and exploit
numerical models of glass flows in melting furnaces,
the underlying fluid dynamical problem - mixed convec-
tion of a high-Prandtl number fluid with internal heat
generation at high Rayleigh and low Reynolds numbers
- remains poorly understood. This is particularly true
for all-electric furnaces where the flow is driven by the
combined action of (Joule-heat-induced) buoyancy and
Lorentz forces. In this case there is a long-standing and
still unresolved controversy (Hofmann & Philip 1992,
Choudhary 1995, Hofmann & Thess 2002) as to whether
naturally occuring electromagnetic forces should be in-
cluded into numerical models of glass melt flows. More-
over, one would like to know whether additional Lorentz
forces, created by applying external magnetic fields, can
lead to sufficiently strong changes in the flow velocity
(which usually is of the order of a couple of millimeters
per second) so as to enhance mixing and to avoid unde-
sired flow patterns. While the application of electromag-
netic fields for flow control in other areas of materials
processing like semiconductor crystal growth, steel cast-
ing, and production of aluminium is a well established
technique based on a good understanding of the underly-
ing fluid dynamical phenomena (Davidson 1999, David-
son 2001, Davidson & Lindsay 1998), the application of
electromagnetic fields to glass melts is a comparatively
new topic. The difficulty with glass melts arises from the
fact that their electrical conductivity is nearly than five
orders of magnitude smaller than that of liquid metals.
The goal of the present work is to formulate a conceptu-
ally simple model which displays the delicate interplay
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between buoyancy, viscous friction, and Lorentz forces
in its purest form and permits one to systematically in-
vestigate how strong electromagnetic forces ought to be
in order to effectively control the flow of a glass melt.
The present model should be considered as a prologue
to a comprehensive analysis of electromagnetic forces in
glass melts because it does not take into account the de-
pendence of viscosity and electrical conductivity on tem-
perature and the heat transfer by radiation.

The paper is organized as follows. With the detailed
explanation of the technical background we pave the
ground for the definition of our family of models which
shall be formulated in section 2. Section 3 contains an
analysis of the simplest representative of this family, re-
ferred to as model A, which is embodied in eq. (33).
This model is amenable to fully analytic treatment and is
compared with numerical simulations and laboratory ex-
periments but does not represent the most general case.
In section 4 we analyze a slightly more realistic model,
called model B, which is described by eq. (45). This
model displays the non-monotonic action of the magnetic
field. Section 5 summarizes our conclusions and trans-
lates our findings into general scaling laws which are be-
lieved to provide a rational framework for the application
of Lorentz forces to control glass melt flows.

Fig. 1 shows a highly simplified picture of an all-electric
furnace for glass melting. An alternating electric cur-
rent of about 1000 Ampere is injected into the electrically
conducting highly viscous glass melt using two or more
electrodes. This electric current has three effects, namely
(i) resistive heating of the melt, (ii) creation of buoyancy,
(iii) generation of a Lorentz force. Heating and buoyancy
is a result of the volumetric heat production

q =
J2

σ
(1)

where J(x, t) is the electric current density and σ the
electrical conductivity of the melt. Glass melts are poor
electric conductors with conductivities of the order σ ≈
10Ω−1m−1 as compared with σ ≈ 106Ω−1m−1 for liq-
uid metals and molten semiconductors. The origin of the
Lorentz force may be twofold. On the one hand, the elec-
tric current in the electrodes, and in the busbar system
creates its own magnetic field b(x, t) determined by Am-
pere’s law µ0J = ∇×b and by ∇ ·b = 0. This field results
in a ”natural” Lorentz force

f = J×b (2)

Figure 1 : Convection in an all-electric glass furnace:
(a) Schematic of the furnace and of the flow field, (b)
measured velocity distribution in an industrial all-electric
furnace (reproduced from Illig et al 1978). Observe that
a fluid element traveling along one of the streamlines
shown, will experience a Joule heating during its upward
motion followed by radiative cooling at the free surface
and a conductive cooling at the refractory walls. The
primary source of convective motion is buoyancy due to
Joule heating, but the flow is also affected by ”natural”
Lorentz forces generated in the vicinity of the electrodes
as descibed in the text.

which is always present in all-electric melting furnaces
and was studied by Hofmann & Philip 1992 and Choud-
hary 1996. Similar flows occur in a variety of electro-
magnetic materials processing techniques and are often
called electrically induced vortical flows (Bojarevics et
al 1988). On the other hand, since the pioneering work
of Osmanis and co-workers (Osmanis et al 1987), there
has been a growing interest in the application of exter-
nal magnetic fields B(x, t) in order to create additional
”artificial” Lorentz forces

f = J×B (3)
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so as to intensify mixing, which is crucial in the pro-
duction of high-homogeneity glasses for optical applica-
tions.

The challenge in any practical application is to predict the
velocity and temperature distribution of the liquid glass
in the melting volume for a prescribed set of geometry
parameters, electric current, and magnetic field distribu-
tions. More precisely, one would generally like to answer
the following two questions: Is it necessary to take into
account the natural Lorentz forces [cf. eq. (2)] when
performing numerical simulations of glass melt flows in
all-electric furnaces? How strong should an artificial
Lorentz force [cf. eq. (3)] be in order to rearrange the
flow in some predetermined manner? Up to now, the in-
fluence of Lorentz forces on glass melt flows was not
systematically explored. It was generally believed that
the effect of Lorentz forces is a linear one in the sense
that the increase in stirring velocity ∆v due to a Lorentz
force f is of the order ∆v ∼ f . We are not able to ad-
dress the foregoing questions in their full generality, as
this would involve the consideration of an infinite variety
of possible configurations of electric current and mag-
netic field distributions. We shall rather limit the scope of
our work to the search for a physical mechanism which
involves a non-trivial action of a Lorentz force upon a
convective flow. Our model, to be defined below, shows
indeed that Lorentz forces affect buoyancy driven con-
vection in a very subtle way, and that under appropriate
circumstances small changes in f may lead to drastic in-
creases of the flow velocity.

