
Copyright c© 2005 Tech Science Press FDMP, vol.1, no.2, pp.189-199, 2005

Liquid Particles Tracing in Three-dimensional Buoyancy-driven Flows

D. E. Melnikov1 and V. M. Shevtsova2

Abstract: Buoyancy-driven convective flows are nu-
merically analyzed in a cubic enclosure, containing a liq-
uid subjected to a temperature difference between op-
posite lateral walls; all other walls are thermally insu-
lated. The stationary gravity vector is perpendicular to
the applied temperature gradient. The steady flow pat-
terns are investigated within the framework of a liquid
particles tracing technique. Three tracing techniques are
compared: the first, based on a trilinear interpolation of
the liquid velocity defined on the computational grid and
an eighth order in time Runge-Kutta method; the second
and the third, using a resampling the velocity field on a
new approximately twice finer grid by cubic spline inter-
polation and then a combination of trilinear interpolation
of velocity on the new grid, integrating in time with (2-nd
method) a single forward time marching method; (3-rd
method) a fourth order Runge-Kutta algorithm. Com-
parison of the results shows that for obtaining a precise
tracing on a long time scale it is more important to have
a good spatial velocity accuracy than precise integration
in time. Unlike one vortex 2D pattern where the parti-
cles follow thin and closed circle trajectories staying in
vertical cross-sections, it is shown that,the 3D flow con-
sists of two sets of spiral-type motions identical in both
halves of the cell with respect to the mid-plane. In the 3D
flow even in the central vertical cross-section the parti-
cles follow spiral non-closed trajectories drifting outward
the cube’s walls. It demonstrates that two-dimensional
approach does not provide a clear picture of 3D convec-
tion.
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1 Introduction

The experimental and theoretical determination of the
flow structure is very important in many fluid mechan-
ics studies. A few visualization techniques are applica-
ble to observe internal behavior of fluid in experiments.
A common experimental approach is the tracing of small
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particles initially injected into the media. Among the re-
quirements to the particles incorporated into the liquid is
that they should not influence much the flow itself and
alter the properties of the system.

Flow imaging can be made by different techniques.
Among the well known and highly utilized are those us-
ing Particle Image Velocimetry (PIV) [Raffel, Willert,
and Kompenhaus (1997)], radiographic techniques [Blet,
Berne, Chaussy, Perrin, and Schweich (1999)]. Vari-
ous optical methods such as interferometry, schlieren and
shadowgraph techniques can give the general structure
of the flow. The PIV visualizes fluid motion using tracer
particles having different optical properties than the fluid.
It is applied mostly for physical studies in transparent flu-
ids [Hiller, Koch, Kowalewski, and Stella (1993)]. By
this method, two or three dimensional velocity field dis-
tributions can be obtained. Usually, the approach re-
quires seeding the flow with small tracer particles and
illuminating with a sheet or volume of light originated
from a pulsed laser. A single or multi-exposure image
of the position of the particles as a function of time is
recorded. The spacing between these particle images
provides a measure of the local flow velocity.

The radiography is based on either detecting the differ-
ence of material density of the particles-fluid system or
tracking radioactive materials. The use of radiography
for visualization of the process is usual in clinical studies
or when the media is optically opaque, e.g. when a ra-
diographic contrast material is injected into the blood for
quantifying its regional flow [Tarver and Plant (1995)].

A detailed discussion of the experimental techniques is
beyond the scope of the study, that is focused visualiza-
tion of computational fluid dynamics results. A meaning-
ful visualization of the data is required in many circum-
stances to understand the characteristics of the simulated
process. A review with multiple examples on the visu-
alization of numerical results can be found e.g. in [Post
and Walsum (1993)].

The classical Navier-Stokes equations, the basic of the
CFD, have been extensively studied for many years and
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different numerical approaches for solving them have
been developed. Two main descriptions of fluid dynam-
ics may be distinguished: Eulerian and Lagrangian. Each
approach has its issues, results in a particular form of
the Navier-Stokes equations and thus is more suitable for
certain types of problems.

