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Coalescence and Non-coalescence Phenomena in Multi-material Problems and
Dispersed Multiphase Flows: Part 1, A Critical Review of Theories

Marcello Lappa 1

Abstract: The manuscript deals with a presentation
of the most reliable theories introduced over the years
to model particle coalescence and non-coalescence phe-
nomena at both macroscopic and microscopic length
scales (including historical developments and very re-
cent contributions) and moves through other macrophys-
ical mechanisms that can cause spatial separation of the
fluid phases (liquid-liquidor liquid-gas) in multi-material
problems, while providing a rigorous theoretical frame-
work for deeper understanding of how drop (or bubble)
migration due to gravity and/or Marangoni effects can
interact cooperatively with coalescence to significantly
affect the multiphase pattern formation, its evolutionary
progress as well as the final quality of the material in its
solid state.

1 Introduction

The physical properties of many materials strongly de-
pend on the multiphase morphology which is controlled
to a great degree by particle-particle interaction in the
liquid phase during the related processing.

The possibility that inclusions (drops or bubbles) collide
and coalesce with each other as they move (under vari-
ous natural forces, e.g., buoyancy or thermal Marangoni
effects) has to be regarded as a significant and relevant
part of the problem (these aspects often are referred to as
collision and coagulation events).

Owing to the experimental difficulties in investigating the
fluid-dynamics of nontrasparent liquids (e.g., metal al-
loys are opaque) a number of mathematical models and
methods have appeared over the last few years for a nu-
merical/theoretical analysis of these aspects when they
are disjoint or partially combined.

It is known that the dynamics of an immiscible fluid-fluid
system subjected to the action of gravity and of surface
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tension forces is characterized (categorized in terms of
relative importance of different effects) in principle by
the following non-dimensional numbers:

The capillary number:

Ca =
µVre f

σ
(1)

where, µ is the dynamic viscosity of the external (ma-
jority) liquid, Vre f a reference velocity and σ is the sur-
face (or interfacial) tension between the two fluid phases.
This number is an important measure of the dynamic de-
formability of the free surface as it represents the relative
effect of viscous forces and surface tension. If Ca→0
(i.e. Ca << 1) dynamic surface deformation can be ne-
glected.

The Bond number:

Bo =
∆ρga2

σ
(2)

where ∆ρ is the density jump between the liquid phases,
”a” a reference length (e.g., the radius of the droplet or
bubble). The parameter Bo represents the ratio of internal
hydrodynamic pressure to surface-tension force. If this
number is sufficiently small the fluid/fluid interfaces be-
have (approximately) not much differently with respect
to the case of zero-g.

The well-known Reynolds number:

Re =
ρVre f a

µ
(3)

where ρ is the density of the external (majority) liquid
and Vre f , for instance, can be the average particle sedi-
mentation (or rise) velocity or its migration velocity in-
duced by Marangoni effects, established during the phe-
nomena under consideration (since in many applications,
these velocities are not known a priori, an equivalent def-
inition can be based on the so-called scaling velocities for

these phenomena, i.e. the buoyancy velocity Vg = g∆ρa2

µ
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for gravity-dominated processes or the Marangoni veloc-
ity V T

Ma = σT ∆T
µ for thermally surface-tension driven pro-

cesses, ∆T being a reference temperature difference).

The Prandtl number:

Pr =
ν
α

(4)

represents the ratio of molecular momentum to molecu-
lar thermal transport, ν and α being the kinematic vis-
cosity and the thermal diffusivity of the majority phase,
respectively. The Marangoni number can be defined by a
combination of the Re and Pr numbers, i.e. Ma=Pr·Re.

Other relevant non-dimensional parameters are given by
the ratios of the minority phase (drop or bubble) density,
viscosity, thermal conductivity, specific heat, etc. to the
ones of the outer fluid.

