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Phase Distribution of Bubbly Flows under Terrestrial and Microgravity
Conditions

Asghar Esmaeeli1

Abstract: We use direct numerical simulations to
study phase distribution of bubbles under terrestrial and
microgravity conditions. The full Navier-Stokes and en-
ergy equations, for the flows inside and outside the bub-
bles, are solved using a front tracking/finite difference
technique. Both nearly spherical and deformable bub-
bles are considered. For buoyancy-driven flows, spheri-
cal bubbles at Re = O(10) and deformable ones at Re =
O(100) exhibit a uniform spatial distribution at quasi
steady-state conditions, while nearly spherical bubbles at
Re = O(100) form horizontal rafts. Bubbles, driven by
thermocapillary effects in microgravity, also form hori-
zontal rafts, but due to an entirely different mechanism.
When thermocapillary and buoyancy forces act in oppo-
site directions, the raft formation is prevented and the
bubbles form a large cluster that moves in the direction
of buoyancy.

1 Introduction

Bubbles and drops are central to many industrial and
natural processes. Heat transfer through boiling is the
preferred mode in most power plants and bubble-driven
circulation systems are used in metal processing oper-
ations such as steel making, ladle metallurgy, and the
secondary refining of aluminum and copper. Generally,
bubbly flows consist of a large number of bubbles mov-
ing in a highly unsteady manner, and considerable effort
has been devoted over recent years to the development of
engineering models able to describe the mean motion.

Under terrestrial conditions, buoyancy is the major force.
Accordingly, buoyancy-driven motion of bubbles contin-
ues to be the focus of many studies. Buoyancy, how-
ever, is not the only force and in a typical bubbly flow,
other forces such as electrophoresis, electrohydrodynam-
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ics (EHD), and thermocapillarity, may exist as well.
These are regarded as “secondary” forces in many situa-
tions because of their relatively small intensity compared
to buoyancy. They may, however, influence the fluid dy-
namics considerably. For example, solutocapillary forces
that arise due to the accumulation of surfactants (present
in tap water) at the interface of bubbles, tend to immobi-
lize the phase boundary. This, in turn, alters the dynam-
ics substantially (bubbles/drops behave more like solid
particles; Harper, 1973). The common feature of almost
all of these forces is the alteration of surface tension that
acts at the phase boundary. Although, these effects may
be undesirable in some cases, they can be used to our ad-
vantage in other applications. For example, for bubbly
flows in horizontal pipes or motion of neutrally buoyant
bubbles/drops, where buoyancy is no longer the domi-
nant force, these effects can be used for a better control
of the dispersed phase.

The behavior of a gas bubble rising due to buoyancy or
thermocapillarity is reasonably well understood (Clift et
al., 1978; Subramanian, 1992). In many practical ap-
plications, however, it is the collective behavior of the
bubbles that is of interest. Here, we are interested in
phase distribution of “freely evolving” array of bubbles.
A freely evolving array consists of bubbles that interact
freely and can take different rise velocities (i.e., their spa-
tial distribution evolves continuously). This is in contrast
to a “regular array” where the bubbles all have the same
velocity and their spatial distribution essentially remains
constant. Although a regular array is a highly idealized
configuration, it has been used in the past by many inves-
tigators because of its relative simplicity in mathematical
modeling (in the limit of potential and Stokes flow) and
numerical simulation. A regular array cannot capture the
highly unsteady nature of the flow, however, it may pro-
vide good approximations for some flow quantities such
as the mean rise velocity. To make the analysis simpler,
we consider only monodispersed bubbly flows and we
also do not allow for coalescence of bubbles. Such an
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assumption is supported by the fact that frame by frame
analysis of earlier results showed that although bubbles
may come momentarily close to each other, actual con-
tact is very rare.

For buoyancy-driven bubbles, we use a fully periodic do-
main and perform our three-dimensional computations in
a reference cell. The flow is initially quiescent and mo-
tion is triggered by buoyancy. As the bubbles originally
inside the reference cell leave through one boundary, new
ones come in through the opposite boundary. Although
the motion is unsteady, the simulations are carried out for
a long enough time so that a time-averaged behavior of
the system is well-established. Here, the governing pa-
rameters are the densities (ρl , ρb) and the viscosities (µl ,
µb) of the ambient liquid and the bubbles, the surface ten-
sion coefficient σ (which taken to be constant), the spher-
ical volume-equivalent (initial) diameter of the bubbles
de, and the number of the bubbles Nb. The rise veloc-
ity of the bubbles Wb is the most important dependent
variable. Nondimensionalization results in the Reynolds
number Re = ρlWbde/µl as a function of the Eötvös num-
ber Eo = ρlgd2

e/σ, the Morton number Mo = gµ4
l /ρlσ3,

void fraction α = Nbπd3
e /6L3 (L being the domain size),

and ratio of the material properties; ρb/ρl and µb/µl . For
given fluids, the Eötvös number is a characteristic of the
bubble size and the Morton number is a constant repre-
senting the viscosity of the liquid. Since both fluids are
assumed to be incompressible, α is constant throughout
the simulation, and since the bubbles are not allowed to
coalesce, Nb remains constant.

For thermocapillary-driven bubbles at zero gravity, the
simulations are carried out for two-dimensional systems.
In such a case, the reference cell is periodic in the hor-
izontal direction but wall-bounded in the vertical direc-
tion. Initially, the flow field is quiescent, and a constant
temperature gradient is imposed along the vertical direc-
tion. The individual parameters that govern this prob-
lem are the effective bubble radius a = de/2, the sur-
face tension σ, the surface tension gradient σT = dσ/dT ,
the densities (ρl, ρb), the viscosities (µl, µb), the heat
conductivities (kl , kb), the heat capacities (cl,cb), and
the imposed temperature gradient |∇T∞| = |Tt −Tb|/L,
where Tt , Tb, and L are the temperatures of the top
and the bottom walls and the separation distance of the
walls, respectively. Nondimensionalization results in
ReT = usa/νl, Ma = usa/αl , Ca = usµl/σave, void frac-
tion (as defined before), and the ratio of material prop-

erties, ρb/ρl , µb/µl , kb/kl , and cb/cl , as the governing
nondimensional parameters. Here, us = |σT ∇T∞|a/µl is
a reference velocity, derived by considering the fact that
the flow is caused by the variation of interfacial tension
created by thermal gradient. νl and αl are the kinematic
viscosity and the thermal diffusivity of the ambient fluid,
respectively. ReT is the Reynolds number based on the
scale velocity, Ma is the Marangoni number that is the
ratio of convective transport of energy to heat transfer
by molecular diffusion, and Ca is the capillary number
(an indicator of bubble deformation). When buoyancy is
also present, Π = |σT ∇T∞|/(ρl −ρb)ga is introduced as
an additional nondimensional number, characterizing the
relative importance of buoyancy and surface tension.