Our model shown in Fig. 2, is inspired by early (Keller
1966, Welander 1967, Creveling et al 1975) and more
recent work (Davis & Roppo 1987, Yorke et al 1987,
Ehrhard et al 1989, Ehrhard & Müller 1990) modelling
thermal convection by the motion of a fluid in a closed
vertical loop as well as by the recent progress in the appli-
cation of scaling and similarity theory to the description
of thermal convection at high Rayleigh number (Siggia
1994, Grossmann & Lohse 2000, 2003).

2 Formulation of the problem and general consider-
ations

2.1 Definition of the considered system

Let us consider a circular loop filled with a fluid with
kinematic viscosity ν, thermal diffusivity κ, coefficient
of thermal expansion α, density ρ = ρ0[1−α(T − T0)],

Figure 2 : Sketch of the considered models: (a) circu-
lar loop with one cooling element (model A), (b) circu-
lar loop with two cooling elements (model B). Both, the
electric current and the magnetic field are assumed to be
time independent (DC). Notice, however, that in indus-
trial practice AC current with a frequency of 50Hz is used
in order to avoid electrolysis in the glass melt and that
the applied magnetic field (if any) must oscillate with the
same frequency in order to produce a Lorentz force with
non-zero mean value. Since the time scales of oscillation
of the heat flux and the Lorentz force are much smaller
than the time scales of the flow, only their mean values
are of importance.

and electrical conductivity σ. Since the Prandtl number
Pr = ν/κ of glass melts is of the order 103, we shall as-
sume Pr � 1. We take into account that ν, κ, α, and σ
are functions of temperature but neglect their variation
within the loop in order to keep the model as simple as
possible. However, the reader should have in mind that in
real glass melts ν and σ can vary by orders of magnitude
and that these variations give rise to strong nonlinear ef-
fects such as thermal runaway and freezing instabilities
(Lange & Loch 2002). Similar effects are known to oc-
cur in lava flows, which have been investigated by Wylie
& Lister (1995, 1998). Our neglect of viscosity and con-



250 Copyright c© 2005 Tech Science Press FDMP, vol.1, no.3, pp.247-266, 2005

ductivity variations within the loop should therefore be
considered as a preliminary measure which is taken in or-
der not to obscure the interaction between Lorentz forces
and buoyancy.

As shown in Fig. 2, the fluid is heated by passing a ho-
mogeneous electric current J = J0ex through it, applied
over a section with length LH which delivers a volumet-
ric heat generation rate q = J2

0/σ to the fluid. At the
same time a magnetic field B = B0ey is assumed to act
upon the heating section. At this point we do not dis-
tinguish between natural and artificial Lorentz force and
suppose that B0 and J0 are independent input parameters,
even though B0 may depend on J0. The resulting Lorentz
force density f = J0B0ez drives the fluid in counterclock
wise direction. The Lorentz Forces are concentrated near
by the electrodes. The reason is the decreasing electrical
field density by increasing distance according J ∼ r−1 for
rod electrodes and J ∼ r−2 for point electrodes. This re-
lations allow us to concentrate the Lorentz Force at the
heating section. In addition to the Lorentz force, a buoy-
ancy force is generated due to the nonuniform distribu-
tion of temperature which results from cooling the fluid.
We shall consider two models, referred to as model A and
model B, characterized by one and two cooling sections
respectively. Model A is the simplest nontrivial system,
while model B is a more general caricature of the origi-
nal system shown in Fig. 1 in that it takes into account
both cooling at the free surface and at the sidewalls. In
general, the model might be formulated for any position
of the heating and cooling sections. The position of the
cooling sections of model B is applicable for internal vor-
tices which do not meet the side walls. This specific kind
of vortices appears between two inner rod electrodes of
a rod electrode line immersed into a glass melt furnace.
Cooling in our model is accomplished by exposing the
walls of the loop to a prescribed ambient temperature T0

along the cooling elements. The remaining portions of
the wall are assumed adiabatic. It is convenient to write
the temperature as T = T0 +θ and to formulate the theory
in terms of the temperature deviation θ.

For prescribed values of J0, B0, T0, and a given set of
material and geometry parameters, the goal of our theo-
retical model is to predict the velocity v and temperatures
θH and θC [θH , θC1, and θC2] for model A [model B] in a
steady state. The velocity is related to the volume flux Q
through the cross-sectional area A of the pipe by v = Q/A
and is assumed to be the same at all points of the fluid.

Our model is based on two ingredients namely (i) the bal-
ance of torques acting on the fluid, expressed by

0 = ΣV +ΣB +ΣL (4)

where ΣV is the viscous torque, ΣB the buoyancy torque
and ΣL the Lorentz torque, respectively and (ii) a set of
constitutive relations of the form

θC = f (v)θH, θH = θC +g(v)
[ f or model A] (5)

θC1 = f1(v)θH, θC2 = f2(v)θC1, θH = θC2 +g(v)
[ f or model B] (6)

where the functions f (v) and g(v) describe the relation
between the temperatures of the fluid entering and leav-
ing the heating or cooling section. A number of prop-
erties of the systems can be deduced from very general
qualitative considerations without any reference to the
specific form of these functions, as will be shown next.

It is readily verified that the torque on the fluid is in the
y-direction and can therefore be expressed as Σ = −Σey.
For flows at low Reynolds number, such as glass melt
flows, the viscous torque must be of the form

ΣV = −µv (7)

where the friction coefficient µ depends on the shape
of the cross-section and on the viscosity, as will be de-
scribed in detail in section 3. The buoyancy torque is
written as

ΣB = β(v) (8)

where the function β(v) depends on the properties of the
heating and cooling system as well as on the (unknown)
velocity. The shape of β(v) will be separately discussed
for models A and B below. Finally, the Lorentz torque
can be expressed as

ΣL = γ (9)

were γ∼ J0B0 describes the strength of the Lorentz force.
As a result, the velocity is determined by the non-linear
equation

µv = β(v)+ γ (10)

The family of steady solutions v(γ) of this equation can
be qualitatively understood by tracing the intersection be-
tween the functions µv and β(v) + γ once the shape of
β(v) is known.
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Figure 3 : General behaviour of model A: (a) Graphic solution of eq. (10) together with a sketch of the steady state
velocity depending on the Lorentz force (b)

2.2 General properties of steady states

Consider first model A, characterized by a single cooling
element. The heat taken up by each fluid element is pro-
portional to the volumetric rate of Joule heat production
J2

0/σ and to the time LH/v necessary to traverse the heat-
ing element. Consequently, the temperature difference
θH − θC is a decreasing function of v. Moreover, the
spatial distribution of hot (light) and cold (heavy) fluid
which determines the sign of β(v) is always the same be-
cause the system is always top-heavy with cold fluid cor-
responding to unstable stratification. As a result, β(v) is a
monotonically decreasing function of v whose qualitative
shape is shown in Fig. 3a.