2 Earlier studies for solid spheres

Earlier studies in the case of spherical solid spheres
are due to Bossis and Brady (1984), Brady and Bossis
(1985), Fortes et al. (1987), Feng et al. (1994). See
also Lamb (1932) for potential flow solutions and Happel
& Brenner (1965), Batchelor (1972), Davis and Acrivos
(1985) and Kim & Karrila (1991) for Stokes flow so-
lutions. In general, the central theme of these studies
has been calculation of the average sedimentation ve-
locity and/or the drag coefficients for two fundamental
modes of interactions (i.e., spheres moving in tandem or
side-by-side) and comparison of the results with the cor-
responding ones for a solitary sphere (Hasimoto, 1959;
Sangani and Acrivos, 1982; Zick and Homsy, 1982).

3 Coalescence as an ideal collision process

Embryonic theoretical studies for the case of liquid
droplets in simple shear flow (linear flow field) can be
tracked back to Smoluchowski (1917), who treated coa-
lescence as an ideal collision process with particle inter-
action being neglected (a simple ballistic model). In the
light of the studies of Lin et al. (1970) and Batchelor and
Green (1972) who calculated the hydrodynamic interac-
tions between solid spheres and their effect on particle
trajectories under flow, Zeichner and Schowalter (1977)
and Wang et al. (1994) added a coalescence ”efficiency”
to Smoluchowski theory to account for possible hydro-
dynamic interactions (Lyu et al., 2002).

Smoluchowski’s theory, in an analogy with ideal molec-
ular collision theory, simply reflects the main mechanism

Figure 1 : Coagulation events as predicted by the Bal-
listic model (solid lines represent small droplets relative
trajectories, arrows along solid lines indicate relative mo-
tion with respect to the falling large drop ).

of coalescence. However, it neglects all particle-particle
interactions that exist in real coalescence processes.
Without hydrodynamic interaction Smoluchowski-case
droplet trajectories are simply straight lines. In such a
case a collision occurs for all the small drops that move
towards a large one.

Consider, for instance, a large drop of radius a sediment-
ing under the effect of gravity in a liquid matrix contain-
ing other droplets of smaller size; since the sedimenta-
tion velocity is an increasing function of the radius (Clift
et al., 1978), the larger drop will move with larger ve-
locity with respect to the other smaller ones. According
to the ballistic model, all the droplets totally or partially
located in a region of amplitude 2a under the drop, will
collide (and coalesce) with it (Fig. 1).

The example above could also be used as a paradigm
case for the Marangoni migration phenomena; it is well-
known (see, e.g., Lappa, 2005a), in fact, that the migra-
tion velocity is an increasing function of the radius. Thus,
according to Smoluchowski’s theory a large drop would
capture all the droplets totally or partially located in a
region of amplitude 2a along the migration direction.

4 The trajectory theory

However, in reality, hydrodynamic interactions cause the
trajectories of particles to deviate from straight lines.
Only those droplets in a reduced region will collide with
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Figure 2 : Coagulation events as predicted by the Tra-
jectory theory (solid lines represent small droplets rela-
tive trajectories, arrows along solid lines indicate relative
motion with respect to the falling large drop).

the large one. Other droplets will follow the streamlines
around the large drop and pass by without colliding with
it (Zhang and Davis, 1991), see, e.g., Fig. 2.

As mentioned before, Zeichner and Schowalter (1977)
improved Smoluchowski’s theory by considering the hy-
drodynamic interaction that is related to the trajectories
of particles (leading to the so-called ”trajectory theory”).
Recently, Wang et al. (1994) have calculated the coales-
cence efficiency within the framework of this theory in
the canonical reference case of simple shear flow. This
theory assumes the drops to be nondeformable.

Both Smoluchowski and trajectory theories deal with
macrophysical kinematic aspects leaving aside deform-
ing fluid/fluid interfaces and thinning fluid films between
drops in near-contact motion.