The Lagrangian approach is more adequate for the parti-
cle tracing. In the Lagrangian formulation the variables
are linked to the initial positions of selected particles and
thus the physical quantities are given as functions of the
starting positions and of time. Visualization in this case
often leads to dynamic images of moving particles, show-
ing only information in the particles locations. The tra-
jectory of each particle is computed separately. However,
one of the limitations of the Lagrangian approach is that
the particles may accumulate into clusters. As a conse-
quence, a re-meshing is needed for each time step. As
alternative to this re-meshing, Smooth Particle Hydrody-
namics Method was developed [Gingold and Monaghan
(1977)]. It is based on Kernel approximations to interpo-
late the unknowns and was initially used for the treatment
of astrophysical hydrodynamic problem. Using the idea
of a polynomial interpolation that fits not globally the
whole set but just a number of points, meshless methods
have been developed [E. Oñate and S. R. Idelsohn and
O. C. Zienkiewicz and R. L. Taylor(1996)]. Recently
meshless methods for the particle-fluid interaction have
been suggested in Finite Element Approximation [John-
son and Tezduyar (1997)].

In the Eulerian formulation the data are computed on a
discrete grid, and are stored locally in selected points.
Visualization tends to produce static images of the whole
study area. It is not difficult to visualize scalar and one-
or two-dimensional vector fields, but a clear picture of
the velocity in a 3D bulk is a complicated task. So, one
needs other approaches to visualize the flow.

Some intuitive methods of vector fields’ visualization
were suggested, e.g. for unsteady flow as a collection
of streaklines [Lane (1996)] that originate from user-
defined seed points, and particle tracing [G. M. Niel-
son and M. Magen and H. Müller(1997)]. For steady
processes streamlines [Helman and Hesselink (1991)],
stream surfaces [Hultquist (1990)] can be used. They are
robust methods; however it becomes important to cor-
rectly seed the point into the computational domain to
avoid loosing information about the field.

Gelfgat (1999) used streaklines of perturbation of ve-

locity for visualizing the Rayleigh-Bénard convective
flow in rectangular enclosures of different aspect ra-
tios. Particularly, thin closed streaklines similar to two-
dimensional convection in a square were observed in a
cube. Increasing the aspect ratio led to different flow
regimes with the streaklines being more complicated.

The problem of natural convection in a cube differen-
tially heated (gravity perpendicular to the applied tem-
perature difference) has been investigated both exper-
imentally and numerically [Hiller, Koch, Kowalewski,
de Vahl Davis, and Behnia (1990); Hiller, Koch,
Kowalewski, and Stella (1993)]. They used the PIV
technique for liquid-crystal tracers suspended in the flow
and direct numerical simulations for solving the Navier-
Stokes equations in Boussinesq approximation. A dou-
ble spiral-type motion of the particles away from the
central plane was observed. This proved the three-
dimensionality of the flow. It was numerically shown
that 2D calculations might be sufficient to describe the
flow only in the center plane of the cube.

Additional techniques of flow visualization that can de-
scribe the global behavior of vector fields were sug-
gested. Aiming at imaging a 3D vector field, [Craw-
fis and Max (1993)] considered direct volume rendering
methods. Their idea was to construct three-dimensional
scalar signals from the vector data using vector kernels
and texture splats. [Cabral and Leedom (1993)] proposed
a Line Integral Convolution method utilized for visual-
izing flows over surfaces and more recently in a 3D do-
main. This method uses a one-dimensional low pass filter
to convolve an input texture along the principal curves of
the vector field.

2 Description of the mathematical problem

The Eulerian approach, used in present study, defines the
unknowns in fixed points (nodes of the computational
mesh). Considered particles are iso-dense with the fluid,
having no size and no forces acting on them. Such liquid
particle, being seeded at a point (x0,y0, z0) in the bulk,
will follow exactly the flow. The starting point is usually
selected by the researcher.

Below we discuss successively: (a) the problem of in-
tegrating equation of motion of a liquid particle; (b) the
problem of interpolation at arbitrary points of velocity
defined on a grid; (c) comparison of three numerical trac-
ing techniques for a two-dimensional buoyancy-driven
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convective flow in a square. This leads to the selection
of the best method for further application to the three-
dimensional problem.

2.1 Integration of the kinematic equation of particle

Here, the goal is to find how the particle’s path
(x(t),y(t), z(t)) develops over time (t is the time). Mo-
tion of a neutrally buoyant and non-diffusing particle of
the liquid is given by a simple equation:

dR̃
dt

= Ṽ, R̃ = (x,y, z), Ṽ = (Vx,Vy,Vz). (1)

where Ṽ is velocity and R̃ is the particle’s location.