2 Background

In what follows, we will briefly review some of the pre-
vious studies on phase distribution of bubbles. We make
no attempt to cite every paper, but have selected a few
critical and/or representative analyses.

2.1 Buoyancy-driven bubbly flow

The state of a bubbly system – as well as other particu-
late flows – depends strongly on the microstructure of the
dispersed phase. Previous experimental and numerical
studies of suspensions of solid particles (Bossis & Brady,
1984), liquid drops (Zhou & Pozrikidis, 1993), and bub-
bles (Esmaeeli & Tryggvason, 1998, 1999) have shown
that the rheological properties of the suspension, such as
the effective viscosity and the average rise velocity of the
particles, can be well-correlated with the spatial distribu-
tion of the particles. Brady & Bossis (1985), for exam-
ple, showed that the effective viscosity of a suspension of
rigid spheres at high volume fraction is determined, pri-
marily, by the strong lubrication forces associated with
cluster formation.

For buoyancy-driven bubbly flows, in the absence of
an imposed pressure gradient, shear, and other external
forces, one may generally expect to see a “random” dis-
tribution of the bubbles at quasi steady-state conditions
(hereafter also referred to as “uniform” distribution to
distinguish it from the cases in which coherent struc-
tures of aligned bubbles are formed, e.g., raft or columnar
structures). Therefore, a random distribution has been
often used as a reference structure. The motion of a bub-
ble in a swarm tends to be influenced by the motion of
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bubbles at short separation distances as a result of direct
interactions, and by the long range hydrodynamic forces
of the bubbles at larger separation distances. In both lim-
its, however, the problem becomes simpler if one focuses
on the pairwise interactions of particles. It is, therefore,
not surprising that a vast body of literature has been de-
voted to the binary interactions of particles and to a lesser
extent to their ternary interactions. In particular, for the
two limiting cases of potential and Stokes flow, where it
is possible to linearize the Navier Stokes equation, the
binary interactions have been studied analytically as well
as numerically in great detail. See, for example, Lamb
(1932) for potential flow solutions and Happel & Bren-
ner (1965) and Kim & Karrila (1991) for Stokes flow so-
lutions. In general, the central theme of these studies has
been calculation of the average rise velocity and/or the
drag coefficients for two fundamental modes of interac-
tions (i.e., spheres rising in tandem and side-by-side) and
comparison of the results with the corresponding ones for
a solitary sphere.

In this study, we are interested in bubbly flows at finite
Reynolds number where both inertia and viscous forces
are important. For this flow, Esmaeeli & Tryggvason in-
vestigated the motion of nearly spherical bubbles at mod-
erate Reynolds numbers in a number of papers and here
we briefly review some of their results. Esmaeeli and
Tryggvason (1998) investigated a case where the aver-
age rise Reynolds number of the bubbles remained rela-
tively small (1−2) and Esmaeeli and Tryggvason (1999)
looked at another case where the Reynolds number was
20− 30. In both cases, most of the simulations were
limited to two-dimensional flows, although a few simula-
tions for three-dimensional systems with up to eight bub-
bles were included. Simulations of freely evolving arrays
were compared with regular arrays and it was found that
while freely evolving bubbles at low Reynolds numbers
rise faster than a regular array (in agreement with Stokes
flow results), at higher Reynolds numbers the trend is re-
versed and the freely moving bubbles rise slower. These
simulations showed that at finite Reynolds numbers, two-
bubble interactions take place by the “drafting, kissing,
and tumbling” mechanism predicted by Fortes, Joseph,
and Lundgren (1987) for solid particles: “For two bub-
bles rising in tandem, the lower one is in the wake of the
one in front and is shielded from the oncoming fluid. It
therefore experiences less drag but the same buoyancy
force, and moves faster than the one in front. An in-line

configuration of two touching bubbles is inherently un-
stable, and the bubbles “tumble” whereby the bottom one
catches up with the top one. At the end of the tumbling
the bubbles move apart.” The time averages for the two-
dimensional bubbles were generally well-converged but
exhibited a dependency on the size of the system. This
dependency was stronger for the low Reynolds number
case than that for the moderate Reynolds number one.
Although many of the qualitative aspects of the inter-
actions of a few three-dimensional bubbles were cap-
tured by simulations of two-dimensional bubbles, there
were some quantitative differences between the results
for two- and the three-dimensional systems. Exami-
nation of the pair distribution function for the bubbles
showed a mild preference for horizontal alignment of
bubble pairs at short separation distances, independent
of system size, but the distribution of bubbles showed a
tendency to remain nearly uniform (random).

To examine a much larger number of three-dimensional
bubbles, Bunner and Tryggvason (2002a) developed a
parallel version of the method used by Esmaeeli and
Tryggvason (1998). Their largest simulations followed
the motion of 216 three-dimensional buoyant bubbles per
periodic domain for a relatively long time. The govern-
ing parameters were selected such that the average rise
Reynolds number was about 20−30 (comparable to Es-
maeeli and Tryggvason, 1999, but not identical), depend-
ing on the void fraction, and deformations of the bubbles
were small. These simulations confirmed earlier obser-
vations of Esmaeeli & Tryggvason (1998, 1999) and in
particular, showed that there is an increased tendency for
the bubbles to line up side-by-side as the rise Reynolds
number increases.