Coalescence of droplets in a liquid matrix, however, can-
not be reduced to a mere matter of macroscopic dynam-
ics. It, in fact, has been also defined as the process in
which during the mutual interaction of two drops the liq-
uid immiscible film formed between them drains out to a
thickness at which it ruptures. Accordingly, coalescence
rates and efficiencies between droplets generally depend
on the local dynamics of the fluid drainage in the near
contact region between the two approaching fluid inter-

faces. In this region larger pressures can develop (as a
result of relative motion of the droplets and of the so-
called related ”squeeze flow” that is established in the
gap between them) and resist and/or retard coalescence
sometimes preventing it altogether.

5 The lubrication theory: the thin film

In practice, pressure increase in the thin domain between
two droplets is driven by viscous stresses induced by rel-
ative motion of the droplets. Along these lines, favorable
conditions for occurrence of coalescence were initially
investigated within the framework of the lubrication the-
ory by Davis et al. (1989). The hydrodynamic force re-
sisting the relative motion of two unequal drops was de-
termined for Stokes flow conditions and in the absence of
the surface Marangoni effect. The drops were assumed to
be in near-contact and to have sufficiently high interfacial
tension that they remain spherical. The squeeze flow in
the narrow gap between the drops was analyzed using the
aforementioned lubrication theory. Depending on the ra-
tio of drop viscosity to that of the continuous phase, and
also on the ratio of the distance between the drops to their
radii, different possible flow situations were pointed out,
corresponding to nearly rigid drops, drops with partially
mobile interfaces, and drops with fully mobile interfaces.
In particular, the hydrodynamic resistance was predicted
to be weaker than that for two colliding rigid spheres in
near contact due to the mobility of the drop interfaces in
the study of Barnovski and Davis (1989).

The shape of droplets was assumed undeformable in
these analyses (Ca << 1). In reality, the related inter-
action can cause drop deformation even in the case of
negligible convective transport. In turn, such a defor-
mation can result in a greater hydrodynamic interaction,
causing the coalescence rate to decrease (as shown by
Yiantsios and Davis, 1991). Drops with high surface ten-
sion, in fact, produce a film of a small area that drains
quickly whereas more deformable drops tend to trap a
large amount of fluid in a film with large area (in many
circumstances, drop deformation can be also responsible
for other important effects; for instance, it can alter the
Marangoni migration and sedimentation velocities).

The shape deformation was considered in the so-called
”film drainage theory” introduced later by Chesters
(1991). Chesters (1991) made a different correction to
Smoluchowski’s theory by considering particle deforma-
tion and squeezing flow of matrix fluid, known as ”film
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drainage”.

 
(a) 

(b) 

Figure 3 : Non coalescence of two drops of silicone oil in
the presence of an imposed temperature difference (after
Monti et al., 2000): (a): CCD visualization; (b): Infrared
image.

As mentioned before, two drops approaching each other
trap a thin film of the continuous phase between their
interfaces. At small enough gaps the hydrodynamic
forces overcome capillarity and the drop interfaces de-
form and often acquire a dimpled shape that traps more
fluid thus opposing coalescence (Yiantsios and Davis,
1990). In flow-driven drop interactions, coalescence oc-
curs for capillary numbers smaller than a critical value
such that the drop interaction time is larger than the
drainage time for the fluid trapped in the gap (Chesters,
1991). For sub-critical capillary numbers, at sub-micron
separations, van der Waals forces become dominant lead-
ing to rapid coalescence (film rupture).

It was theoretically shown that the critical thickness hc at
which the matrix film between the droplets automatically
ruptures is hc = (ADm/16πσ) where A is the Hamaker
constant, Dm is an average drop diameter defined as
Dm=2(1/Di+1/D j)−1. Coalescence efficiency was then

calculated for three ranges of viscosity ratio called ”mo-
bile”, ”partially mobile”, and ”rigid interfaces” in the
original article. These results have been recently refined
by Bazhlekov et al. (2000).

6 Permanent non-coalescence and static configura-
tions

The theory related to the existence of the lubrication
film under dynamic conditions (drops in relative mo-
tion) retarding coalescence and preventing it in some
circumstances has enjoyed an outstanding success also
in explaining non-coalescence phenomena induced by
Marangoni effects at the drop surface.