For γ = 0 its intersection with µv defines a velocity scale
v0 characterizing the intensity of the nonmagnetic flow.
As γ is increased, the intersection is displaced to the right
and the velocity is a monotonically increasing function of
the Lorentz force as shown in Fig. 3b. However, model
A does not represent the most general case because the
fluid is always unstably stratified.

Model B is the simplest variant of the generic case in-
cluding the possibility of transition from unstable to sta-
ble stratification. This system is characterized by the
presence of two cooling elements. Assume for a moment
that v were known and let us derive, from general con-
siderations, the shape of β(v). For low velocities the first
cooling section will be very effective in cooling the fluid
down to a low temperature. Therefore the temperature
distribution will be virtually the same as in model A (cf.
insert 1 in Fig. 4a) and β(v) will decay as shown in Figs.
4a and c for v → 0. However, as v is increased, the first
cooling section becomes less effective and warm fluid in-

vades the left part of the annulus before it is completely
cooled down by the second cooling section.

There is some velocity at which the total torque becomes
zero, as shown in inset 2 of Fig. 4a. Further increase of
v leads to a reversal of the sign of β(v) (cf. insert 3 of
Fig. 4a) which, for v → ∞, tends to zero. For low electric
current β(v) sketched in Fig. 4a is smaller and less steep
than for higher current, shown in Fig. 4c. This behavior
is based on the fact, that the heat generation is propor-
tional to J2

0 . For increasing velocities and higher electri-
cal current the reduction of generated heat and therefore
the reduction of β(v) is greater than for smaller electrical
current. It turns out that there exists a critical electric cur-
rent Ic which strongly affects the behavior of the system
once the Lorentz force is switched on. For I < Ic there
is a unique intersection between µv and β(v) as seen in
Fig. 4a which leads to a monotonic function v(γ) shown
in Fig. 4b. When I > Ic there are multiple intersections
(cf. Fig. 4c) implying that there is a jump in the velocity
once γ is increased beyond a critical value. This transi-
tion involves hysteresis, as demonstrated in Fig. 4d.

2.3 Specification of the heat transfer models

Before proceeding to an analysis of both systems we
need to supply our model with specific functions f (v)
and g(v).

To derive the cooling function f (v) we observe that the
Peclet number Pe = vd/κ in glass melt flows is usually
high. We therefore assume that the passage of the hot
fluid with θ = θH along the cold isothermal wall with
θ = 0 results in a thermal boundary layer, shown in Fig.
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Figure 4 : General behaviour of model B: (a), (c) Graphic solutions of eq. (10) together with a sketch of the steady
state velocities depending on the Lorentz force (b), (d). The case I < Ic with continuous parameter dependence is
shown in (a) and (b) while the case I > Ic exhibiting jumps and hysteresis is shown in (c) and (d). Insets in (a) show
the distribution of hot (H), warm (W), and cold (C) fluid corresponding to points 1,2, and 3 of the curve β(v).

Figure 5 : Structure of the thermal boundary layer in the
cooling section.

5, whose thickness evolves as

δ(s) = cT

(κs
τ

)1/3
(11)

which is typical of high-Prandtl-number fluids (Shraiman
& Siggia 1990, Wylie & Lister 1995, Ching 1997). Here
s is the arc-length, κ the thermal diffusivity of the fluid,
τ = dvt/dn the wall-normal gradient of the tangential ve-
locity, and cT a numerical constant of order one. We par-

enthetically note that this boundary layer structure also
underlies the empirical relations for estimating mixing
and homogenization times in glass processing (Beerkens
2002). For high Peclet numbers i.e. Pe = vd/κ � 1
the mean (cross-section averaged) temperature θ(s) is a
weighted average between θ = θH and θ = 0 in the form

θ(s) =
[

1− 2δ(s)
d

]
θH (12)

For high Peclet numbers the heat transfer by conduction
is small in comparison with convection and radiation. To
keep the model simple the internal heat transfer by radia-
tion is not included, but can be phenomenologically taken
into account using an enhanced heat diffusivity. It should
be mentioned that the Peclet number should not be too
large to prevent the temperature to become uniform af-
ter passing the cooling element and before entering the
heating section.

With eq. (12) θc = θ(Lc) can be expressed as soon as
τ is known. For general flows τ = c f (v)v2/2ν can be
expressed using the friction factor c f (v) (White 2002).
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For laminar flows we have c f = cV /Re (e.g. cV = 16 for
laminar flow in a circular pipe) leading to τ = cV v/2d
and thus to

f (v) = 1−
(

16κc3
T Lc

cV vd2

)1/3

(13)

For v → ∞ we have f → 1 implying that the temperature
is unchanged. For v → 16κLc/cV d2, on the other hand,
f → 0, i.e. the fluid is cooled down to the lowest pos-
sible temperature θ = 0. In addition to that we assume
that f = 0 for v < 16κLc/cV d2. However, this case is
of no importance here, since it corresponds to low Peclet
numbers while we are interested in Pe � 1 here.

The heating function g(v) is derived from the observation
that a fluid element moving through the electric heating
section obeys

cpρ0v
dθ
ds

=
J2

0

σ
(14)

where cp is the specific heat of the fluid. This equation is
easily integrated over the heating section −LH/2 ≤ s ≤
+LH/2 using the boundary condition θ(−LH/2) = θC to
obtain θH ≡ θ(+LH/2) as

θH = θC +
J2

0 LH

cpρ0σv
(15)

Thus we have

g(v) =
J2

0 LH

cpρ0σv
(16)

which decreases as 1/v as expected from our general dis-
cussion.