In non-vector representation Eq. 1 is a system of three
ordinary differential equations

dx
dt

= Vx,
dy
dt

= Vy,
dz
dt

= Vz,

with initial conditions at time zero:

x(t = 0) = x0, y(t = 0) = y0, z(t = 0) = z0.

Thus, visualization of the flow consists of integrating
simple Eq. 1 for a set of initial coordinates (x0,y0, z0)
and then drawing the resulting paths (x,y, z).

The first step in a particle tracking procedure is solv-
ing the flow equations (a system of Navier-Stokes, en-
ergy and continuity equations for the considered prob-
lem), which gives velocities at cell edges of the simula-
tion grid. Then, knowing Ṽ the integration of Eq. 1 can
be accomplished. Usually for particle tracking the first-
order Euler’s algorithm [Goode and Konikow (1989);
Lu (1994)] and the fourth-order Runge-Kutta [Shafer
(1987)] method are used. These schemes are not lim-
ited by transient velocities or complexity in the velocity
field.

Euler’s algorithm is computationally the simplest tech-
nique. Intuitively, the particle moves by a little step along
the velocity vector to the next position. It is an explicit
first-order in time method:

x(t +∆t) = x(t)+Vx∆t, (2)

y(t +∆t) = y(t)+Vy∆t, (3)

z(t +∆t) = z(t)+Vz∆t, (4)

where ∆t is the time step.

It works well in areas where the velocity fields are suffi-
ciently uniform, like in flow through a straight channel.
If the flow rapidly changes its direction or there are areas
of strong converging (diverging), then the Euler’s method
may give a wrong picture of the liquid particles’ trajecto-
ries. One can not take an arbitrary time step because of a
quite severe limitation on the ∆t for achieving sufficient
accuracy in the particle tracing.

Another technique, which is more accurate, is the Runge-
Kutta method. It can be of second, fourth order and
even more accurate. The main idea of the Runge-Kutta
method of the m− th order is to evaluate the velocity m
times to calculate the particle’s position R̃(t +∆t) on the
next time step. The new position of the particle is eval-
uated using a velocity which is a linear combination of
the values at m points. For example, the Runge-Kutta
process of second order may be expressed as follows:

R̃∗ = R̃(t)+ Ṽ(R̃(t))∆t, (5)

R̃(t +∆t) = R̃(t)+0.5(Ṽ(R̃(t))+ Ṽ(R̃∗))∆t. (6)

The Runge-Kutta method permits using larger ∆t com-
pared to the Euler’s algorithm, and this can be regarded
as its most important advantage.

2.2 Interpolation of velocity

As mentioned above, the velocity values are defined on
a static Eulerian mesh used for calculations. Obviously,
particles’ trajectories are smooth and continuous lines in
space. Here a problem of interpolation of the velocity
appears since one requires the evaluation of the velocity
at a point which is arbitrary with respect to the nodes of
the mesh. There is a large variety of velocity interpola-
tion schemes, mostly common are multilinear (bilinear,
trilinear) and splines.

Trilinear interpolation is a process of linearly interpolat-
ing points within a 3D box given the values at the vertices
or at the centers of the facelets of the box. It is a widely
used interpolating technique since it is fast (it is a local
interpolating method) and simple and it works well on a
fine mesh. The three-dimensional velocity field is com-
puted as a weighted sum of these eight field’s values in
the surrounding grid points.

Spline interpolations could be more accurate than multi-
linear. In [Rybak and Huybrechts (2003)] a comparison
between accuracies of piecewise bilinear and bi-cubic
spline interpolations was considered and it was shown
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that spline interpolation is at least of three orders of mag-
nitude more accurate than bilinear. Unlike the multilin-
ear, cubic-spline interpolation is not a local interpolation
as it requires knowledge of the velocity values in a model
subdomain. Numerically it is a time-consuming method.

3 Formulation of the physical problem

Three-dimensional natural convection is considered in
a cubic cell of size L with differentially heated op-
posite vertical walls. The temperatures Thot and Tcold

(Thot > Tcold) are prescribed at the right and left bound-
aries respectively, yielding a temperature difference of
∆T = Thot − Tcold. All other walls are assumed to be
thermally insulated. Geometry of the problem is shown
in Fig. 1.