It is known (Dell’ Aversana et al., 1996, 1997; Monti
and Savino, 1997; Monti et al., 2000; Neitzel and
Dell’Aversana, 2002; Dell’Aversana and Neitzel, 2004)
that thermocapillarity can be used to prevent a pair of
drops of liquid from coalescing in a stable permanent
way in air (all that is found for drops in air holds for
drops submerged in an immiscible liquid matrix; the sit-
uation is more complex but the explanation is basically
the same). Consider, for instance, the photograph shown
in Fig. 3. Two drops of silicone oil are attached to copper
rods and subjected to a temperature difference as they are
pressed together.

The upper drop is hotter than the lower one, resulting in a
region near the point of apparent contact which is either
colder (upper drop) or hotter (lower drop) than the bulk
liquid in the drop, and hence, the majority of the free-
surface. The existence of a surface-temperature gradient
and the temperature dependence of surface tension pro-
vide a liquid flow toward the contact region in the upper
drop and away from it on the lower one, as illustrated in
the sketch provided in Fig. 4.

The liquid along the upper drop surface is directed to-
wards the symmetry axis, dragging the nearby external
fluid with it by viscous forces. Thus the external fluid
is entrained between the two surfaces and this entrain-
ment effect is responsible for the presence of a stable
fluid film. For coalescence to occur this thin lubrication
channel must be removed or become sufficiently thin so
that the liquid at the opposed sides can come into molec-
ular contact.

In practice, in the lower drop the Marangoni flow along
the contact region is instead directed from the symme-
try axis towards the exit of the channel so that it opposes
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Figure 4 : Sketch of flow motion inside the lubrication
film between two drops as they are pressed together un-
der an imposed temperature (hot drop on the top, cold
drop on the bottom).

the aforementioned entrainment effect (the ambient fluid
is convected outside the film); however, because of the
smaller velocity along the lower drop surface compared
to the one along the upper drop surface (in practice the
temperature established in the intermediate region tends
to be lower than the average temperature of the two-
droplet system, see Fig. 5), the entrainment effect pre-
vails.

Thus the pressure in the film changes from the ambi-
ent value to a maximum value in correspondence of the
axis of symmetry that can be used to obtain stable non-
coalescence (Dell’Aversana et al., 1997; Monti et al.,
2000). A similar effect, of course, can be also effective
under dynamic conditions strongly retarding or prevent-
ing coalescence.

Surfactants (through Marangoni stresses, surface viscos-
ity, Gibbs elasticity, surface and/or bulk diffusivity and
intermolecular forces) can also have a significant ef-
fect and stabilize emulsions by increasing deformation
and causing surface tension gradients (solutal Marangoni
stresses) that resist radial flow in the gap and interface–
interface approach thus preventing coalescence (see, e.g.,
Chester and Bazhlekov, 2000 and the recent review of
Cristini and Tan, 2004).

7 Hydrodynamic interactions under buoyancy
forces

With regard to the case of the interaction of drops under-
going a buoyancy-driven motion numerous recent numer-

Figure 5 : Sketch of flow motion inside the drops and
related temperature gradients established along their sur-
face as they are pressed together under an imposed tem-
perature gradient.

ical studies revealed a rich variety of interaction patterns
of deformable drops depending on the Bond number and
the initial configuration of the system (see, e.g., Manga
and Stone, 1993; Rother et a., 1997; Cristini et al., 1998).

The deformation and motion of interacting droplets
was investigated by these authors in the framework of
boundary-integral techniques (with mesh adaptation and
stabilization) applicable to the case of slow viscous mo-
tion.