2.2 Thermocapillary-driven flow

Motion of bubbles/drops as a result of variations of sur-
face tension with temperature is often referred to as ther-
mocapillary migration. The study of the phenomenon
is motivated by its potential applications in space oper-
ations where thermocapillary effects can be used as a
possible mechanism for vapor bubble control (Ostrach,
1982). Even on earth, thermocapillary forces can be used
to control motions of droplets of very small size or of
nearly equal density with ambient fluid. The problem
was first studied both experimentally and theoretically
by Young et al. (1959). In their experiments with air
bubbles in viscous silicone oil, they were able to hold a
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bubble stationary by using a downward temperature gra-
dient. They found the migration velocity, Ub, of a fluid
sphere in an infinite domain due to a linear temperature
field and in the limit of zero convective transport of mo-
mentum and energy, to be:

Ub =
2

µl(2+3γ)

(
σT ∇T∞a

2+η
− ∆ρga2(1+ γ)

3

)
, (1)

where η = kb/kl , γ = µb/µl, and ∆ρ = ρl −ρb. This equa-
tion predicts that at zero gravity, the migration velocity is
independent of fluid density and heat capacity, inversely
proportional to the ratio of heat conductivity of bubbles
to that of ambient fluid, and directly proportional to the
bubble size, the surface tension gradient, and the initial
temperature gradient. Crespo & Manuel (1983) and Bal-
asubramaniam & Chai (1987) showed that equation (1) is
an exact solution for the full Navier-Stokes equations for
any value of the Reynolds number as long as convective
transport of energy is negligible.

Because of inherent difficulties in performing micrograv-
ity experiments, experimental results have considerably
lagged behind the theoretical analysis. The focus of most
of the studies, however, has been quasi-steady motion
of a single bubble/drop or interactions of a few of them
under preassigned orientations, and in the limit of zero
Reynolds and Marangoni numbers. While these studies
are quite useful for the illustration of qualitative effects,
they are unable to provide information on the dynamics
of a real flow. The overall picture that emerges from these
investigations is that for a given fluid and bubble size,
thermocapillary forces are much weaker than the buoy-
ant forces, and they also decay faster with increasing dis-
tance from the bubble. For a detailed discussion of the
early studies of a single bubble/drop, see Subramanian
(1992), and for a review of the investigations on bub-
ble/bubble interactions, see Nas & Tryggvason (2003).
Here, we only mention the remarkable work of Acrivos
et al. (1990) who showed that the terminal velocity of
a random distribution of bubbles, in a confined domain
and in the limit of zero Re and Ma, decreases linearly
with an increase in the void fraction. We note that this
result is similar to the corresponding one for sedimenta-
tion velocity of rigid particles in Stokes flow (Batchelor,
1972).

For interaction of bubbles/drops at finite Reynolds and
Marangoni number, the literature is limited to the compu-
tations of Nas (1995) for multibubbles, and Nas & Tryg-

gvason (1993, 2003) for two bubbles/drops: “For two
bubbles rising in tandem in an upward temperature gra-
dient, the bubble on the top, pumps the high temperature
ambient fluid from the top to the bottom. This results in
an increase in the temperature of the fluid in the gap be-
tween the bubbles which leads to a decrease (respectively
increase) in the temperature gradient across the top (re-
spectively bottom) bubble. As a result, the velocity of
the bubble in the wake increases while the velocity of
the one on the top decreases. The bubble in the wake
catches up with the top one, they nearly touch, and then,
separate.” If the void fraction is high enough, this pro-
cess may lead to formation of horizontal layers of bub-
bles which in turn results in a substantial decrease in the
mean velocity of the bubbles. Esmaeeli et al. (1996,
1997) and Esmaeeli & Arpaci (1999) investigated the ef-
fect of shear forces and bubble/bubble coalescence on the
multibubble dynamics and found that both effects tend to
prevent the raft formation, and thereby, the subsequent
decrease in the mean velocity. The role played by possi-
ble thermal wake effects in the case of many interacting
droplets driven by thermocapillary forces was considered
by Lappa (2005) within the framework of studies devoted
to the investigation of immiscible metallic alloys.

3 Mathematical Formulation and Numerical
Method

Consider a domain consisting of bubbles dispersed in a
liquid. The fluids inside and outside of the bubbles are
Newtonian and immiscible, and the material properties
in each fluid are constant but different from one another.
The fluid motion both inside and outside the bubbles is
governed by equations of conservation of mass, momen-
tum, and energy, where the corresponding equations in
each fluid are coupled together through the jump condi-
tions at the phase boundary. Rather than writing the gov-
erning equations separately for each of the fluids along
with the jump conditions at the interface, we use a “one-
field” formulation which is valid for the entire flow field
and satisfies the correct jump conditions at the phase
boundary. This is achieved by adding the appropriate
source terms to the conservation laws in the form of delta
functions localized at the interface.

For buoyancy-driven motion of bubbles in isothermal
flow fields, or under conditions where the temperature is
a passive scalar, one can bypass the energy equation. The
Navier-Stokes equations, valid for the entire domain and
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incorporating the jump conditions at the interface are:

ρ
(

∂u
∂t

+∇ ·uu
)

= −∇p+ρg+∇ ·µ(∇u +∇uT )+Fs.

(2)

Here, u is the velocity, p is the pressure, ρ and µ are the
discontinuous density and viscosity fields, respectively,
g is the gravitational acceleration, and Fs is the surface
force

Fs = σ
∫

F
κ′n′δ(x−x′)dA′, (3)

distributed at the grid points as a body force. The primed
parameters are evaluated at the bubble surface: κ′ is twice
the mean curvature, n′ is a unit vector normal to the
bubble surface pointing into the bubble, x′ is the coor-
dinate of a point on the bubble, and dA′ is the surface
element. σ is the surface tension coefficient and δ is a
three-dimensional delta function constructed by repeated
multiplication of one-dimensional delta functions. x is
the point at which the Navier-Stokes equations are eval-
uated.

In numerical implementation, the surface tension on each
element (i.e., σκn) is computed using a conservative
method which assures that the total force on a closed sur-
face is zero. This is important for long time simulations,
since even small errors can lead to a net force that moves
the bubbles in an unphysical way. The method is based
on the fact that it is possible to convert the area integral of
the curvature into a contour integral over the edges of the
element (see Weatherburn, 1927) and compute the total
surface force on each element (which is what is actually
required) directly by:

κndA =
∮

e
t×ndS, (4)

where t is a unit vector tangent to the edge of the element,
and S is an arclength coordinate.