Figure 1 : Problem’s geometry: cube heated from side

The governing Navier-Stokes, energy and continuity
equations are written in non-dimensional primitive-
variable formulation.

∂Ṽ
∂t

+ Ṽ ·∇Ṽ = −∇P +∇2Ṽ +GrΘẽ, (7)

∇ · Ṽ = 0, (8)

∂Θ
∂t

+ Ṽ ·∇Θ =
1

Pr
·∇2Θ, (9)

where velocity is defined as Ṽ = (Vx,Vy,Vz), Θ = (T −
Tcold)/∆T is the dimensionless temperature. The equa-
tions have been nondimensionalized by using L as the
length scale. Velocity and time are scaled by ν/L and
L2/ν (ν is the kinematic viscosity). P is dimensionless
pressure. ẽ is a unit vector parallel to the gravity acceler-
ation vector g̃.

The operator

∇ =
∂
∂x

ẽx +
∂
∂y

ẽy +
∂
∂z

ẽz

At the rigid walls no slip conditions are imposed:
Ṽ(x = 0,y, z, t)= 0, Ṽ(x = 1,y, z, t)= 0,
Ṽ(x,y = 0, z, t) = 0, Ṽ(x,y = 1, z, t) = 0,
Ṽ(x,y, z = 0, t) = 0, Ṽ(x,y, z = 1, t) = 0.

Boundary conditions for temperature are the following:
Θ(x = 0,y, z, t)= 0, Θ(x = 1,y, z, t)= 1,
∂Θ
∂y (x,y = 0, z, t) = 0, ∂Θ

∂y (x,y = 1, z, t) = 0,
∂Θ
∂z (x,y, z = 0, t) = 0, ∂Θ

∂z (x,y, z = 1, t) = 0.

The formulation of the problem includes Prandtl and
Grashof numbers:

Pr =
ν
α

, Gr =
gβT ∆T L3

ν2 ,

where α is the thermal diffusion coefficient and βT is the
thermal expansion coefficient. The study below is given
for the following parameters: Pr = 7,Gr = 150.

4 Numerical technique

A finite volume technique based on an explicit single
time step marching method is employed. The computa-
tional domain is discretized by a staggered uniform mesh
in all three directions. All the scalar variables (P,Θ) are
defined in the centers of the grid cells while the velocity
values are stored in centers of the cells’ facelets. Cen-
tral differences for spatial derivatives and forward dif-
ferences in time are employed. Numerical steady state
solutions are obtained by convergence of the transient
calculations. Computation of the velocity field at each
time step is carried out by a projection method, see e.g.
[Fletcher (1988)]. A combination of fast Fourier trans-
forms in the Y−direction and an implicit ADI method in
the two others is applied for solving the Poisson equa-
tion for the pressure. A more detailed description and
validation of the numerical code is given in [Shevtsova,
Melnikov, and Legros (2001); Shevtsova, Melnikov, and
Legros (2004)].

The results of this paper were obtained on a mesh (25×
32 × 30). This grid was shown to be sufficient for
modeling the natural convection in enclosures at moder-
ate Grashof numbers [Shevtsova, Melnikov, and Legros
(2004)].
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5 Results

A non-uniform density distribution occurs in the cell
when heated from a side in the presence of gravity and
∆T �= 0. Near the hot wall, the density is less than near
the cold one. As a result, the denser liquid flows down-
ward along the cold wall and the lighter flows upward.
Due to the presence of the lateral walls, a vortex-type
stationary flow will be observed.

5.1 Pseudo 2D problem calculated by 3D code

Hereafter, the unphysical two-dimensional flow pattern
provided by 3D simulations in which the velocity com-
ponent Vy is always kept equal to zero (Vy = 0) is referred
to as ”pseudo two-dimensional flow”. It is used as a reli-
able test problem before starting dealing with fully three-
dimensional particle tracing. It cannot be regarded as the
classical 2D case since there are lateral walls bounding
the viscous flow in y-direction, Vx = Vz = 0 at y = 0,1.
Thus a well-known two-dimensional flow is established
in the middle of the cube y = 0.5 and some deviations
with respect to this flow occur close to the walls. At
moderate ∆T the flow pattern consists of only one vor-
tex in the XZ−section with its center in the middle of the
domain. A liquid particle will follow concentric closed
streamlines, see Fig. 2.