As a recent example of such computations the reader may
consider the axisymmetric buoyancy-driven interaction
of a leading drop and a smaller trailing drop treated by
Davis (1999). He demonstrated that the trailing drop
elongates considerably due to the hydrodynamic influ-
ence of the leading one and that later, depending on the
governing parameters, the drops may either separate and
return to a spherical shape or the trailing drop may be
captured by the leading one (coalescence), or one of the
drops may break up. In particular, it was found that when
the Bond number is small, interfacial tension keeps the
drops nearly spherical, and they separate with time. At
higher Bond numbers, however, deformation is signif-
icant and the trailing drop is stretched due to the flow
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created by the leading drop; it may form one or more
necks and break when one of these pinches off. The
leading drop is flattened due to the flow created by the
trailing drop; it may form a depression on its underside
which evolves into a plume that rises through its center.
Moreover, at sufficiently high Bond numbers, the larger
leading drop does not leave the trailing drop behind, but
instead may entrain and engulf it within the aforemen-
tioned depression or plume.

Cristini et al. (1998) carried out a similar study for the
more general case of three-dimensional (3D) interactions
and Bo=O(1) (initial conditions corresponding to a small
leading drop and a larger trailing drop not aligned along
the gravity direction, see Fig. 6). Lubrication stresses
between the deformed drops were found to prevent coa-
lescence; they observed the smaller drop to slide past the
larger one, then to become highly stretched in the strain-
ing flow behind the large drop, then to continue to stretch
under the action of buoyancy (surface tension being too
weak for the drop to recover) and finally to form a neck
and to pinch off under the action of surface tension.

8 Hydrodynamic interactions under Marangoni
forces

For the case of motion induced by thermal surface ten-
sion forces, most of the available studies of the inter-
action of bubbles and droplets in the course of their
Marangoni migration were performed under the assump-
tion of nondeformable drops (zero capillary number).
The literature on the thermocapillary motion of de-
formable drops, in fact, is limited in contrast to the prob-
lem concerning the interaction of drops undergoing a
buoyancy-driven motion discussed before.

For the Marangoni motion, the effect of deformability
was studied mostly by a perturbation technique assum-
ing small deformations; some recent analyses within the
framework of boundary integral methods are due to Zhou
and Davis (1996), Berejnov et al. (2001) and Rother et
al. (2002).

Berejnov et al. (2001), in particular (in the case of axi-
symmetric interaction), found that for equal-sized drops,
the motion of a leading drop is retarded while the mo-
tion of the trailing one is enhanced compared to the un-
deformable case. The distance between the centers of
equal-sized deformable drops decreases with time. They
also illustrated that when a small drop follows a large

one, two patterns of behavior may exist: for moderate
or large initial separation the drops separate; however, if
the initial separation is small there is a transient period
in which the separation distance initially decreases and
only afterward the drops separate.

Rother et al. (2002), by means of 3D results, pointed
out that deformation increases the minimum separation
and inhibits coalescence but is not important enough for
appropriate physical parameters to induce the capture or
breakup behaviors observed in buoyancy.

These analyses and methods, although very interesting,
however, do not provide an exhaustive picture of the pos-
sible interaction mechanisms. Mutual interplay of differ-
ent droplets, in fact, is not limited to hydrodynamic influ-
ences; also thermal (wake) effects can play a crucial role
in these dynamics especially when dealing with surface
tension driven motion.

9 Thermal interactions under Marangoni forces

Most of the available studies about thermal interaction
have been carried out for the case of bubbles. Ax-
isymmetric thermal-wake interaction of two bubbles in
a uniform temperature gradient at large Reynolds and
Marangoni numbers was studied by Balasubramanian
and Subramanian (1999). Their analysis considered the
bubbles moving in the direction of the temperature gradi-
ent and assumed to interact axisymmetrically via the in-
fluence of the thermal wake shedded by the leading bub-
ble on the trailing bubble; in this analysis it was proven
that the thermal wake past the leading bubble can induce
a nonmonotonic temperature field on the surface of the
trailing bubble. The effective temperature gradient on
the trailing bubble is weakened and hence its migration
speed is reduced compared to the case when it is isolated.

Similar behaviors are also expected in the case of inter-
acting drops. The temperature gradient in the wake will
be weaker than the applied gradient. The thermal wake
field of the leading drop will wrap around the trailing
drop having a significant impact on its motion.

