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Thermocapillary Flow and Phase Change in Some Widespread Materials
Processes

Gustav Amberg!, Junichiro Shiomi>

Abstract: A few issues in materials science are re-
viewed with regard to the importance of fluid flows. The
effect of convection on generic solidification problems
is discussed. One relevant class of flows in melts is
those driven by surface tension gradients. In welding this
thermo- or solutocapillary flow will determine the pen-
etration depth, and will depend very sensitively on the
composition of the material, through the dependence of
surface tension on temperature, presence of surfactants,
etc. In crystal growth the convective motion in the melt
may cause instabilities that are often undesired in practi-
cal processes. The unsteady flow structure can cause in-
homogeneous chemical composition at the solidification
interface. Work has recently been done to apply active
feedback control to suppress the thermocapillary oscilla-
tion. In the high Prandtl limit, a significant attenuation
can be obtained by means of rather simple control meth-
ods.
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1 Thermocapillary Convection

Thermocapillary convection becomes important when-
ever a strong temperature gradient is present over a free
liquid surface, in particular if the surface tension de-
pendence on the temperature is strong. Also, if the di-
mensions of the liquid volume are small, surface forces
will be relatively more important compared to volume
forces. These conditions are frequently satisfied in mate-
rials processes such as welding and crystal growth. Also
in microgravity experiments with fluids, thermocapillar-
ity may typically be the dominant source of convection.

Some light can be shed on the intrinsic nature of thermo-
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capillary convection by considering a small section of a
free liquid surface with a temperature dependent surface
tension,

c=0o+7 (T —-T), )

in the presence of a temperature gradient along the sur-
face. In the typical situation of a surface tension that
decreases with temperature (y < 0), the surface tension
thus increases in the direction of decreasing temperature
along the surface. Considering a force balance over a
thin control volume containing the free surface it is clear
that the difference in surface tension must be balanced
by a shear stress in the fluid. The typical scenario pic-
ture is thus that the fluid surface is dragged towards cold
spots at the surface. Thermocapillary convection is often
characterized by the value of the Marangoni number, de-
fined as Ma = YATL/(oy), i.e. a Peclet number based
on the thermocapillary velocity scale YAT /u. Here, AT
is the characteristic temperature difference, L is a length,
o thermal diffusivity, u the dynamic viscosity.

The above would typically be true for pure fluids. In
the presence of a possibly surface active additive, con-
centration gradients would drive a soluto capillary flow
in a similar way. However in the presence of a surfac-
tant, which is concentrated on the surface, there is a more
complicated coupling between the flow field and the sur-
face tension: Consider a stagnation point flow on the sur-
face, where fluid rises to (descends from) the surface and
spreads out (converges) along the surface. The surface is
thus stretched (contracted) and the local surface concen-
tration of surfactant would tend to decrease (increase).
As the concentration decreases (increases), the surface
tension increases (decreases), and thus a restoring force
appears. This effect could be termed surface ‘elasticity’.
Also, depending on the properties of the surfactant, the
surface may have dilational and shear viscosity to vari-
ous degrees.
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Figure 1 : Sketches of the geometrical configurations
in a) Czochralski growth, b) floating zone, c) Horizontal
Bridgeman growth.

1.1 Model problems inspired by crystal growth

When growing crystals for electronic and optical pur-
poses, the challenge is frequently to produce a single
crystal of precisely controlled and highly uniform prop-
erties. This is presently a subject of obvious and grow-
ing importance for electronics, optics, laser technology
and other applications, with the largest area being semi-
condutors accounting for 60% of the 20000 tons crystals
produced in 1999, Scheel (2000).

There are many different processes that are used, see
Scheel (2000) for a recent review, but here we are con-
cerned with methods where the crystal grows by solidi-
fication from a melt, where convection may have desir-
able or undesirable effects, Langlois (1985). Sketches
of a few common geometric arrangements are shown in
fig 1. The most important method, economically, would
be Czochralski growth where the heated melt is kept in
a crucible, and a crystal is pulled up by slowly raising a
cooled seed crystal in contact with the melt. In horizontal
Bridgman growth, the melt is contained in a boat, which
is moved in a temperature gradient, so that the melt so-
lidifies in a controlled manner. In the float-zone method,
an intense heat source is passed along a polycrystalline
rod, so that the material melts and re-solidifies as the
heat source passes. There is thus a liquid bridge of melt,
which is held by surface tension forces between the two
solid ends of the rod. This method has the advantage that
it is containerless and thus holds a promise for very pure
crytals, but it is complicated by the fact that gravity may
have a large influence on the suspended melt drop.
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A common feature of these methods is the presence of
a free surface subject to relatively high temperature gra-
dients. Hence, this is indicative of the possible impor-
tance of thermocapillary convection. Also, the heat and
mass transfer in the melt determines the homogeneity
of the finished crystal. The importance of thermocap-
illary convection in such systems was pointed out al-
ready by Chang and Wilcox (1976), Chun and Wuest
(1979), Schwabe and Scharmann (1979). Numerous
studies have since then investigated different aspects of
thermocapillary convection in configurations resembling
crystal growth processes. A broad overview of this gen-
eral area is given in Lappa (2004a, 2005b). The studies
reviewed below deal with axisymmetric geometries. Re-
lated phenomena in cubical and parallelepipedic contain-
ers are reviewed by Lappa (2005a), in this issue.