Both the bubbles and the ambient fluid are taken to be
incompressible, so the velocity field is divergence free:

∇ ·u = 0. (5)

Combining the momentum equation and the incompress-
ibility condition leads to a non-separable elliptic equation
for the pressure. We also have equations of state for the
fluid properties:

Dφ
Dt

= 0, (6)

where φ = {ρ,µ}. Here, D/Dt is the material derivative
and this equation simply states that the density and the
viscosity of each fluid remains constant.

The above equations are solved by a second order space-
time accurate front tracking/finite volume method on a
staggered grid. The method has been described in de-
tail by Unverdi & Tryggvason (1992) and improvements
to the basic method including a few validations tests are
described in Esmaeeli & Tryggvason (1998). The cur-
rent computations are done using a parallel version of
the code, developed by Bunner & Tryggvason (2002a)
and modified by Esmaeeli & Tryggvason (2005), that is
well-suited for large scale simulations of bubbly flows at
high Reynolds number.

For thermocapillary-driven flows, in addition to the mo-
mentum equation, we also need to solve the energy equa-
tion:

ρc

(
∂T
∂t

+∇ ·uT

)
= ∇ · k∇T. (7)

Here, the surface tension coefficient is no longer constant
and is a function of the temperature. To account for the
variations of the surface tension with the temperature, we
use a linear model:

σ = σ0 +σT (T −T0), (8)

where, σ0 is the surface tension at a reference temper-
ature T0 and σT = dσ/dT . σT is negative for most flu-
ids, therefore, increasing the temperature reduces the sur-
face tension. The above model is reasonable for flows
with small temperature gradient. We also need to mod-
ify equation (3) to take into account tangential surface
tension effects:

Fs =
∫

F
(σκ′n′ +∇′

sσ)δ(x−x′)dA′. (9)

Here, ∇s = ∇ − ∇n is the surface del operator, where
∇m = n ·∇. In numerical implementation, the surface
tension is computed by:

(σκn+∇sσ)dA =
∮

e
σt×ndS, (10)

which takes into account the fact that σ(T (S)) varies over
the edges of the element. Finally, φ (used in equation (6))
is generalized to include k and c in addition to ρ and µ;
φ = {ρ,µ,c,k}.
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The above equations are solved explicitly by solving the
energy equation first for the temperature field, calculat-
ing the surface force using the updated temperature, and
finally computing the new velocity field by solving the
Navier-Stokes equations.

4 Results

4.1 Buoyant rise of bubbles

The simulations presented in this section deal with fully
periodic domains. The bubbles can cross the bound-
aries, so their motions can be followed indefinitely. The
goal is, however, to simulate the flow for a time suffi-
ciently long to guarantee quasi steady-state conditions;
a state where the mean rise velocity remains essentially
unchanged. For these domains, we also need to impose
an additional constrain to prevent uniform downward ac-
celeration of the whole flow field. This is achieved by
subtracting the force ρ0g from the right hand side of the
Navier-Stokes equations, where ρ0 = αρb +(1−α)ρl is
the spaced-averaged density. This ensures that the net
flux of vertical-momentum through the computational
domain is zero. If the bubbles were completely mass-
less, this would be equivalent to imposing no net through-
flow of liquid. Here, however, a small net through-flow
sometimes develops since mass is not conserved exactly.
All our results have been corrected by subtracting this
through-flow, and the rise velocity of the bubbles there-
fore represents the relative velocity with respect to a sta-
tionary liquid.

We start by considering the behavior of a system of 48
spherical bubbles rising in a 3× 3 × 3 domain and re-
solved by a 2563 grid. For this flow, Eo = 0.5, Mo =
10−6, α = 5.86%, and ρb/ρl = µb/µl = 1/20. These
values of the Eötvös and the Morton numbers corre-
spond, for instance, to an air bubble of a diameter 1.65
mm rising in an aqueous solution of sugar in water of
sugar/water mass fraction of 0.4486 (ρ = 1195.6 kg m−3,
µ = 0.011 N s m−2, σ = 0.0642 N m−1; Stewart, 1995).
The actual density and viscosity ratio, however, would be
lower than those used in our numerical simulations. This,
however, does not lead to important differences with re-
spect to a real situation as the dynamics is a weak func-
tion of the property ratios. Figure (1) shows two frames
from this simulation at an early time and at (essentially)
a steady-state time along with the trajectories of the bub-
bles. Initial conditions correspond to bubbles set in the

vertices of a 3×4×4 cube with their positions perturbed
randomly. The initial distribution tends to be quite sta-
ble during the early stages of evolution since the bubbles
move with almost the same velocity. This is very clear in
the first frame which shows the bubbles as they are about
to leave the first period. However, the initial set up breaks
up eventually as a result of the aforementioned drafting,
kissing, and tumbling between bubbles rising in the same
columns. The outcome is a seemingly random (uniform)
distribution of the bubbles, spreading over two periodic
boxes in the vertical direction (second frame). Once the
array breaks up, other modes of interactions are involved
in the process. In the top frame, for example, one can
identify a few of the bubbles in side-by-side, tandem, or
in-between arrangements. The overall motion is, how-
ever, mainly in the direction of buoyancy, as no bubble
has crossed the periodic boundaries in the horizontal di-
rections. Since the surface tension is high enough, the
bubbles remain spherical. Examination of the trajecto-
ries of the bubbles shows that the bubbles have risen in
nearly straight paths. During this time, the centroid of
the bubbles has risen about 34de.

The mean rise velocity of the bubbles is perhaps the most
important parameter that characterizes the bubbly flows
and in figure (2) we show the evolution of this param-
eter for this simulation and another companion simula-
tion with 14 bubbles which has been run for a longer
time. The 14-bubble simulation was run in a 2× 2× 2
domain and it has the same nondimensional numbers and
the same grid resolution per bubble diameter as those of
the 48 bubble simulation, respectively. At the end of the
simulation, the centroid of the 14 bubbles has risen about
86de. It is seen that the large system tends to settle to
a quasi steady-state while the smaller one has already
reached such a condition. The mean rise velocities of
the two systems after the transient (i.e., t = 50) are very
close which suggests the results are independent of the
system size.