The constitutive relations can now be written in a com-
pact form as

f (v) = 1−
(v∗

v

)1/3
(17)

g(v) = θ∗
v∗
v

(18)

With

v∗ =
16κLcc3

T

cV d2 (19)

θ∗ =
J2

0 LH cV d2

16cpρ0σκLcc3
T

(20)

For model B we have two velocities v∗1, and v∗2, eval-
uated with LC1 and LC2 respectively, and g(v) should be
computed using LC = LC1. Finally we shall need the ex-
pressions for the temperatures in terms of f and g. They
are readily derived from eqn. (2.2) and (2.3) as

θH =
g

1− f
, θC =

f g
1− f

(21)

and

θH =
g

1− f1 f2
, θC1 =

f1g
1− f1 f2

θC2 =
f1 f2g

1− f1 f2

(22)

3 Analysis for the case of a single cooling element

3.1 Mathematical model and nondimensional vari-
ables

We apply the general theory first to analyze model A, a
laminar flow in a loop with circular cross section, small
diameter (d 	 R), and a single cooling element as shown
in Fig. 2a.

The viscous torque ΣV = RFV can be computed from the
force FV = 16π2ρ0νRv acting on the wall of a straight
pipe whose length is equal to the circumference 2πR of
our loop assuming a Poiseuille velocity profile. We thus
obtain

µ = 16π2R2ρ0ν (23)

for the friction coefficient defined in eq. (7).

To compute the buoyancy torque we start from the equa-
tion

ΣB ≡ β(v) =
π
4

d2R2ρ0αg
Z 2π

0
θ(φ)cos(φ)dφ (24)

valid for any temperature distribution θ(φ) in a circular
loop. In order to simplify the analysis we assume that
both the heating and cooling sections are very short, i.e.
LH 	 R, LC 	 R. Then we can compute the integral as
if the temperature distribution were given by

θ(φ) = θH (0 ≤ φ < π/2) (25)

θ(φ) = θC (π/2 ≤ φ < 2π) (26)

The result β(v) = πd2R2ρ0αg(θH −θC)/4 can be rewrit-
ten using eq. (21) and takes the form

β(v) =
π
4

d2R2ρ0αgθ∗
v∗
v

(27)
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As expected from Fig. 3a, β ∼ v−1.

The third ingredient, namely the electromagnetic torque
ΣL = RFL is readily computed from the Lorentz force
FL = πd2LH J0B0/4 acting on the fluid in the heating sec-
tion. As a result we have

γ =
π
4

Rd2LHJ0B0 (28)

The explicit expressions for µ, β,and γ can now be in-
serted into (2.7) and we obtain the desired equation

16π2R2ρ0νv =
πd2R2αgJ2

0LH

4cpσv
+

πRd2LH J0B0

4
(29)

for v(J0,B0). Once the velocity has been obtained, the
temperatures can be evaluated using eq. (21).

The model can be converted into a more compact form
by introducing nondimensional velocity and temperature
according to

v = v0V, θH = θ0TH , θC = θ0TC (30)

where

v0 =
dJ0

8

(
αgLH

πρ0νcpσ

)1/2

(31)

θ0 =

(
64π2J4

0 L2
Hν

κLCc3
T ρ2

0c2
pσ2αg

)1/3

(32)

The resulting equations are

V 2 = 1+MV (33)

TH =
1

V 2/3
(34)

TC =
1

V 2/3

[
1− 1

PV 1/3

]
(35)

They contain two dimensionless parameters, namely a
modified Peclet number

P = d

(
J0

8κLcc3
T

)1/3( αgLH

πρ0νcpσ

)1/6

(36)

which is a nondimenensional measure of the electric cur-
rent, and the Lorentz force parameter

M =
dB0

8R

(
LHcpσ
πρ0ναg

)1/2

(37)

which is proportional to the magnetic field. Eqn. (3.11)-
(3.13) uniquely determine the velocity and temperatures
of the considered system as functions of the control pa-
rameters P and M.

3.2 Solution

The solution of the governing equation (3.11) is easily
found as

V =
1
2

(
M +

√
M2 +4

)
(38)

TH =
(

2

M +
√

M2 +4

)2/3

(39)

TC =
(

2

M +
√

M2 +4

)2/3

×{
1− 1

P

[
2

M +
√

M2 +4

]1/3
}

(40)

These solutions are shown in Fig. 6. In the nonmag-
netic case M = 0 we have V = 1, TH = 1, and ∆T ≡
TH −TC = P−1 which corresponds to v ∼ J0, θH ∼ J4/3

0 ,
and ∆θ ∼ J0. Fig. 6 shows that the velocity is a mono-
tonically increasing function of the magnetic field. For
sufficiently strong magnetic fields (M � 1) V ∼ M, i.e.
the flow is proportional to the Lorentz force density
(v ∼ J0B0). At the same time, the Lorentz force leads
to an improved heat transfer and thereby to a reduction
of the temperature which is expressed by the asymptotic
relations TH ∼ M−2/3, ∆T ∼ P−1M−1 corresponding to
θH ∼ J4/3

0 B−2/3
0 and ∆θ ∼ J0B−1

0 . Let us translate the
nondimensional results of Fig. 6 into physical parame-
ters for a low temperature fluid which is often used in
”cold” model experiments whose material properties are
given in table 1. It can be seen in Fig. 7 that for B0 = 0
the velocity is of the order of 0.1mm/s and increases al-
most linearly when a magnetic field is applied.

Already a field with moderate strength B0 = 0.1T can
increase the velocity of the high temperature fluid by an
order of magnitude and effectively reduces the maximum
temperature as shown in Fig. 11. Notice that in the com-
putation of Fig. 7 the values of η and σ of the model sub-
stance were taken at the constant reference temperature
of 30oC. This is because their temperature-dependence is
weak in the considered range of temperatures. By con-
trast, when applying to our glass melts in section 3.4, η
and σ will have to be determined by a self-consistent pro-
cedure which takes into account the solutions for ΘC and
ΘH .
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Figure 6 : Solution for nondimensional temperature (a) and velocity (b) in a loop with a single heating and cooling
element (model A) as a function of the Lorentz force parameter defined in eq. (36). Notice that v and TH are
independent of P.