1.1.1 The Floating-Zone

A common model problem is the half-zone, see figure 2b.
In this configuration, a liquid drop is held between two
circular cylinders by surface tension forces. The flow is
driven by a temperature difference between the two rods
causing a temperature gradient, and hence a surface ten-
sion gradient, along the free surface. Such a model is
then thought to represent half of a real zone, which is
heated at the center, giving rise to two recirculating flows,
one above and one below the heat source. The main
problem with the Half Zone model is that it disregards
possible interaction between these two zones. Lappa
(2003, 2004b) clearly illustrated that there are qualita-
tive and quantitative differences between the half and the
real floating zone of full extent.

However, much work has been invested in understanding
the half zone case, in view of its relative simplicity, and
possibly also because the design of well defined thermal
boundary conditions in experiments is more straightfor-
ward. The main objective of most studies related to the
half-zone has been to understand the stability character-
istics of the steady basic thermocapillary flow. The moti-
vation for this is the observation that crystals grown with
the floating-zone method typically have periodic axial
variations in dopant concentration, so called striations,
which are attributed to oscillatory thermocapillary con-
vection in the melt. The relevant fluid mechanical prob-
lem is thus the understanding of the flow instabilities that
lead to the aforementioned unsteady motion.

The fundamental instability mechanisms in thermocapil-
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Figure 2 : Sketches of a few model problems related to
crystal growth a) Annular configuration , b) Half zone, c)
Horizontal rectangular cavity.

lary flows in even simpler geometries, i.e. infinitely long
plane layers and cylinders, were studied by Smith and
Davis (1983), Xu and Davis (1984) and Smith (1986),
who identified among other things the fundamental ther-
mocapillary wave instability. Theoretical studies of sta-
bility in half zones include studies of linear and energy
stability theory by Shen, et al. (1990), Neitzel, et al.
(1991); Neitzel, et al. (1993); Wanschura, et al.(1995);
Chen, et al. (1997); and Levenstam, et al.(2001). Full
numerical simulations of the developed instability have
been made by, among others, Rupp, et al. (1989); Lev-
enstam and Amberg (1995), and Levenstam, et al.(2001).

Experimentally, the half-zone has been a popular model
geometry, investigated first by Preisser (1983). See also
the recent review by Schatz and Neitzel (2001). It is quite
difficult to carry out well-controlled experiments using
technically interesting fluids with small Prandtl numbers
such as semiconductor melts. Instead, a large literature
has appeared where thermocapillary flows were studied
using fluids with Prandtl numbers greater than one, typi-
cally silicone oils or molten salts. Early such studies are
those by Preisser, et al.(1983) and Velten, et al.(1991).
There have been attempts to measure the stability char-
acteristics of flow in systems resembling real float-zones,
using real semiconductor materials, Croll (1989, 1991)
and Levenstam, Amberg, et al.(1996), but when trying
to understand the fundamental instabilities, these experi-
ments are hampered by uncertainties in the material prop-

erties, difficulties in visualizing the flows, etc.

Another geometry where the dynamics have similarities
with the half zone is the annular geometry shown in fig-
ure 2a. In this case, a cylindrical container with a small
co-axial cylindrical heater is used. The fluid is contained
in the annular gap between the heater and the container
wall. A free surface subjected to a radial gradient of tem-
perature is hence created. Kamotani, et al.(1992) were
the first to experimentally study a thermocapillary flow
in a cylindrical container of the annular type. This ge-
ometry is attractive since it presents many experimen-
tal advantages, and the dynamics can be expected to be
similar to other axisymmetric thermocapillary convec-
tion cases. More recent microgravity experiments by
Kamotani (1997,1998,2000) investigated the onset of o0s-
cillations in this geometry using silicone oil with Prandtl
number around 27.