isolines of streamfunction

0.0 0.5 1.0
X/L

0.0

0.5

1.0

0.0

Z
/L

Figure 2 : Lines of constant values of stream function
calculated for the 2D case (Vy = 0) in Y = 0.5 mid-plane

The particles tracing technique includes two aspects: cal-
culation of the velocity in the location point of the par-
ticle, and integration of Eq. 1. We compared results of
tracing obtained by the following algorithms:

Method 1. Trilinear velocity interpolation is applied on
the computational grid (25×31×30). Integration in time

is based on eighth order Runge-Kutta algorithm, which is
of the eighth order accuracy in time.

Method 2. The known velocity field Ṽ is resampled on
a new finer mesh (50×50×50) by cubic spline interpo-
lation. Trilinear velocity interpolation is applied on this
new grid. The single time step marching method is used
for the integration in time. This is a first order accurate
in time method.

Method 3. The known velocity field Ṽ is resampled on
a new finer mesh (50×50×50) by cubic spline interpo-
lation. Trilinear velocity interpolation is applied on the
new grid. Integration in time is based on fourth order
Runge-Kutta algorithm, which is of the fourth order ac-
curacy in time.

The three tracing techniques used for this study are
shown in Fig. 3.

Figure 3 : Schematic diagram representing the three
methods of tracing

Fig. 4 represents a comparison between the three meth-
ods. Three particles were placed inside the bulk with
initial coordinates: (0.2,0.2,0.2), (0.2,0.5,0.2) and
(0.2,0.8,0.2). The tracing time step ∆t is equal to 10−3.
Similar to the two-dimensional convection in a square,
in the considered case the flow pattern is a set of vor-
texes parallel to the XZ−plane with vorticity changing
as a function of Y ; the maximum is in the mid-plane and
drops down to zero on the rigid walls.

Method 3 gives the best result, i.e. thin closed trajecto-
ries for all the particles (Fig. 4(c)) and it is just slightly
more time-consuming than Method 2. The trajectories
by Method 2 also look good, but the traces calculated by
Method 1 (Fig. 4(a)) are not thin and closed, especially
for the second particle placed in the Y = 0.5 mid-plane,
the region of the largest velocities. The particles’ traces
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Figure 4 : Three liquid particles’ trajecto-
ries traced for the pseudo 2D case (Vy = 0)
by the three techniques: (a) Method 1; (b)
Method 2; (c) Method 3. Initial points are
(x0,y0, z0) = (0.2,0.2,0.2), (0.2,0.5,0.2), (0.2,0.8,0.2)

calculated by the Method 1 exhibit a tendency to diverge
toward either the center (as if there was a sink in the cen-
ter) or the walls (as if there was a source in the center),
depending on value of ∆t. When ∆t = 10−3, this trajec-
tory slowly diverges toward the cell’s center (Fig. 5(a)).
Taking ∆t = 10−2, the trajectories are pushed outwards
(Fig. 5(b)). All these features point out that Method 1 is
not appropriate for this kind of investigation.

To summarize, Method 1 is affected by an instability and
is not suitable for precise tracing, even if it uses the eighth
order Runge-Kutta algorithm. A more precise spatial ve-
locity interpolation is needed than that related to Method
1. The thinnest closed trajectories are obtained using
Method 3, which is quite fast and robust. Since the two
methods use velocity approximations on grid with differ-
ent resolutions, the latter becomes a key point for a good
tracing. Even the single forward time-marching proce-
dure of Method 2 is able to give a good result if the ve-
locity is accurately interpolated (Fig. 4(b)).

5.2 Fully 3D problem

The three-dimensional effects for the buoyancy-driven
convection flow in differentially heated enclosures were
discussed earlier, see e.g. [Davis (1967)]. It was argued
that a secondary flow with a velocity component parallel
to the roll axis appears due to the interaction of the main
circulation roll with the side walls. In [Mallinson and
de Vahl Davis (1977)] it was numerically predicted that
toroidal circulation cells occur in enclosures with differ-
ent aspect ratios, Prandtl and Rayleigh numbers. This
flow is generally directed toward the mid-plane in the
center and outwards at the periphery.