Table 1 : Used thermophysical properties of a model substance (Glycerin + LiCl, Stanek 1977) at a reference
temperature of 30oC and a glass melt at a reference temperature of 1180oC (ρ0, α) and 1400oC (cP), respectivly

Property Model substance Glass melt

ρ0 [kgm−3] 1260 3357
η [Pas] 0.80 lg η = −1.00Pas+ 454.36K

T−1033.41K

σ [Ω−1m−1] 0.24 lg σ = 6.24Ω−1m−1− 8.80∗103K
T

cP [Jkg−1K−1] 2427 1235
α [K−1] 4.80·10−4 1.18·10−4

3.3 Comparison with numerical simulations

In order to check the validity of our model and to justify
its extension to the case of two cooling sections we have
performed a series of numerical simulations using the
commercial CFD software FLUENT. Rather than solving
the three-dimensional pipe-flow problem we have imple-
mented the two-dimensional case corresponding to the
flow in a cylindrical gap. Since the latter case differs
from the former one only by the value of the coefficient
of resistance cV and the thermal boundary layer parame-
ter cT (the precise numerical values of which being of no
importance for our general conclusions), and since two
dimensional flow visualization provides full information
on the velocity and temperature fields, this approach was
considered more appropriate. We used no-slip boundary
conditions for the velocity field and assumed adiabatic
sidewalls everywhere except at cooling section where
the condition θ = 0 was enforced. The electric current
density was held constant at a value of J0 = 0.1Acm−2,
while the magnetic field was varied between B0 = 0 and

B0 = 1T .

Fig. 8 shows the distributions of temperature perturba-
tion θ and velocity magnitude v = (v2

x + v2
y)

1/2 for the
case B0 = 0 and the material properties corresponding to
the room temperature model substance specified in table
1. The global structure of the temperature field agrees
well with our assumption [eq. (25) and (26)]. Although
the flow is very slow (v ≈ 0.23mm/s), and the Reynolds
number Re = vd/ν is as small as Re ≈ 3.6× 10−3, the
Peclet number Pe = vd/κ ≈ 24 is sufficiently high for a
thermal boundary layer to develop in the cooling section.
The structure of this boundary layer is clearly visible in
the upper inset of Fig. 8a.

The lower inset shows that near-wall fluid elements are
heated up over a comparatively short path while par-
ticles in the middle of the pipe have to travel over a
much longer distance before attaining the high temper-
ature state. This observation is a consequence of the fact
that near-wall particles travel slowly and are therefore
longer exposed to the resistive heating. Fig. 8b demon-
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Table 2 : Comparison of the numerical results for the two-dimensional stationary problem with the analytical results
of model A (3.16)-(3.18) for the room temperature model substance. The thermophysical properties are given in table
1. Moreover the following geometry and model parameters were assumed for the numerical simulations: d = 0.01m,
R = 0.1m, LH = LC = 0.01m, g = 9.81ms−1, cV = 16, cT = 1.

Quantity Analytical result Numerical result

ΘH(B=0T) [K] 141 149
ΘH(B=1T) [K] 123 139
ΘC(B=0T) [K] 92.3 111
ΘC(B=1T) [K] 82.4 109
v (B=0T) [mm s−1] 0.227 0.377
v (B=1T) [mm s−1] 0.26 0.475
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Figure 7 : Solution for dimensional velocity and tem-
perature in a loop with a single heating and cooling ele-
ment (model A) for a room temperature model substance
(Glycerine with LiCl) as a function of the magnetic field.
The geometry and material parameters are given in table
1, and J0 = 104Am−2.

strates that the flow is nearly unidirectional everywhere
inside the loop except in the immediate vicinity of the
heating and cooling sections. Weak deviations from the
Poiseuille profile can be readily understood by invoking
the relation νωy = αg∂xθ for the production of horizontal
vorticity by the horizontal temperature gradient in a low
Reynolds number flow. In the heating section the temper-
ature decreases as one moves into the fluid, creating two
counter rotating vortices which brake the flow in the cen-
ter of the channel. In the cooling section local vorticity is
created which has the same sign as the global rotation of
the fluid, leading to a displacement of the velocity maxi-
mum towards the upper wall.

When the Lorentz force is switched on, the velocity in-
creases, and the temperatures decrease, but the global
appearance of the hydrodynamic fields remains virtually
unchanged as compared with Fig. 7. In Table 2 we list
selected numerical values and compare them to the pre-
dictions of our analytic model. Not only does the theory
reflect the qualitative behavior of θC and θH , but it is also
quantitatively similar, which is noteworthy since we have
not made any attempt to ”tune” the free parameters cT

and cV .

In summary, the numerical results indicate that our an-
alytical model correctly reflects the physics of the prob-
lem and can therefore be used to predict the influence
of Lorentz forces on buoyancy driven flows. We paren-
thetically note that already an extension of the simula-
tions to real glass melts with ∆T ∼ 100K and R = 1m
is quite expensive computationally, as it would corre-
spond to a fully time-dependent convection problem at
Rayleigh numbers of the order of Ra ∼ 1010 which is at
the limit of current numerical capabilities.

3.4 Comparison with experimental results

Beside the numerical simulations we have developed an
experimental setup to investigate the influence of Lorentz
forces on the flow of glass melts. Details of the experi-
mental setup and selected results on the influence of the
electromagnetic stirring on the homogeneity of the solid-
ified melt have been published by Hülsenberg et al. 2003
and Halbedel et al. 2004. Fig. 9 shows a sketch of the
experiment.

The used glass melt consists of 27.1%SiO2, 47.7%BaO,
20.0%B2O3, 5.2%Fe2O3 (all data in mass%) with the
material properties listed in Table 1. The composition



Electromagnetic Control 257

Figure 8 : Temperature and velocity distribution for
steady flow in model A at J0 = 104Am−2 as obtained from
a two-dimensional numerical solution of the full fluid-
dynamical problem without magnetic field. (a) global
temperature field with two inserts showing temperature
isolines in the vicinity of the heating and cooling sec-
tion. (b) global representation of the velocity magnitude
together with two inserts showing the stream function in
the vicinity of the heating and cooling section.

results in a nearly black glass melt. For this melt the heat
transfer by radiation is negligible and therefore agrees
with our model property. To avoid contamination as a
result of corrosion and to attain high temperature stabil-
ity the cylindrical crucible consists of oxide dispersion
strengthened platinum. The inner diameter of the cru-
cible is 80mm, the filling height is 80mm. Two plate
electrodes are immersed 60mm into the glass melt at a
distance of 20mm from the axis of symmetry of the cylin-
drical crucible. An alternating current with a frequency
of 50Hz results in electrical heating of the glass melt due
to the Joule Effect. An external magnetic field with the