The picture that emerges is that, unfortunately but not
very surprisingly, the quantitative and qualitative fea-
tures of the oscillatory flow depend strongly on the
Prandtl number of the fluid. Figure 3 shows the crit-
ical thermocapillary Reynolds number Re = Ma/Pr =
Y(Thot — Teora)H/ (V) vs Prandtl number Pr = v/a. for
the half zone problem in fig 2b (Levenstam, Amberg,
and Winkler, 2001). In low Prandtl number fluids be-
low 0.05, corresponding roughly to interesting metal and
semiconductor melts, the flow becomes oscillatory at a
Re =~ 6000, independent of Pr. In this Prandtl number
range, the onset of oscillations is thus an entirely in-
ertial hydrodynamic instability, Levenstam and Amberg
(1995), Wanschura, et al.(1995), and the proper parame-
ter for characterizing the instabilities at low Prandtl num-
bers is thus the thermocapillary Reynolds number (de-
fined as R; = Ma/P,), rather than the Marangoni number.
In the high Prandtl number range, above Prandtl numbers
about 1, the mechanism is quite different and involves a
complicated coupling between the temperature and ve-
locity disturbances related to the thermocapillary wave,
Wanschura, et al.(1995). The critical Reynolds num-
ber continues to decrease with increasing Prandtl num-
ber, while a corresponding critical Marangoni number
(Ma = Re - Pr) increases.

It is interesting to note that in the region with Prandtl
number just below unity (actually 0.05 < Pr < 0.8), the
axisymmetric flow is much more stable than outside of
this range, with critical Reynolds numbers around ten
times larger than the levels outside. This is due to the
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Figure 3 : Stability of the flow in a half zone. Below
the lower curve the flow is steady and axisymmetric. At
Prandtl numbers above 1, the flow is oscillatory above
the curve. At low Prandtl numbers the flow is steady and
3D between the full and the dashed line, and oscillatory

above the dashed line.

fact that the action of the thermocapillary stress changes
qualitatively with the Prandtl number here; In the low
range, when convection of heat starts to be important at
Pr = 0.06, the thermocapillary stress generated by the
inertial instability present there, is actually a restoring
force that counteracts the instability. This competition
stabilizes the flow and raises the critical Reynolds num-
ber by an order of magnitude, and gives rise to a compli-
cated sequence of critical modes as the Prandtl number
is increased. When the inertial instability loses its impor-
tance to a thermocapillary instability mechanism around
Pr ~ 0.8 the critical Reynolds number again drops dra-
matically. Similarly it can be seen that the thermocapil-
lary stress related to the disturbance is now destabilizing.

In this context, it is natural to try to apply active feed-
back control to suppress oscillations. Here the idea is to
attenuate the oscillation by altering the thermocapillary
instability without influencing the base flow appreciably.
The input to the control law is usually a measurement
of the local surface temperature, and the output is heat
flux added (subtracted) by heaters (coolers) at the sur-
face. Since the surface temperature distribution plays a
key role in the instability mechanism, it should be effi-
cient to influence the oscillation via the surface tempera-
ture.

There is another type of control method that delays the
onset by reducing or altering the basic flow state. It de-
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creases the effective Marangoni number. For example,
a well known method is to apply a magnetic field to an
electronically conductive melt (Leon et al. 1981, Kimura
et al., 1983, Robertson and O‘Conner, 1986a,1986Db).
Others methods counteract the surface flow by generating
a steady-streaming type of flow by applying an end-wall
vibration (Anilkumar et al., 1993, Shen et al., 1996, Lee
et al., 1996, 1998), or directing a gas jet parallel to the
surface (Dressler and Sivakumaran, 1988). A drawback
of these methods is that the damping of the base con-
vection enhances the macro-segregation of the chemical
compositions due to the weakening of the global mixing.
Compared with these base flow control methods, the ac-
tive feedback control may be beneficial in terms of both
microscopic and macroscopic homogeneity of the final
single crystal. However, there has been only a limited
number of studies reported in the literature focused on
such a strategy.

In half-zone model experiments, Petrov et al. (1996,
1998) attempted to stabilize the oscillation by applying a
nonlinear control algorithm using local temperature mea-
surements close to the free surface and modifying the
temperature at different local locations with Peltier de-
vices. They constructed a look-up table based on the
response of the system to a sequence of random per-
turbations. A linear control law using appropriate data
sets from the look-up table was computed. The control
law was updated at every time step to adapt the control
law to the nonlinear system. Using one sensor/actuator
pair, successful control was observed at the sensor lo-
cation for Ma ~ 17750. However, infrared visualization
revealed the presence of standing waves with nodes at the
feedback element and the sensor. This was resolved by
adding a second sensor/actuator pair, enabling the con-
trol to damp out both waves propagating clockwise and
counterclockwise, and thus standing waves. The perfor-
mance of the control was reported for only one value of
Ma ~ 15000, where the critical value was Ma,, ~ 14000.
They stated that the oscillation could not be suppressed
when Ma exceeds the critical value by more than 8.5%,
mostly due to the weak response of the fluid flow to the
Peltier devices, which cannot be cooled more than a few
degrees during the application of the control pulse.