In the aforementioned landmark analysis shape deforma-
tion was neglected and results were obtained in the limit
as Ma→ ∞ (flow potential theory).

Leshansky et al. (2001) carried out a similar investiga-
tion for low values of the Marangoni number and un-
deformable bubbles. The perturbations to the bubble
velocities (with respect to the single bubble case) were
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Figure 6 : Three-dimensional interaction between two
drops undergoing sedimentation (initial conditions cor-
responding to a small leading drop and a larger trail-
ing drop not aligned along the gravity direction); from
Cristini et al. (1998) (reproduced with permission from
the American Institute of Physics).

found to have opposite signs (the motion of the lead-
ing bubble is enhanced while the motion of the trailing
one is retarded). They also disclosed that equal-sized
bubbles, which otherwise would move with equal veloc-
ities, acquire a relative motion apart from each other un-
der the influence of convection, whereas for slightly un-

equal bubbles there are three different regimes of large-
time asymptotic behavior: attraction up to the collision,
infinite growth of the separation distance, and a steady
migration with equal velocities, the steady motion sepa-
ration distance being a function of the parameters of the
problem (the Marangoni number, initial separation and
radii ratio).

The thermocapillary interaction of two equal bubbles
with an arbitrary orientation relative to an externally im-
posed temperature gradient was studied by Leshansky
and Nir (2001). They analytically demonstrated (in the
weakly nonlinear limit of small Ma numbers) the ten-
dency of equal bubbles to line up in a plane perpendicular
to the applied thermal gradient.

Recently Lavrenteva and Nir (2003) considered the ax-
isymmetric motion and related thermal wake interaction
of two undeformable drops in a viscous fluid (with Pr >

1) under the combined effect of gravity and thermocap-
illarity. The analysis was focused on the case of ”spon-
taneous” thermocapillary motion, i.e. Marangoni effects
induced on the trailing droplet by the thermal wake origi-
nated from a leading rising drop moving under the effect
of buoyancy forces (without imposed temperature gra-
dient in the external liquid, i.e. isothermal liquid ma-
trix and temperature of the leading drop exceeding that
of the continuous media). They found that the induced
change in the speed of the trailing drop is comparable in
magnitude with its (buoyancy) speed when isolated even
for large separation distance between the drops where the
hydrodynamic interaction is negligible and that in the ex-
treme case of very large Marangoni effect the direction of
the trailing drop can be reversed.

10 Population methods

From the foregoing it is evident that current understand-
ing is primarily limited to the motion of single drops
and bubbles, or at most two interacting drops and bub-
bles, which are often assumed to remain spherical (a limit
which requires that that interfacial tension forces are
large compared to viscous and pressure forces). More-
over, all the studies dealing with the boundary-integral
method and deformable drops are still limited to the case
of very viscous flow (Re →0).

Initial progress on the simulation of many drops has
been made by combining theoretical results available for
neighboring drops (reviewed in the earlier sections) with
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economical multipole techniques previously used in mul-
tiparticle conductivity (see e.g., Zinchenko, 1994). On
such a philosophy are based the so-called ”population
methods” (see, e.g., Davis et al. 1993; Diefenbach et al.,
1993 and the more recent contributions Wu et al., 2003
and Zinchenko and Davis, 2003).

With these methods, drops (a large number, i.e. ensemble
of droplets) are assumed to be in relative motion due to
either gravitational sedimentation or thermal Marangoni
migration. Possible collisions are predicted using a ”tra-
jectory analysis” to follow the relative motion of pairs
of drops (such approach must not be confused with the
trajectory theory illustrated in Sect. 4; the macroscopic
trajectory analysis at the basis of population methods is a
simple ballistic model). The trajectory analysis, in turn,
is based on governing equations formulated for condi-
tions of small Reynolds number (negligible inertia) and
on estimation of the sedimentation or (Marangoni) mi-
gration velocity provided by analytical relationships re-
ported in the literature.