Figure 9 : Schematic diagram of the experimental setup
(not to scale) (a) side view showing the predominantly
horizontal electric current density, (b) view from above
including part of the magnetic system: 1 Pt-crucible, 2
Pt-electrodes, 3 glass melt, 4 thermocouple, 5 heating
rods, 6 insulation, 7 coils, 8 yoke of the magnetic sys-
tem.
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Figure 10 : Experimental results: Temperature distribu-
tion along the rotational axis of the crucible without and
with external magnetic field.

same frequency is applied perpendicular to the electric
current and yields, upon interacting with the electrical
current, an upwardly directed Lorentz force between the
plate electrodes. The melt cools down at the free sur-
face. Six SiC heating rods are placed axially symmetric
around the crucible and provide a highly stable temper-
ature around the crucible. Additional insulation around
the whole setup prevents heat loss. This setup leads to an
ambient temperature of approximately T0 = 1180oC. The
temperature distribution of the glass melt is measured in
situ by a thermocouple, which can be moved along the
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rotation axis of the crucible. The measurement of the
velocity is not possible due to the high operating temper-
ature. During the experiments a current of 35A is applied
in combination with an external magnetic field of either
0T or 44mT .

Fig. 10 shows the temperature distribution along the ro-
tational symmetry axis without and with applied external
magnetic field. Although we do not have direct access to
the velocity field it seems reasonable to assume that the
melt rises between the electrodes and falls near the side
wall of the crucible. For both cases the glass melt seems
to be heated up while ascending along the electrodes and
cools down at the free surface. With applied magnetic
field the influence of the upward Lorentz force is obvi-
ous: the enhanced velocity results in a reduced temper-
ature difference along the rotational axis. Furthermore,
the maximum temperature is shifted upward. This is the
first direct experimental proof for the homogenizing in-
fluence of Lorentz forces on glass melts.

For the analytical calculations the following geometrical
parameters are adopted beside the physical properties of
the glass melt: the diameter is set to d = 0.02m, the ra-
dius of the loop is set to R = 0.08m and the length of
the cooling and heating zones are set to LC = 0.08m and
LH = 0.06m, respectively. First calculations were per-
formed with a constant viscosity η and a constant elec-
trical conductivity σ of the glass melt for a temperature
of 1400oC. On average the calculated temperatures ΘC

and ΘH are 15 times higher than the measured ones as
seen in Fig. 11a. To understand this apparent discrep-
ancy, let us check if the numerical values of σ and η
for the calculated temperature range are consistent with
to our given numerical values of σ(T = 1400oC) and
η(T = 1400oC). To this end, a definition of mean tem-
peratures is necessary in order to calculate σ(Tσ) and
η(Tη). The mean temperature of the viscosity is set to
Tη = 3

4TC + 1
4 TH to fulfill the friction distribution over

the whole loop. The electrical conductivity influences
the heating of the glass melt while passing the heating
section. For this reason the average temperature of the
heating section Tσ = 1

2TC + 1
2 TH is used as the mean tem-

perature of σ. As result the electrical conductivity σ(Tσ)
varies between 3.24 · 103Ω−1m−1 and 506.54Ω−1m−1,
the viscosity η(Tη) varies between 0.16Pas and 0.21Pas,
respectively. This comparison indicates, that the model
with pre-defined material properties σ and η is ”non-self-
consistent”. To attain a ”self-consistent” system the nu-

merical values of σ and η are adopted to the loop tem-
peratures iteratively until the given temperature to deter-
mine σ and η are identical to the temperatures calculated
with σ and η. Fig. 11b shows the result of the consis-
tent calculations and Table 3 compares the characteristic
measured and calculated temperature values. As a result
of our self consistent procedure and without tuning the
parameters cT , cV , cP and κ the measured temperatures
and the calculated ones are now in the same order of am-
plitude. Furthermore, the experimental setup differs from
the analytical model and the internal heat transfer by con-
duction is neglected. However, the relative temperature
changes agree very well and therefore model A describes
the main aspects of the experiment quite well. A com-
plete 3D-simulation is in work.

4 Analysis for the case of two cooling elements

4.1 Mathematical model and nondimensional vari-
ables

The case of two cooling elements differs from the previ-
ous one only in the shape of the buoyancy torque. Using
eq. (24) and assuming the temperature field to be of the
form

θ(φ) = θH (0 ≤ φ < π/2) (41)

θ(φ) = θC1 (π/2 ≤ φ < 3π/2) (42)

θ(φ) = θC2 (3π/2≤ φ < 2π) (43)

we readily obtain β(v) = πd2R2ρ0αg(θH − 2θC1 +
θC2)/4. With the help of relation (2.19) and the nondi-
mensionalisation

v = v0V, θH = θ0TH , θC1 = θ0TC1, θC2 = θ0TC2

(44)

we obtain the following system

V 2 =
(P2 −P1)V 1/3 +1

(P2 +P1)V 1/3−1
+MV (45)

TH =
P2

V 1/3

1
(P1 +P2)V 1/3−1

(46)

TC1 =
P2

V 1/3

1−P−1
1 V−1/3

(P1 +P2)V1/3 −1
(47)

TC2 =
P2

V 1/3

(1−P−1
1 V−1/3)(1−P−1

2 V−1/3)
(P1 +P2)V 1/3−1

(48)
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Figure 11 : Solutions for dimensional velocity and temperature in a loop with a single heating and cooling element
for the experimentally investigated glass melt as a function of the magnetic field. (a) is a non-self-consistent calcu-
lation at a mean melt temperature of 1400oC while (b) is a self-consistent calculation. The material parameters are
given in table 1, the geometry parameters are mentioned in table 3.

Table 3 : Comparison of the results of the self-consistent calculation for model A (3.16)-(3.18) with the experimental
results for the glass melt with an ambient temperature of T0 = 1180oC. In accordance with our experimental setup
following geometrical parameters are used for the calculations: d = 0.02m, R = 0.08m, LH = 0.06m, LC = 0.08m,
g = 9.81ms−1, cV = 16, cT = 1. Out of the set of measured data the maximum temperature is used to define ΘH and
the temperature at the crucible bottom is used to define ΘC. The thermophysical properties are given in table 1.