A simpler and perhaps more robust proportional feed-
back control method was demonstrated by Shiomi et
al.(2001). The feedback control was realized by measur-
ing temperatures at different locations, and using these to
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modify the surface temperature via a simple control law.
It is worthwhile to stress how Strategically placing sen-
sor/actuator pairs (controllers) and using the knowledge
of the modal structures, a simple cancellation scheme
can be constructed with only a few controllers. A se-
ries of articles explore the possibility of applying the con-
trol in simplified geometries such as the annular config-
uration and the half-zone for high Prandtl number lig-
uids by means of experiments (Shiomi et al., 2001, 2002,
2003, Barcena et al., 2005), numerical simulations (Sh-
iomi and Amberg, 2005a), and formulation of a simple
model equation system (Shiomi and Amberg, 2005b).

Successful suppression of the oscillation was obtained
especially in the weakly nonlinear regime where the con-
trol completely suppresses the oscillations. Typical pic-
tures of the successful control of a weakly nonlinear
thermocapillary oscillation are shown in figure 4. The
top (bottom) figure depicts the time history of a tem-
perature (power output) signal at a sensor (heater) loca-
tion. With a proper choice of actuators, even with the
local control, it was shown that it is possible to modify
the linear and weakly-nonlinear properties of the three-
dimensional flow system with linear and weakly nonlin-
ear control. On the other hand, the method exhibits cer-
tain limitations. Depending on the geometry of the sys-
tem and actuators, the limitation can be caused by either
the enhancement of nonlinear dynamics due to the finite
size of the actuators or the destabilization of new linear
modes. The former case can be attenuated by increas-
ing the azimuthal length of the actuators to reduce the
bandwidth of the wavelengths of waves that are gener-
ated. In the latter case, having an idea of the structure of
the new destabilized modes, they can be delayed by op-
timizing the configuration of controllers. On the whole,
the oscillation can be attenuated significantly in a range
of supercritical Ma up to almost twice the critical value.

Practical floating-zone processes and experiments are
(naturally) more complicated than the half zone and an-
nulus discussed above. The temperature differences that
are used are such as to give thermocapillary Reynolds
numbers of the order O(10°) rather than the O(10°) —
O(10*) discussed so far. Experimentally a ‘periodic’
and a ‘turbulent’ regime has been observed, Croll et al.
(1991), in terms of the regularity of the observed striation
patterns in the finished crystals. Lan et al. (2000) have
recently presented a simulation of a full Si float zone at
a realistic Reynolds number of 10°, showing a growth
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Figure 4 : A typical picture of successful control of ther-
mocapillary oscillation with weak nonlinearity in a half-
zone experiment. Top: Time history of the dimensionless
temperature signal. Bottom: Simultaneously measured
heater output power. Marangoni number is 18 percent
above the critical value.

speed that is apparently chaotic in time. Model exper-
iments that investigate the chaotic regime in a system-
atic fashion have appeared recently, Ueno et al. (2000),
Kawamura et al. (2001), who carried out experiments
with silicone oil in a half-zone with a driving tempera-
ture difference up to 100 K, i.e. 4-5 times the critical
value.

The flow in a real float zone is highly chaotic, even if the
Reynolds number is hardly high enough for engineering
turbulence models to give good results. In practice there
are also other possible sources for unsteady flow, such
as RF-inductive heating, and buoyancy driven convection
(when present), even if the basic thermocapillary mecha-
nisms discussed above are generally regarded as the most
severe. In order to stabilize the flow, differential rotation
of the rods, magnetic fields etc, may be applied (see, e.g.,
Lan and Yeh 2005). Quantitative simulations must also
account for the deformation of the free surface, the evolu-
tion of freezing and melting interfaces, etc. In addition to
those referenced above, Rao and Shyy (1997), Kaiser and
Benz (1998), Ratnieks et al. (2000) may be mentioned.