In the above simulations (Re = O(10)), the bubbles re-
mained spherical and their trajectories were essentially
straight. This is not always the case and depending on
the range of the physical parameters such as the bubble
size, the properties of ambient fluid, etc., bubbles may
deform and rise in zigzag or spiral paths. The deforma-
tion of bubbles can lead to profound changes in the dy-
namics because of introduction of new modes of interac-
tion. The literature on the motion of deformable bubbles
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Figure 1 : Spatial distributions of 48 spherical bubbles at
an early time (t = 7.53) and at t = 53.5. The figure also
shows the paths of the centroids of the bubbles. Here,
Eo = 0.5, Mo = 10−6, and α = 5.86%.

is more limited than that of the spherical ones, primar-
ily because of complexities in dealing with deformable
particles. Here, we only mention a study by Bunner
& Tryggvason (2003) who compared interactions of 27
deformable and nearly spherical bubbles at a Reynolds
number of about 20 and void fraction of 6%. One of
their main observations was that the deformation results
in a significant modification of the bubble microstructure
as a result of a reversal in the direction of the lift force.
This effect leads to the accumulation of the bubbles in
a column. Bunner & Tryggvason (2003) called this phe-
nomenon a “streaming state” and showed that the average
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Figure 2 : Evolution of the mean rise velocities of the 48
and 14 bubbles at Eo = 0.5 and Mo = 10−6.

rise velocity of the deformable bubbles increases dramat-
ically as a result of the formation of streams.

Here, we simulate motion of 14 deformable bubbles at
Eo = 4, Mo = 10−6, and α = 5.86%. These values of the
Eötvös and the Morton numbers correspond to a 4.674
mm bubble rising in the same fluid as that in figure (1).
To “accelerate” the possible onset of the streaming be-
havior, initially the bubbles are set in four columns (their
positions are perturbed slightly). In the absence of the
streaming instability, the initial configuration should be
replaced by a more random (uniform) one as a result of
drafting, kissing, and tumbling mechanisms illustrated
before, whereas the streaming instability should force the
bubbles to rise retaining their original columnar distribu-
tion. Figure (3) shows the results of this investigation.
The first frame shows the initial positions of the bubbles
and the subsequent frames show the bubbles, velocity
vectors, and vorticity contours (in a plane cut through the
middle of the domain) at an early and a later time. The
shaded bubbles are located in the space behind the con-
sidered plane. As expected, during an initial stage of the
process, the bubbles tend to rise maintaining their initial
columnar arrangement (second frame), but then disperse
over the entire domain (third frame). This result is in ap-
parent contrast to that of Bunner & Tryggvason (2003).
To find out the reason(s), we have performed a frame by
frame analysis of the bubbles distributions at different
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times, examined their trajectories, and made an anima-
tion of their motions. These investigations show that the
difference in the behavior of the systems is due to the
development of path (and shape) instabilities in our sim-
ulation, while the deformable bubbles in Bunner & Tryg-
gvason (2003) were featured by a quasi-steady deforma-
tion and rose in straight paths. Although bubble deforma-
tion in our simulation tends to trigger streaming behavior,
just as it was the case in Bunner & Tryggvason (2003),
this tendency is greatly weakened by a “wobbling” ef-
fect. The final outcome is, therefore, the emergence of
a random/uniform distribution of the bubbles, albeit at a
time scale larger than that for nearly spherical ones. The
path and shape instabilities of the bubbles in our simu-
lation can be clearly seen in figure (4) which shows the
evolution of rise Reynolds number (Re = O(100)) and
the surface area (scaled by initial bubble surface area A0)
of the individual bubbles. Both quantities are highly os-
cillatory with large standard deviations.

To compare the dynamics of spherical bubbles at high
Reynolds number with that of deformable ones, we have
performed another simulation of motion with 14 bub-
bles at Eo = 0.5 and Mo = 1.95× 10−9 and with the
same initial positions as those in the first frame of fig-
ure (3). The Eo and Mo are chosen so that a single bub-
ble at these parameters remains spherical while its rise
Reynolds number is comparable to that of a deformable
bubble at Eo = 4 and Mo = 10−6 (i.e., Re = O(100))
(see, Clift et al., 1978). In such a case, the Eötvös and
the Morton numbers correspond to an air bubble of a di-
ameter of about 1.71 mm in aqueous solution of sugar in
water of sugar/water mass fraction of 0.274 (ρ = 1110
kg m−3, µ = 0.0028 N s m−2, σ = 0.064 N m−1; Stewart,
1995). Figure (5) shows the result of this investigation.
The first frame shows the bubbles at an early time and the
remaining frames show the bubbles at quasi steady-state
conditions. The initial array breaks up and is replaced
by a uniform distribution of bubbles (first frame). How-
ever, as time passes, the uniform distribution evolves to
a horizontal layer of bubbles or “rafts.” Two layers are
clearly shown in the second and the third frames where
we can identify a collection of nine and thirteen bub-
bles at the edges of the domain, respectively. Similar
rafts have been predicted by potential flow simulations
(Sangani and Didwania ,1993; Smereka ,1993). How-
ever, so far they have not been fully supported by ex-
periments. Although the Reynolds number is finite, we

believe that this is a potential flow effect as was demon-
strated by Esmaeeli & Tryggvason (2005). They exam-
ined motion of three bubbles initially set in a perturbed
row, at the above Morton number (Mo1 = 1.95× 10−9)
and at Mo2 = 5×10−8, and Mo3 = 5×10−5 while keep-
ing E0 = 0.5. The rafting took place immediately in the
first case, was delayed in the second case, and never oc-
curred in the third case.” It should be mentioned that
while the bubbles in figure (5) remain nearly spherical,
their paths (not shown here) are oscillatory.