Quantity Analytical result Experimental result

ΘH(B=0T) [K] 781.5 137.4
ΘH(B=44mT) [K] 473.7 109.8
ΘC(B=0T) [K] 479.2 73.7
ΘC(B=44mT) [K] 388.4 83.3

ΘH
ΘC

(B=0T) 1.63 1.86
ΘH
ΘC

(B=44mT) 1.22 1.32
ΘH
ΘC

(B=0T)−ΘH
ΘC

(B=44mT) 0.41 0.55
ΘH (B=0T)

ΘH(B=44mT) 1.65 1.25
ΘC(B=0T)

ΘC(B=44mT) 1.23 0.89

which determines the unknown velocity and tempera-
tures. Here P1 and P2 are the modified Peclet numbers
defined by eq. (36) with LC replaced by LC1 and LC2, re-
spectively. In the interest of clarity, however, we find it
more appropriate to write

LC1 = LC(1+ε), LC2 = LC(1−ε) (49)

in which case P1 and P2 can be expressed as

P1 =
P

(1+ε)1/3
, P2 =

P

(1−ε)1/3
(50)

where P is given by eq. (36).

Eq. (45)-(48) represent our mathematical model for sys-
tem B. For a given geometry parameter ε and prescribed
electromagnetic control parameters P∼ J1/3

0 and M ∼ B0

the nonlinear algebraic equation (4.5) determines the ve-
locity V(ε,P,M) of steady states from which the temper-
atures TH(ε,P,M), TC1(ε,P,M), and TC2(ε,P,M) can be
explicitly determined. Observe that model A is a partic-
ular case of model B corresponding to ε → 1.
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Figure 12 : Solutions for model B in the nonmagnetic case: Velocity (a) and temperatures (b), (c), (d) as obtained
by a numerical solution of eq. (45), and eq. (46)-(48) for M=0 with ε = 0 and ε = −0.22. Dashed lines show the
nonmagnetic solution of model A for comparison.

4.2 Solution

We start by discussing the nonmagnetic case M = 0. Fig.
12 shows numerical solutions corresponding to the case
of two cooling sections with equal length (ε = 0), to the
case where the lower cooling section is stronger than the
upper one (ε < 0) as well as the results for model A. For
ε = 0 the velocity is found to decay as V ∼ P−3/7 which
implies that the dimensional velocity scales as v ∼ J6/7

0
being only slightly different from model A where v ∼ J0.
This scaling is also easily recovered from the asymptotic
behavior of eq. (45) in the limit P → ∞. The slightly
slower increase of the velocity in model B as compared
with model A is due to the fact that hot fluid can invade
the left side of the loop weakening the unstable stratifi-
cation.

Further qualitative changes occur when ε < 0. As seen
in Fig. 12a, the velocity decays much faster than for

ε = 0, more precisely as V ∼ P−3 for P� 1. This implies
v→ const., i.e. the velocity converges to a value indepen-
dent of the driving electric current. This phenomenon,
which we shall refer to as blocking, is a manifestation
of the stable stratification already identified in Fig. 4a
(inset 2). Mathematically, the zero of the numerator of
the first term on the right-hand side of eq. (45) which
exists for P2 < P1 (i.e. ε < 0) implies that the velocity
cannot exceed a maximum Vmax = (P1 −P2)−3 explain-
ing the observed scaling. It is remarkable that already a
slight modification of the geometry parameters can com-
pletely change the velocity scaling in thermal convection.

In discussing the behavior of the present system for the
general case M �= 0 we shall focus our attention on the
case ε < 0 in which a transition from unstable to stable
stratification is possible. Fig. 13a-d shows the station-
ary velocity at different values of P for varying magnetic
field. As long as P is below a critical value Pc(ε), as is



Electromagnetic Control 261

Figure 13 : Solution of model B in the general case for ε = −0.22.
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Figure 14 : Location of the critical points Pc(ε) (a), Mc(ε) (b), Vc(ε) (c), θHc(ε), θC1c(ε), θC2c(ε) as a function of
the geometry parameter ε.

the case in Fig. 13a and b, the flow velocity is a mono-
tonically increasing function of M similar to the behavior
of model A.

As soon as P > Pc the solution of eq. (45) becomes
multiple-valued, i.e. there exist three solutions in an in-
terval M− < M < M+. To analyze the stability of the
three solutions the torque balance equation (2.1) is made
time-dependent by expressing the change in angular mo-
mentum as ζdv

dt (with ζ being related to the moment of
inertia) and leads to ζdv

dt = −µv + β(v)+ γ = F(v). For
time-dependent velocities v(t)= vS +ξ(t) with the steady
state solution vS the function F(v) is linearized with re-
spect to the infinitesimal perturbation ξ(t) and results in
ζdξ

dt = F ′(vS)ξ. Numerical calculations show, that the
derivative F ′(vS) at the middle branch is always greater
than zero and therefore the corresponding vS is an unsta-
ble solution as expected.

When M > M+ the solution jumps from the slow branch
to the fast branch. This transition involves hysteresis. In-

deed, if M is decreased, the transition back to the slow
branch occurs for M = M− as shown in Fig. 13c and d.
The discontinuous transition, which is the main finding
of the present work, can be understood as a breakdown
of blocking due to the action of the Lorentz forces. Con-
sider a system which is on the slow branch, for instance
at ε = −0.22, P = 30, M = 0.7 (cf. Fig. 13c). Accord-
ing to our discussion of the nonmagnetic problem, this
corresponds to a situation where the system is close to
stable stratification with a temperature distribution simi-
lar to that of inset 2 in Fig. 4a. If the velocity is increased
by a sufficiently high amount δV > 0 due to some exter-
nal perturbation, less heat will be taken up by the fluid in
the heating section. Consequently, less hot fluid invades
the region to the left of cooling section 1, and the torque
acting on the fluid increases, thereby reinforcing the ini-
tial perturbation. This feedback mechanism results in a
jump of the system to the fast branch. On this branch
V ∼ M as in model A. The jump to the last branch is
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accompanied by a jump of the temperatures to a lower
”cold” state. The overall parameter dependence of the
flow is visualized in Fig. 13e where we plot V (P,M) for
ε = −0.22. The most important characteristic of this sur-
face is the point (Pc,Mc,Vc), which we shall refer to as
the critical point, at which the discontinuous transition
occurs first. Since the structure of this surface is iden-
tical for all ε < 0, the one-parameter family of critical
points [Pc(ε),Mc(ε),Vc(ε),THc(ε),TC1c(ε),TC2c(ε)] plot-
ted in Fig. 14 characterizes the behavior of our system to
a large extent. Notice that as ε decreases from 0 to −1,
corresponding to an increasing asymmetry of the cool-
ing sections, the critical electric current decreases but the
critical magnetic field increases.