1.2 Czochralski growth

In the Czochralski system, see figure 1a, a melt is kept in
a crucible that is typically inductively heated. The crys-
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tal is grown by cooling it and slowly pulling it upwards,
so that new material solidifies. This process is widely
used in industry for the production of single-crystalline
silicon for electronics, where the sizes of the crystals
have grown dramatically in recent years, to 8 diameter
presently. Some of the issues in this process are the uni-
formity of the crystal, notably oxygen content, and the
presence of crystal defects that may be related to ther-
mal stresses in the crystal. As in the float zone, the heat
and mass transfer in the melt is crucial in this regard. In
addition to natural and thermocapillary convection, the
crucible (container) and the crystal are usually rotated as
a means of influencing the mean flows, which is another
important source for melt motion.

Much work has gone into setting up complete models of
this important industrial process. In order to be quantita-
tive these need to include the entire furnace to capture the
radiation heat transfer at high temperatures, as well as the
influence of the gas motion above the melt, etc, see Dorn-
berger et al. (1997), Zhou et al. (1997), and Chatterjee
et al. (2000), Tsukada et al. (2005). There are thus many
other complications, in addition to the melt flow, but still
this is often identified as the main remaining obstacle.
The Czochralski systems are considerably larger than the
floating zones discussed above and the melt flow is typ-
ically closer to proper turbulence. Orders of magnitudes
of parameters relevant for the flow, Lipchin and Brown
(1999), could be Grashof numbers ~ 10'!, and Prandtl
number 0.011, indicating that buoyancy alone would be
strong enough to cause a turbulent flow.

Classical turbulence models have been employed in this
context, see for instance Lipchkin and Brown (1999),
who compare systematically different wall treatments for
the k-€ model. According to their analysis, the melt flow
in Czochralski growth has many of the features that are
notoriously difficult to treat using k-€ models; Rather low
Reynolds number flows, natural convection, separation,
effects of system rotation, etc. Large eddy approaches
have also been tried, Basu et al. (2000), Evstratov et al.
(2000), even though the resolution is typically not very
high, in view of all the additional complications in this
problem.

Czochralski processes are also used for growing crystals
from oxide melts, as for instance YAG (Y3Al50;,) for
laser applications. Such melts typically have a Prandtl
number around 10, and are more viscous than say a sil-
icon melt. The resulting flows may have typical values
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of Grashof numbers of the order 10* — 107, Marangoni
numbers in the order 10> — 10°, etc, and are thus not nec-
essarily turbulent, but may show oscillatory motions and
low dimensional chaos, Jing (2000), Enger et al. (2000),
Xiao and Derby (1994), Tsukada et al.(2005).

2 Welding

Gas-Tungsten-arc (GTA) welding is a widely used
method to join materials in manufacturing industries.
Nevertheless, the physical processes involved in GTA-
welding are highly complex and are not fully understood.
One key issue in improving welding technology is to de-
vise methods suitable for new materials, and to predict
the welding properties of a new material in detail. This
involves for instance a prediction of the depth and width
of the molten region (the weld pool), the structure of
the material in the junction after the process is complete,
and also how the properties of the material influence the
choice of the actual welding parameters, i.e. welding cur-
rent, speed, etc. There has recently been a growing inter-
est in detailed numerical simulations of weld processes
(see the recent conferences, Cerjak (2001), and David
and Vitek (1993)).

A generic case for studying weld pool phenomena would
consider a flat plate and an electric arc struck between
an electrode above the surface and the plate. The molten
weld pool develops directly beneath the electrode when
the current is turned on and its shape and size are highly
influenced by the heat and fluid flow in the molten zone.

The fluid flow in the weld pool is mainly driven by
forces due to surface tension gradients (the Marangoni
convection), but is also strongly influenced by electro-
magnetic forces and buoyancy, Mundra and DebRoy
(1993a,1993b), Oreper and Szekely (1984). Arc pressure
and aerodynamical drag forces arising from the shield-
ing gas used in GTA welding to prevent oxidation have
an impact on the welding process. Moreover, heat losses
due to radiation and convection and solidification of the
weld fusion zone as well as the modeling of the heat input
from the arc present between electrode and workpieces
have to be taken into account. The process is also highly
influenced by the presence of surface active elements on
the surface of the melt. In the case of stainless steel, sul-
fur and oxygen are known to be surface active.