In the fully 3D problem of natural convection in a cube
the velocity Vy �= 0. Though its calculated value for
the present conditions (Pr = 7, Gr = 150) is small,
max(|Vy|)/max(|V|) = 0.016, the three-dimensional flow
pattern is different with respect to the two-dimensional
test considered above. As in the Y = 0.5 central sec-
tion Vy = 0, liquid particles, being initially there, should
always stay in this cross-section. One could expect in
this region thin closed trajectories (similar to the ones
of Fig. 4(b),(c)). But it appears to be not so. The tra-
jectories calculated using the Methods 1, 2 and 3 with
∆t < 10−3 for the particle initially placed at (x0,y0, z0) =
(0.2,0.5,0.2) are depicted in Fig. 6. The trajectories ob-
tained by the accurate Methods 2 and 3 (Fig. 6(b),(c))
look very similar. The particle tends to drift toward the
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Figure 5 : Non-closed liquid particles’ trajectories traced
for the pseudo 2D case (Vy = 0) by Method 1 with dif-
ferent tracing time steps: (a) starting at (x0,y0, z0) =
(0.2,0.5,0.2) with ∆t = 10−3 trajectory goes toward
the cell’s center; (b) when ∆t = 10−2 and (x0,y0, z0) =
(0.3,0.5,0.3), trajectory diverges outwards

Figure 6 : Liquid particle’s trajectories in the central
cross-section Y = 0.5 traced for the 3D case by the three
techniques: (a) Method 1; (b) Method 2; (c) Method 3.
Initial point (x0,y0, z0) = (0.2,0.5,0.2)
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walls (a source in the center). Though the particle traced
by the Method 3 covers slightly longer path during the
same tracing time.

However, tracing performed by Method 1 leads to com-
pletely different results. The particle is slowly drifting
toward the center of the cell while following a circle tra-
jectory (Fig. 6(a)). This must be regarded as a wrong re-
sult being a superposition of the correct drifting outward,
proven by the calculations by Method 3 (Fig. 6(c)), and
a numerically incorrect shifting toward the center at this
tracking time step (see Fig. 5(a)) with the latter effect
prevailing.

So, the correct particles’ trajectories in the Y = 0.5 plane
are the ones shown in Fig. 6(b),(c). Why are they not
closed? To shed some light on the reason of such un-
expected behavior of the particles, one should analyze
the tracers initially put somewhere beyond the mid-plane.
Fig. 7 illustrates the flow structure beyond the central
plane. For better understanding, three different views of
the same particle’s trajectory are shown. This trajectory
was computed by means of Method 3 (N = 600000 trac-
ing steps with ∆t = 10−3, that should give almost no di-
vergence from the ”true” particle’s path while integrating
with the fourth-order Runge-Kutta algorithm).

The particles on the both sides with respect to the Y = 0.5
mid-plane follow closed spiral trajectories with symme-
try axis (0.5,Y,0.5) looking like ordinary ring torii. The
closer the particle is initially seeded to the side walls
Y = 0, Y = 1, the slower it moves. The liquid on Fig. 7
following spiral-type trajectory flows outwards on the ex-
terior surface of the torus and comes back along its in-
terior surface in agreement with the earlier findings in
[Mallinson and de Vahl Davis (1977)]. Since near the
mid-plane Y = 0.5 the flow turns toward the lateral rigid
wall, it evolves the fluid particles at this central plane in
the same kind of movement (Fig. 6(b),(c)). It explains
why the liquid particles in the full 3D problem do not
make closed trajectories, i.e. the 3D problem in differ-
entially heated cavity generally cannot be modeled by a
simple 2D approach.

This difference with respect to 2D models, except in
the mid-plane, has been mentioned in [Hiller, Koch,
Kowalewski, de Vahl Davis, and Behnia (1990)]. It was
also found that there exists a ”cross-flow” from two op-
posite lateral walls to the cavity center consisting of spi-
raling motions. This motions are perpendicular to the
main convective recirculation from the hot to the cold

Figure 7 : Three different views of liquid parti-
cle’s trajectory initially placed in point (x0,y0, z0) =
(0.1,0.2,0.1). The particle makes closed torus-like trace.
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wall, that is in agreement with the present simulations.