As mentioned before, the simulations in figures (3) and
(5) were run for a short time only to investigate the onset
of streaming behavior. Two additional simulations at the
same nondimensional numbers but with a random (uni-
form) initial distribution of bubbles and for a longer time
have been carried out to extend the results shown in fig-
ure (2) to the case of deformable bubbles and a larger
value of the Reynolds number, respectively. Figure (6)
compares the mean rise velocity for these systems and
the one introduced earlier in figure (2). The rise velocity
of high Reynolds number spherical bubbles consists of
waves of high and low frequencies. The low frequency
waves are related to the formation and the destruction of
the rafts and the high frequency ones are related to ran-
dom interactions of bubbles. The oscillations in the rise
velocity of the deformable bubbles are mainly due to ran-
dom interactions of bubbles. The rise velocity of the low
Reynolds number bubbles, on the other hand, is relatively
smooth as the bubbles tend to rise in nearly straight paths.

While it is possible to provide some useful qualitative in-
formation about microstructure of a flow at a particular
time by simply inspecting the bubbles positions at that
time, however, a more sophisticated measure is needed
to quantify the phase distribution. Perhaps the most com-
monly used measure is the pair distribution function g(r)
which is defined as the probability of finding a bubble
center at position r given that there is a bubble at the ori-
gin. Since g(r) in general is a multidimensional function,
the interpretation of the results becomes easier if one fo-
cuses on the variations of the pair distribution function
with one space variable allowed to change and the oth-
ers fixed. We choose a spherical coordinate (r,θ,φ) and
consider the center of a test bubble i to be at the origin.
ri j is the separation distance between another bubble j
and the test bubble measured from the test bubble. θ
is the azimuth angle measured from the vertical axis in
the clockwise direction (i.e., θ = 0 and π correspond to a
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Figure 3 : Breakup of a columnar array of 14 bubbles at Eo = 4 and Mo = 10−6. The figure shows the bubbles, the
velocity vectors, and the vorticity field at t = 0, t = 6.32 (when the mean rise velocity is maximum), and at t = 37.94
(a quasi steady-state time).
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Figure 4 : Evolution of the rise velocity (left frame) and the surface area (right frame) of the bubbles of figure (3).
Here, A0 is the initial bubble surface area.

tandem orientation and θ = π/2 corresponds to a side-by-
side orientation) and φ is the polar angle measured from x
axis in the counter-clockwise direction. Since the domain
is periodic, the variations of g(r) with respect to φ can
be ignored. Therefore, we will be concerned only with
changes of the microstructure in the radial (0 < r < L)
and the azimuthal (0 < θ < π) directions, where L3 is the
size of the cubic box. The radial and angular distribu-
tions are related to g(r) and gr(θ), respectively. g(r) is 1
for a random distribution of Nb bubbles whereas g(r)< 1
and g(r) > 1 represent a lower and a higher likelihood of
two bubbles being separated by a distance r (compared
to a random distribution), respectively. For r of the order
of the bubble diameter, gr(θ) accounts for the direct in-

teraction of bubbles that are close. For large values of r,
it is indicative of large-scale structure formation. For the
calculation procedures of these quantities, see, Esmaeeli
& Tryggvason (2005).

In the left frame of figure (7) we show g(r) as a func-
tion of r/a (a is the bubble radius and these results were
obtained by considering shells of ∆r = 0.25a thickness
and averaging over 100 evenly spaced time samples in
the [ts, t f ] time interval, where ts and t f are the end of
the transient and the simulation time, respectively). For
the spherical system at the high Reynolds number, g(r)
is zero only for r/a < 1.37 which highlights that the bub-
bles are slightly deformed. There is a strong peak at
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Figure 5 : Breakup of a columnar array of 14 bubbles at Eo = 0.5 and Mo = 1.95×10−9. The figure shows the
bubbles, the velocity vectors, and the vorticity field after the break up, and at two subsequent corresponding to quasi
steady-state conditions.
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Figure 6 : Comparison of the mean rise velocities of
14 bubbles, randomly distributed initially, at Eo = 0.5,
Mo = 10−6, Eo = 4, Mo = 10−6, and Eo = 0.5, Mo =
1.95× 10−9. These Eötvös and Morton numbers cor-
respond to Re = O(10) spherical bubbles, Re = O(100)
deformable bubbles, and Re = O(100) spherical bubbles,
respectively.

about r/a = 2 which shows a possibility of pairing of the
bubbles. For the spherical system at the low Reynolds
number, g(r) is zero only for r/a < 2.37, which high-
lights that the bubbles remain spherical and also they do
not touch. The peak shifts to about r/a = 3.8. For the de-
formable system, g(r) is only zero at separation distances
of r/a < 0.87 which highlights that the bubble deforma-
tion provides an incentive for bubbles to pair. Compared
to the spherical bubbles, there is not a strong peak for the
deformable system and the overall bubble distribution is
fairly uniform. For all the cases, g(r) drops down to 1 for
r/a > 5 and remains relatively uniform thereafter.

The right frame of figure (7) shows gr(θ) at r = 2.5a as a
function of θ for the systems of figure (6). gr(θ) for the
nearly spherical system at high Reynolds number shows
a high probability to have side-by-side (i.e., θ = π/2)
bubbles in near contact conditions and a less probabil-
ity for pair of bubbles to be in tandem (i.e., θ = 0 or π).
On the other hand, gr(θ) for the deformable bubbles in-
dicates a high probability for having tandem bubbles in
near contact condition and a less probability of having
side-by-side bubble pairs. This distribution is similar to
that of Bunner & Tryggvason (2003) for deformable bub-
bles before the streaming state. For the spherical bubbles
at low Reynolds number, we do not see a strong prefer-
ence for bubbles to orient side-by-side or tandem as is
evidenced by the figure which shows small peaks close
to θ = 0,π and θ = π/8.

In summary, the current simulations for spherical bubbles
at O(10) and O(100) along with the results of Bunner &
Tryggvason (2002a) at Re � 22, suggest that there is a
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Figure 7 : Radial g(r) pair distribution (left) and angular pair distribution gr(θ) (right) for the 14 bubbles simulations
of figure (6). gr(θ) is plotted for a separation distance of r = 2.5a, where a is the bubble radius.

monotonic trend from the state of no-preference found
by Ladd (1993) for Stokes flow, toward the strong layer
formation seen in the potential flow simulations of San-
gani and Didwania (1993) and Smereka (1993).