Figure 5 shows stationary temperature and velocity dis-
tributions for a 3D GTA-welding simulation of a repre-
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Figure 5 : Isotherms and flow vectors on the surface and symmetry plane of a plate during welding.

sentative welding situation, Do-Quang (2004). The elec-
trode is moving with a constant speed of 6mm/s in the
positive y-direction, to the left in the figure. The heat
flow from the electrode to the workpiece melts a specific
region of the specimen which forms what is called the
weld pool. The shading indicates the temperature distri-
bution on the upper surface of the plate and on the verti-
cal symmetry plane oriented along the traveling direction
of the electrode. In these planes also the velocity fields
are plotted. The melt-solid interface is indicated as a con-
tour separating the solid no-motion areas from the melt
region. It is observed that the flow pattern has a fore-aft
asymmetry, due to the motion of the electrode. The tem-
perature fields are strongly affected by convection, with
characteristic velocities of 0.1m/s. The fluid flow in the
weld pool is highly complex, and the heat transfer that
results determines the weld pool depth and shape. More-
over, the velocity field at the surface of the specimen de-
termines the streamlines defining the traveling paths of,
for example, slag particles. In this particular case a steel
with a comparatively large sulfur content is modeled, for
which surface tension increases with temperature. This
results in melt at the surface being pulled by surface ten-
sion gradients inwards to the center. This gives rise to
a beneficial flow pattern, with a jet directed downwards
from the hottest spot at the center. This hot jet will cause
the material to melt, and form a deep and narrow weld
pool.

In order to study quantitatively the mathematical model-
ing of phenomena in a weld pool, Winkler et. al. (1998,
2000a,2000b) made well controlled experiments on a
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0.75

Figure 6 : Crossection of an axisymmetric point weld,
comparison between the experimentally obtained struc-
ture, revealing the shape of the largest liquid region, and
the simulated weld pool shape and velocity field. The
horizontal axis is radial distance from the axis of sym-
metry, and the vertical is distance from the upper surface
of the plate.
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spot weld, i.e. using a stationary electrode and heating a
stainless steel plate of well controlled composition, dur-
ing a specific time, typically a few seconds. When the arc
is removed the weld pool quickly resolidifies and its final
shape can be observed from the microstructure of the ma-
terial when the plate is cut through the weld. The weld
pool shapes obtained thus were compared to timedepen-
dent axisymmetric numerical simulations using a com-
prehensive mathematical model. Figure 6 shows such a
comparison for a stainless steel with low sulfur and oxy-
gen content, that has been subjected to a stationary heat
source for 1s. It should be noted that the agreement is
quite satisfactory, both quantitatively and qualitatively.
The weld has in this case developed into a rather com-
plex shape, with the maximum depth appearing at about
1.2 mm from the center, despite the fact that the heating
intensity is maximal at the centerline. This is characteris-
tic of materials with very low presence of surface active
elements such as sulfur and oxygen. In such systems, the
surface tension is decreasing with temperature over most
of the temperature range, causing the largest surface ten-
sion to appear near the rim of the pool. This gives rise to
a rather unexpected flow field, with a vortex pair trans-
porting hot melt from the surface down to the solid at
this distance from the center. This peculiar flow pattern
is the result of the competition between the different driv-
ing forces for convection, i.e., surface tension gradients,
electromagnetic force, buoyancy, etc. The surface ten-
sion depends on temperature as well as composition, and
it can be seen that the surface tension has a local maxi-
mum at the point where the flow turns downwards from
the surface.

The detailed modeling of surface tension is thus crucial
for accurate results. In the past, equilibrium models have
been used that assume that the surfactant concentration
at the surface is in perfect equilibrium. When using such
models to evaluate tests like that in figure 6 it was found
that the nominal surfactant concentration had to be ad-
justed in order to make the model fit. This was inter-
preted as an indication of a redistribution of surfactants
by the convective flow. Thus, using a nonequilibrium
model that accounts for the surface elasticity described
before, together with a crude calculation of the mass
transfer of the surfactants in the weld pool, good agree-
ment was obtained for a variety of experimental condi-
tions.

Figure 7 shows the computed surface concentration of
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sulfur together with the flow field, as viewed from above,
for a case with a moving electrode (Us = 20cm/min,
I1=200A, U =10.2V). The motion of the electrode is up-
wards in the figure, causing a characteristic drop-shape of
the weld pool, with a blunt leading edge, and a pointed
trailing edge. The heat source is located at x =y = 0,
in the upper part of the figures. The steel in this case
also has a low level of surfactant concetration, so that
over most of the surface the surface tension is decreas-
ing with temperature. The corresponding flow pattern on
the free surface is directed outward, away from the heat
source. In the rear part of the pool however, there is a
distinct stagnation line separating a trailing region where
flow velocities are smaller, and actually are reversed. The
stagnation line in the velocity clearly coincides with a
band of increased sulfur concentration, as shown in the
left panel. As expected, sulfur is accumulated at a con-
verging stagnation line. Conversly the sulfur concentra-
tion is decreased over the central part where the surface
flow is diverging.