5 Discussion and Conclusions

We have formulated a simple model which permits one to
understand how a Lorentz force affects thermal convec-
tion in an electrically conducting fluid with high Prandtl
number. Our main result is the identification of a dis-
continuous transition between a slow mode (with higher
temperature) and a fast mode (with lower temperature)
which occurs for P > Pc(ε) and has the form of a subcrit-
ical bifurcation as a function of the magnetic field. The
key mechanism for this effect is that the Lorentz force
leads to a breakdown of stable stratification.

Fig. 15 summarizes the behavior of our system in the
two-dimensional space of control parameters (P,M) for
the case ε < 0 together with the scaling laws for the ve-
locity and temperature. In the slow mode M 	 1 the ve-
locity is independent of the electric current and the mag-
netic field, while the temperatures increase as J2

0 . On the
other hand, in the fast mode the velocity is proportional
to the Lorentz force density. The scaling laws for ∆θ and
θH show that the magnetic field does not only affect the
velocity but also the heat transfer. The cusp to the right
of the critical point represents the region where both fast
and slow modes can coexist. Although the scaling rela-
tions have been obtained from a simple one-dimensional
model, they reflect the competition between the buoy-
ancy and Lorentz force and are therefore believed to hold
in more complex geometries with practical relevance as
well.

In order to demonstrate that most practically relevant
flows have P > Pc and are therefore located in the region
where the transition to the fast mode is discontinuous,
let us translate the nondimensional values of the criti-

Figure 15 : Phase diagram summarizing the scaling of
velocity and temperature in the slow, buoyancy domi-
nated, and in the fast, Lorentz force dominated, regime
for ε < 0. MS denotes the parameter region where mul-
tiple solutions coexist. Its upper (lower) boundary marks
the value of M for which the solution jumps from one
mode to the other when M is increased (decreased).

cal parameters into physical quantities. For ε = −0.96
we have Pc = 2.22, Mc = 1.73, Vc = 0.340, THc = 0.576
(cf. Fig. 14). With the parameters of the room temper-
ature model substance (cf. Table 1) this translates into
the critical values J0c = 0.0451A/cm2, B0c = 0.287T ,
vc = 0.0355mm/s, θHc = 51.7K, while for the glass
melt we have J0c = 1.16A/cm2, B0c = 0.0118mT , vc =
0.0233mm/s, θHc = 229K. These data can be interpreted
in two different ways. Firstly, as soon as the electric cur-
rent density is higher than J0c, the transition from slow
to fast flow takes place discontinuously when the mag-
netic field exceeds a value of the order B0c. Secondly, if
a system is heated such that its temperature is higher than
θHc above the ambient temperature T0, then the velocity
is a discontinuous function of B0. Notice that J0c for the
glass melt is of the order 0.1A/cm2 which is a typical
value of electric current densities in all-electric glass fur-
naces, and that the minimum required rate of overheating
is only 229K. We can conclude from these figures that
all-electric glass melting furnaces operate in a parameter
range which is characterized by P > Pc and are therefore
susceptible to comparatively weak Lorentz forces.

The general formulas for the dimensional critical param-
eters are readily derived from the definitions (3.14) and
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(3.15) as

J0c = 8κLc

(
Pc

cT d

)3(πρ0νcpσ
αgLH

)1/2

(51)

B0c =
8RMc

d

(
πρ0ναg
LH cpσ

)1/2

(52)

from which

vc =
dJ0cVc

8

(
αgLH

πρ0νcpσ

)1/2

(53)

θHc = THc

(
64π2J4

0 L2
H ν

κLCc3
T ρ2

0c2
pσ2αg

)1/3

(54)

follow. It is interesting to consider how the critical pa-
rameters scale with the size of the system. If all length
scales are multiplied with a scaling factor s, the critical
parameters are found to behave as

J0c ∼ s−3/2 (55)

B0c ∼ s−1/2 (56)

vc ∼ s3/2 (57)

θHc ∼ s1/3 (58)

Moreover, the critical Lorentz force density F0c = J0cB0c

obeys F0c ∼ s−3 implying that with increasing system
size the system becomes increasingly susceptible to
Lorentz forces. This observation suggests that electro-
magnetic forces might be quite effective in controlling
glass melt flows in large enclosures. We parentheti-
cally note that electromagnetic boundary layer control
in another poorly conducting fluid - namely seawater -
has attracted a considerable research interest (Gailitis &
Lielausis 1961, Tsinober & Shtern 1967, Tsinober 1990).
Even if there is no externally applied magnetic field in
glass processing, the magnetic field of the current itself
scales as B0 ∼ J0. This implies that a system with natural
Lorentz forces moves along a curve M ∼ P3 in the (P,M)
plane and thereby is likely to penetrate the multiple state
domain shown in Fig. 15. Consequently, it is likely that
it may often be important to include Lorentz forces in
simulations of all-electric glass furnaces.

Finally, a brief comment on the limits of validity of the
present theory is in order. We have neglected the internal
heat transfer by radiation as well as the temperature de-
pendence of both η and σ, which limits the validity of our

approach to small temperature variations as in the interior
of a glass melting furnace. However, the present model
can be modified so as to incorporate these effects at only
slightly increased mathematical complexity as has been
demonstrated by Lange & Loch 2002 for (nonmagnetic)
flow of a glass melt in a pipe. A similar statement is
true for inertial effects which could be taken into account
by using the full expression for the friction coefficient
c f (v) rather than the laminar expression. Also, more gen-
eral heat transfer models including experimentally deter-
mined heat transfer coefficients could be used.
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