4.2 Thermocapillary-driven migration of bubbles

In this section, we present some preliminary results of
computations of thermocapillary-driven motion of bub-
bles. The simulations are done in a domain that is pe-
riodic in the horizontal direction and wall-bounded in
the vertical direction. The temperature gradient is also
in the vertical direction; upward or downward, depend-
ing on the problem. Here, we follow the motion un-
til one of the bubbles becomes very close to the walls
(at this point we stop the simulation). For this prob-
lem, there are several ranges of parameters that are of
interest to the researchers in the field. For example, in
glass melts (of interest for containerless glass processing
in space; Uhlmann, 1982), Pr = νl/αl is typically 103

or higher, the Reynolds number is around 10−8 −10−2,
and therefore, the Marangoni number Ma = RePr can
be relatively low or high (Satrape, 1992). Here, we do
not focus on a particular fluid and instead work with a
set of parameters which characterizes the motion at fi-
nite ReT and Ma. We are motivated by the fact that the
motion in the limit of zero ReT and Ma numbers is rea-
sonably well-understood, and that the thermocapillary-
driven motion of bubbles at finite ReT and Ma is relevant
to many practical applications. The investigation is lim-
ited to two-dimensional systems to resolve the flow better

and to simulate motion of larger number of bubbles for
a longer time. Compared with buoyancy-driven flows,
thermocapillary-driven flows demand a higher grid res-
olution to accurately “capture” the motion at the phase
boundary. Two-dimensional simulations do not provide
results that can be expected to be in quantitative agree-
ment with experiments, however, they can provide useful
information about the “physics” of the considered phe-
nomena.

We start by considering the behavior of 16 bubbles at
ReT = 40, Ma = 40, Ca = 0.03, α = 12.82%, and bub-
ble/liquid material properties ratio of 0.5. The bubbles
are initially set in the vertices of a 4×4 square. (These
positions are then randomly disturbed). The first frame
of figure (8) shows the initial positions of the bubbles
and the subsequent frames show the bubbles and twenty
equispaced streamlines. Since for the conditions consid-
ered here, the thermocapillary forces are relatively weak,
the initial separation distance between the neighboring
bubbles (on the average) is set to less than a bubble di-
ameter to trigger faster interactions. The top wall is hot
and the lower one is cold. Since the surface tension de-
creases with an increase in the temperature, this creates
a downward force acting at the interfaces. The reac-
tion to this force from the ambient fluid is upward and
thus forces the bubbles to rise. The counter-rotating vor-
tices seen inside the bubbles (second frame) pump the
hot ambient liquid from the top to the bottom. The di-
viding streamlines of these vortices give the directions of
the bubbles motions (which are mainly upward). Unlike
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Figure 8 : Thermocapillary migration of 16 bubbles in zero gravity. The figures show the bubbles and streamlines
at selected times. The nondimensional parameters are ReT = 40, Ma = 40, Ca = 0.03, and α = 0.128. The domain
size is 4×12 and is resolved by a 256×768 grid. Here, the upper wall is hot and the lower one is cold.
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the buoyancy-driven flows where the direction of buoyant
force is fixed, in thermocapillary-driven flows the direc-
tion of the driving force depends on the local tempera-
ture gradient. The smaller separation distance between
the streamlines inside the bubbles compared with that of
the ambient fluid is representative of the fact that the ve-
locity is higher inside the bubbles. For a bubble that is
in the wake of another one, as a result of the pumping
of the hot liquid by the top bubble, already outlined in
section 2.2, the temperature of the fluid in the gap be-
tween the bubbles will increase. This leads to a higher
temperature gradient across the lower bubble and a lower
temperature gradient across the upper one. As a result,
the lower bubble eventually catches up with the top one.
The bubbles, then tumble and rise side-by-side. The
above mechanism leads to formation of horizontal lay-
ers of bubbles or “raft” (third frame). The raft formation
leads to flow blockage, and consequently, to a decrease
in the mean migration velocity. This mechanism can be
highlighted by means of comparison of the streamlines in
the third frame with those in the second one. The velocity
decreases further as more bubbles participate in rafting
(fourth frame). The touching state of bubbles, however,
is not an equilibrium one, as the hot ambient fluid tends
to flow around them. This leads to a local temperature
gradient in the horizontal direction which results in the
separation of bubbles (fifth frame). The last frame shows
a more random distribution of the bubbles in the upper
half of the domain while a raft is being destroyed in the
lower half.

The mean rise velocity of the bubbles is an important
parameter characterizing the overall behavior of the sys-
tem and in figure (9) we show the evolution of this pa-
rameter. The velocity and the time have been scaled by
us = |σT ∇T∞|a/µl and ts = a/us, respectively. For a bub-
ble at these parameters, in the limit of zero ReT and Ma,
equation (1) predicts a migration velocity of 0.228. We
believe that the large difference between our migration
velocity and that predicted by equation (1), leaving aside
the two-dimensionality, is mainly due to the difference in
the Marangoni number of the two systems. An increase
in Ma, generally, leads to a decrease in the migration ve-
locity as a result of generation of a more uniform temper-
ature distribution around the bubble. Here, the velocity
increases monotonically while the bubbles are rising up
freely, but it starts to decrease as a result of the raft for-
mation. The subsequent rise in the velocity is due to the
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Figure 9 : Evolution of the mean migration velocity
(scaled by us) for the 16 bubbles shown in figure (8).

gradual destruction of the rafts.

While investigations of thermocapillary-driven flows in
zero gravity lead to considerable insight into the dynam-
ics of bubbles driven “solely” by temperature gradient, in
many practical applications the buoyancy effects are not
entirely absent. In the final part of this section we study
the motion of bubbles under combined action of thermo-
capillary and buoyancy forces at finite ReT and Ma. This
problem exhibits some interesting features when buoy-
ancy and thermocapillary act in opposite directions. Be-
fore going any further, however, it is instructive to exam-
ine equation (1) in more detail. The first and the second
terms in the parentheses are the contributions of the ther-
mocapillary and the buoyancy forces, respectively. As a
result, parameter G0 formed by the ratio of these terms:

G0 =
3|σT ∇T |

∆ρa(2+η)(1+ γ)g
,

characterizes the relative importance of thermocapillary
and buoyancy effects. Note that G0 is similar to Π =
|σT ∇T∞|/∆ρga introduced earlier. For a single bubble
in the limit of zero ReT and Ma, at G0 = 1 the bubble
remains stationary, and moves in the direction of ther-
mocapillary (respectively buoyancy) for G0 > 1 (respec-
tively G0 < 1).