3 Solidification

One crucial step in almost all materials processes is so-
lidification in one form or other. The conditions under
which the melt resolidifies will be crucial for the final
microstructure of the material. The size and morphol-
ogy of the individual grains that make up a polycrys-
talline material, the homogeneity of a monocrystal, the
actual phase that is formed, as well as its local composi-
tion, are determined by the interplay between local heat
and mass transfer and the thermodynamics of the phase
change. Even though the microstructure of the material
may change considerably during subsequent cooling and
following process steps, the foundation has been laid at
the point of solidification. Since local heat and mass
transfer governs the phase change, it is obvious that any
melt convection at all will be of paramount importance
in determining the structure of the material, thus making
this an area of important applications that should interest
fluid mechanists.

3.1 Stability of a solidification front, dendrites

A generic example of solidification of a pure liquid
would be the unidirectional solidification of an under-
cooled sample initially at a temperature below the freez-
ing point. The simplest mathematical description of this
would assume a planar phase change boundary, with a
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Figure 7 : Profiles of the computed surface concentration of surfactants.

constant given freezing temperature at the solidification
interface, and a constant latent heat release expressed as
a discontinuity of the normal temperature gradient at the
interface. This evokes a picture of the solidification front
as a smooth interface advancing over the domain. This
however is very much the exception rather than the rule
when dealing with metals and crystalline materials.

The reason for this is that a planar solidification interface
advancing into an undercooled melt is subject to a fin-
gering instability very similar to fingering in Hele-Shaw
cells: if a bump is formed on the solidification front, the
local temperature gradient ahead of it will increase, and
thus cool the front more efficiently there, causing an am-
plification of the disturbance. Furthermore, this mathe-
matical problem is ill-posed, since the growth rate of a
disturbance of the planar shape of the interface will grow
unboundedly with the wavenumber of the disturbance.
The assumption responsible for this is that the temper-
ature is assumed constant on the interface - in the Hele
Shaw analogy this would correspond to a zero surface
tension. A more realistic description of solidification is
obtained by recognizing that the temperature at the in-
terface depends on the local curvature of the material, as

well as the speed of the front. Also the interface kinetics
are highly anisotropic due to the anisotropic properties of
the crystalline solid that is formed.

In a binary mixture, the interface temperature also de-
pends on the local composition and it is possible to make
a close analogy between solidification of a pure mate-
rial and the approximately isothermal solidification of a
supersaturated system. The basic instability of a planar
or spherical front was first investigated by Mullins and
Sekerka (1963, 1964), and has since been studied exten-
sively in different contexts, for instance effects of natural
and forced convection in the melt, Davis (1990).

Thus, in most practical situations, solidification inter-
faces undergo a fingering instability. These often develop
into what is called dendrites (from the greek dendros,
tree), see figure 8. In many metals these indeed resem-
ble a tree with a main stem and sidebranches, where the
apparently anisotropic growth is due to the anisotropy
of the growth kinetics. They may typically be of the
order of micrometers up to fractions of a millimeter in
size. Dendrites are the most common microstructure that
grows naturally during solidification of alloys and pure
metals, see for instance the standard text by Kurz and
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Figure 8 : Dendritic growth of a nickel nucleus in a shear
flow. The innermost contour is the liquid/solid interface
and the other contours are isotherms. The inflow and out-
flow of melt is from the left to the right.

Fisher (1992), and Huang and Glicksman (1981a,1981Db),
Glicksman and Marsh (1993).

In the simulation shown in figure 8 (Tonhardt and Am-
berg, 1998), the interface is tracked by a phase-field
method. This implies that the solid/liquid interface is
treated as a diffuse interface and that this is tracked by a
phase-variable which is governed by a phase-field equa-
tion. The phase-field equation is derived in a thermo-
dynamically consistent way by considering the entropy
change during solidification, Wang et al. (1993), Fried
and Gurtin (1996). This results in that the phase vari-
able is O in the pure solid and 1 in the pure liquid, while
it changes rapidly over the diffuse interface. The for-
mulation of efficient phasefield models and efforts to ex-
tend their applicability and validity, is a long and contin-
uing story, see for instance Langer (1986), Penrose and
Fife (1990), Kobayashi (1991), Warren and Boettinger
(1995), Karma and Rappel (1996), Karma (2001), Am-
berg (2003).

The simulation started from a small circular nucleus that
grows into the surrounding undercooled melt, display-
ing the characteristic dendritic pattern with a main stem
growing vertically, with secondary arms extending hori-
zontally from the main stem. Here the orientation of the
crystal lattice in the nucleus was assumed to be such that
the growth is promoted in the horizontal and vertical di-
rections.