When the drops become sufficiently close, they are as-
sumed to interact with each other due to hydrodynamic
disturbances. This hydrodynamic disturbance, as men-
tioned above, is modeled in the light of information ob-
tained by means of a separate microscopic approach to
the problem.

For instance, drops with low viscosity undergoing buoy-
ancy motion are assumed to become aligned and coa-
lesce due to their shape deformations as observed and de-
scribed by Manga and Stone (1993), whereas drops with
modest viscosity become stretched and may break as a
result of hydrodynamic interactions and drops with large
viscosity tend to be swept around larger ones.

Therefore, these methods rely on fundamental insights
provided by previous analyses (lubrication theory for
spherical drops and boundary-integral methods for the
deformable case) in the case of only two interacting
drops. Such information is used by population meth-
ods to model interaction of droplets at microscopic scale
length (local interaction) from a macroscopic point of
view. For this reason droplets pertaining to the initial dis-
tribution are categorized according to their size (drop size
categories), and as a results of drop collisions and coales-
cence, the drop size spectrum in a dispersion is allowed
to change over time with respect to the initial distribution.
In practice, this change in the drop size distribution repre-
sents a macrophysical problem that is solved using ”pop-

ulation dynamics equations”. From a macroscopic point
of view drops are treated as isolated, microscopic quan-
tities compared to field variables like temperature, but
the aforementioned equations include the kernels which
contain the information regarding the interaction at mi-
croscopic scale between two drop size categories (this
information, as discussed above, being provided a priori
by solving separately a microphysical problem involving
only a limited number of droplets). Finally coalescence
events are handled at macroscopic scale length as instan-
taneous unions of drops at the center of mass, replacing
them with a new drop with their combined volume.

Such a philosophy can be regarded as a very improved
and modern form of the Smoluchowski model. It allows
a simple and efficient treatment of the problem from a
computational point of view and has been applied suc-
cessfully to situations in which the physical phenom-
ena of interest have a large length scale with respect to
the average droplet size. However, vital information is
lost about the effective microscopic evolution of the phe-
nomena (drop deformation, shape instabilities, i.e. all
those factors dealing with the local history of the shape
or other ”local” effects). Moreover the applicability of
these methods is limited by the assumptions at the basis
of the methods and information used to build the afore-
mentioned kernels (Re→0).

With regard to all these numerical techniques and the
possible approaches to the problem discussed before, it
should be pointed out that quasisteady (very viscous) or
nonviscous models are often inadequate, and that a fully
transient and not simplified analysis would be necessary
in order to properly describe and interpret the effective
behavior of particles in real experiments and processes.
An outstanding need is for new scientific approaches not
plagued by any limitation or simplification of the govern-
ing model equations, applicable to the case of low, high,
as well as intermediate values of the Reynolds number,
and allowing the treatment of multiple drops (or bub-
bles) and related interplay, deformation and coalescence
from a ”local” point of view without resorting to dual-
scale models. The second part of this article seeks to
meet the outstanding need by introducing and/or review-
ing moving-boundary methods able to predict particle in-
teractions and deformations as well as collision and coag-
ulation events in temperature gradients, with or without
gravity being present over a wide range of conditions.

They can capture in a single numerical treatment and
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without limiting assumptions both macroscopic aspects
(i.e. the macrophysical problem, heretofore treated
in terms of population dynamics) and microscopic de-
tails (i.e. the microphysical problem, heretofore treated
within the framework of boundary integral methods
and/or under the assumption of nondeformable drops
and/or under the assumptions of infinite Reynolds num-
ber and fluid-dynamic potential theories).

These methods have only recently been made sufficiently
powerful to meet these objectives, including fully three-
dimensional simulations of multiple drops or bubbles
(Fig. 7). See Part 2 for additional details (Lappa, 2005b).

Figure 7 : Example of spatially inhomogeneous popula-
tion of drops whose dynamics must be solved to predict
phase-separation rates in problems related to immiscible
organic or metal alloys.
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