As a first representative case we consider the motion of
a single bubble at ReT = 5.0, Ma = 5.0, Ca = 0.033,
Π = 0.74, α = 0.07, and the ratio of the material prop-
erties of 0.5. Since Π < 1, we expect the buoyancy to
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Figure 10 : Bubble and the temperature contours at t = 0 (left frame), temperature contours (middle frame) and the
streamline contours (right frame) at steady state conditions. Here, ReT = 5, Mo = 5, Ca = 0.033, and Π = 0.74. The
domain size is 1×1 and is resolved by a 128×128 grid. Here, both the temperature gradient and the gravity are
downward.
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Figure 11 : Motion of the centroid of the bubble in figure (10) (left frame) and its migration velocity (scaled by us)
(right frame).

be more important. The bubble is set in the middle (i.e.,
(xc,yc) = (0.5,0.5)) of a 1× 1 domain and the flow is
resolved by a grid resolution of 128× 128. In terms of
the bubble diameter, the domain is 3.3de×3.3de and the
distance of the bubble centroid from the walls is 1.66de.
The gravitational acceleration is downward and the tem-
perature gradient is downward too. So, the buoyancy
tends to move the bubble upward while the thermocapil-
lary tends to move it downward. The first frame of figure
(10) shows the bubble and twenty equispaced tempera-
ture contours at t = 0. The subsequent frames show the

bubble at steady state along with twenty equispaced tem-
perature contours (middle) and streamlines (right frame).
As is evidenced, the bubble has moved up slightly. Ini-
tially, the bubble velocity increases monotonically, how-
ever, it begins to decrease while the bubble has barely
moved (i.e., yc = 0.53). At this point the distance of the
bubble centroid from the top wall is still about 1.5de. The
first frame of figure (11) shows the motion of the centroid
of the bubble and the second frame shows the evolution
of the migration velocity (scaled by us). At this stage ad-
ditional simulations are required to discern the possible
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THOT

Figure 12 : Evolution of 16 bubbles under combined effect of buoyancy and thermocapillary forces. The figures
show the bubbles and streamlines at selected times. Here, to retain the same style used for figure 8, both the
temperature gradient and the gravity are upward. The nondimensional parameters are ReT = 40, Ma = 40, Ca = 0.05,
Π = 4.166, and α = 0.0628. The domain size is 4×8 and is resolved by a 256×512 grid. The nondimensional
times are 0, 110.5, 313.2, 423,75, 718.5 and 939.65
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Figure 13 : Trajectories of the bubbles in figure (12).
The open circles mark the starting points and the filled
ones mark the endpoints. Note that the size of the circles
is not to scale.

role played in the behavior by “boundary wall effects.”
Within this context it is worthwhile to stress that in the
limit of zero ReT and Ma, the velocity disturbance cre-
ated by thermocapillarity dies off as 1/r3 while that of
buoyancy dies off as 1/r, where r is the distance from
the bubble (See, for example, Meyyappan et al., 1981).
Since the initial distance between the centroid and the up-
per wall is not large, it is possible that the motion due to
buoyancy tends to be retarded by the upper wall from the
very beginning, while that due to thermocapillary forces
is unaffected. To discern if this is indeed the case, we
have rerun the above simulation in the absence of the
temperature gradient and observed that the bubble veloc-
ity is retarded by the upper wall only after the bubble has
risen about half a diameter (i.e., yc = 0.64). Since the
bubble velocity in figure (11) decreases much earlier, we
conclude that the bubble motion was not influenced by
the wall.

To study the interactions of many bubbles under com-
bined effects, we have performed a simulation of mo-
tion of 16 bubbles at ReT = 40, Ma = 40, Ca = 0.025,
Π = 4.166, α = 0.0628, and bubble/liquid material prop-
erties ratio of 0.5. We use a 4×8 domain resolved by a
256×512 grid. Note that in figure ((12) to retain coher-
ence with respect to the style used in Fig. 8, the tempera-
ture gradient and the gravity directions are both upward.
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Figure 14 : Evolution of the mean migration velocity
(scaled by us) of the bubbles in figure (12).

The first frame shows the initial distribution of the bub-
bles and the subsequent frames shows the bubbles and
twenty equispaced streamlines. Since the thermocapil-
lary effect is dominant, the bubbles rise initially and also
begin to form some local rafts. As the bubbles rise, they
push down the hot ambient liquid around them. Here,
the motion of the downcoming flow is accelerated by the
buoyancy. While the motion in the surrounding field (i.e.,
in the vicinity of the bubbles) is determined by the ther-
mocapillary effect, the motion in the far field (i.e., away
from the bubbles) is dominated by the buoyancy. The
outcome is a highly vortical flow where bubbles move
upward while the ambient fluid, for the most part, moves
downward. As a result, local vortices are generated in
the ambient fluid which become larger and stronger over
the time (second and third frames) and eventually form a
large vortex (fourth frame; recall that the domain is peri-
odic) which includes most of the bubbles. The bubbles at
the edge of this vortex are pushed downward. It appears
that thermocapillarity provides a necessary incentive for
this cluster formation by its tendency for raft formation.
Figure (13) shows the paths of the bubbles during the
simulation which well correlate with the motion of the
large vortex. Figure (14) shows the mean migration ve-
locity (scaled by us) of the bubbles that exhibits a transi-
tion from thermocapillary-driven motion to a buoyancy-
driven one.
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5 Conclusion

Phase distribution of bubbles in buoyancy- and
thermocapillary-driven flows was studied. For buoy-
ant rise of spherical bubbles, the results suggest a
monotonic trend from a “no-preference state” at O(10)
Reynolds number toward a strong layer formation at
O(100) Reynolds number. For deformable bubbles at
O(100) Reynolds number, however, the large-scale struc-
ture tends to be nearly uniform. For thermocapillary-
driven motion of two-dimensional bubbles, the simula-
tions suggest raft formation at zero gravity, and cluster
formation when buoyancy acts in an opposite direction
to thermocapillarity.
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