The interesting feature that has been added in figure 8 is
melt convection. We imagine that the nucleus is attached
to the wall of the mold or container holding the under-
cooled melt, and that there is a melt flow past the wall.

FDMP, vol.1, no.1, pp.81-95, 2005

In keeping with the small size of the dendrite, the back-
ground flow is assumed to be a simple linear shear flow.
The lower side of the domain is an insulated solid wall,
the left and right side are the inflow and outflow bound-
aries for the fluid flow, respectively. The figure shows
that the nucleus has grown into a complicated shape, a
dendrite, with three main branches. Here, the fluid flow
has altered the local heat transfer at the solidification
front, and thus the shape of the dendrite. Due to the flow
the nucleus has evolved to an asymmetric dendrite that
tilts slightly to the left, upstream. Another effect of the
flow is that the sidebranch growth is promoted (inhibited)
on the upstream (downstream) side of the dendrite. Mate-
rial properties have been chosen to approximately match
those of pure Nickel, with a Prandtl number of around
0.03. A characteristic Peclet number based on the length
of the vertical stem and the background velocity at this
distance from the wall is around 50.

Convective effects on fully developed dendrites have not
been studied using first principle simulations until quite
recently. The growth of a dendrite in a shear flow was dis-
cussed above, Tonhardt and Amberg (1998, 2000a), nat-
ural convection effects have been considered by Tonhardt
and Amberg (2000b). The growth of thermal dendrites
in uniform forced flow has been studied by Tong et. al.
(2000), Beckermann (1999a) and Diepers et al. (1999b),
Al-Rawahi and Tryggvason (2002). Growth in a binary
alloy with convection has been studied by Lan and Shih
(2004). These simulations are all two dimensional, but
fully three dimensional simulations of dendritic growth
in a uniform forced flow has been done by Al-Rawahi
and Tryggvason (2004) and Jeong, et al.(2001).

4 Use of Symbolic Computing to Generate FEM
Code

Wherever mathematical models are used in science and
engineering, one important obstacle to the development
and utilization of new models is the need to produce effi-
cient implementations of solvers for them. This is partly
a question of the mathematical properties of the result-
ing system of equations that must be understood theoret-
ically, but also the work involved in implementing a cer-
tain scheme is often prohibitive. In particular in an aca-
demic situation it is important to have a short turnaround
time from idea to test run, in order to be able to work
creatively with mathematical models.

Several tools exist that are intended to produce a work-
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ing computer code from knowledge of physics and nu-
merics in an efficient way. Out of these we may men-
tion: diffpack?, Ouverture*, VECFEM?>, Matlabs PDE
toolbox FEMLAB® and PDEase’. Also the more tra-
ditional commercial softwares are developing to handle
more and more complex situations, or ‘multi-physics’

In response to our own needs, we have developed a tool-
box that uses symbolic computation to generate complete
simulation codes from high level formulations of a math-
ematical model in the form of a system of partial dif-
ferential equations, Amberg, et al. (1999)%. The en-
tire problem definition is done in the symbolic compu-
tation application Maple. We have tried to create a tool-
box that will appear natural and convenient to an applied
mathematician, using only the language of applied math-
ematics, as implemented in the straightforward and well
known Maple syntax. Spatial discretizations are done as
the standard finite element method on unstructured grids.
The finite elements are specified as symbolic code in a
few pages of Maple procedures. Some common 1D, 2D
and 3D elements are provided. The tools accommodate
mixed formulations with different base functions for dif-
ferent variables, as often done in incompressible fluid
flow. Code that is specific for a certain problem is gen-
erated within Maple, output as fortran and linked with
linear algebra solvers, mesh adaptation routines, etc, to
produce a rather simple standalone fortran code.

In the computational work described above on crystal
growth and welding, the computations were done using
codes created in this way. In addition, we may mention
ongoing work on development of turbulence models for
fluid flow simulations, and simulations of elastic (poly-
meric) liquids. In the latter case, these tools could be
used in a course where students could have hands on
experience of the rather complex mathematical models
that are required. Other non-standard uses which might
be awkward to fit into a preexisting multi-physics tool
are the surfactant convection mentioned in the welding
simulation above, and an ongoing implementation of a
pseudospectral 3D code to simulate control of Marangoni
convection.

3 http://www.oslo.sintef.no/diffpack

4 http://www.c3.lanl.gov/ henshaw/Overture/Overture.html
3 http://www.uni-karlsruhe.de/ vecfem

6 http://www.comsol.com

7 http://www.macsyma.com/PDMain.html

8 See also http://www.mech.kth.se/ gustava/femLego
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