There is an aspect requiring clarification. How do parti-
cles in the mid-section leave this plane since the veloc-
ity component Vy = 0? In practice, getting closer to the
walls, the flow slows down and in natural experiments
it leaves this cross-section due to some random exter-
nal flow disturbances or non-ideal internal cell’s surface.
However, in accurate numerical calculations such fluid
particle will asymptotically approach the walls.

In addition two interesting flow regions are found:

- the symmetry axis (0.5,Y,0.5) of the spiral-type trajec-
tories,

- set of points in Y ≈ 0.255 and Y ≈ 0.745 vertical planes.

Initially seeded fluid particle somewhere on the symme-
try axis will be transported by the fluid toward the cen-
ter of cell and will asymptotically approach it progres-
sively slowing down (straight line on Fig. 8). The fluid
initially placed in the cell’s center will stuck there and
will never leave it. Tracings by both Method 2 and 3
give the same result. This result was thoroughly verified
by performing many tracing steps starting with different
points (0.5,y0,0.5).

Since spiral-type closed trajectories make torii-like look-
ing surfaces, there must be a continuous set of points
in two vertical planes symmetrical with respect to the
Y = 0.5, which lay on the center line of the torii’s
tubes. Indeed, the trajectory of a particle seeded in
(x0,y0, z0) = (0.5,0.255,0.19) point is closed and rather
thin, see Fig. 8. During the tracing, the maximum rela-
tive particle’s deviation from Y = 0.255 plane was about
3%. This path lays inside all the ring torii formed by the
liquid particles’ trajectories.

Thus, the three-dimensional convective flow in an en-
closure consists of the buoyancy-driven main cross-flow
and secondary ones (relatively weaker than the main one)
spreading from end-wall regions. The latter is a result of
a coupling of the swirling convective flow and no-slip
conditions on the lateral Y = 0, 1 walls.

It is worth noting that the described above flow regime
can be observed only when the Grashof numbers are rel-
atively small. In [Lappa (2005)], it was shown by means
of three-dimensional computer simulations for Pr = 0.01
in a cube that for the Grashof number beyond 5×103 the
cross-flow spreads from the endwalls into the entire bulk,
and the flow has a more complicated structure. Even an
unsteady regime could be observed.

Figure 8 : Two liquid particles’ trajectories traced
for the 3D case by Method 3 seeded at (x0,y0, z0) =
(0.5,0.1,0.5) and (x0,y0, z0) = (0.5,0.255,0.19). Two
different views are shown. The former particle goes
straightly to the cube’s center (line) the latter follows
rather thin closed trajectory (loop).
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6 Conclusions

Buoyancy-driven convective flows have been studied in a
cubic cell with differently heated opposite lateral walls.
The steady flow patterns have been investigated by the
liquid particle tracing technique. The study showed that
accurate interpolation of velocity field at an arbitrary
point from nodal points of computational grid plays a
crucial role in precise particles’ tracing. Results obtained
by a combination of trilinear interpolation of velocity on
the computational grid and eighth order Runge-Kutta al-
gorithm are not satisfying for a long time-scale tracing.
However, an initially performed resampling the velocity
field by cubic spline interpolation on a new grid, approx-
imately twice finer than the computational (before inte-
grating the liquid particle’s kinematic equations) results
in accurate tracing. Even combined with a first order sin-
gle time forward marching method, precise interpolation
of velocity gives very accurate tracing.

Another finding of this research is a general incorrectness
of modeling three-dimensional buoyancy-driven convec-
tive flow by two-dimensional approach. The larger the
Prandtl number, the stronger the three-dimensionality is.
Everywhere inside the cubic cell the liquid flow deviates
from the analogous two-dimensional. Moreover, in the
three-dimensional case the liquid particles’ trajectories
in the mid-plane are not closed circles.

Three-dimensional flow is organized so that in the mid-
plane, where the perpendicular velocity is zero, the liq-
uid performs spiral-type movement outwards, which is
caused by the flow beyond this plane. The particles on
the both sides with respect to the mid-plane make thin
closed spiral trajectories forming ring torii-like surfaces
in space. Flowing upward along the hot face and down-
ward along the cold, the liquid particles are subjected to
an additional movement in the perpendicular direction:
drifting outward on the outer surfaces of the torii, and
in the opposite direction along the inner torii’s surfaces.
The liquid flows noticeably faster when drifting toward
the mid-plane and thus it is involved in a shuttle-like flow
between the lateral walls and the mid-plane.
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