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Numerical Simulation of CZ Crystal Growth of Oxide

T. Tsukada1, M. Kobayashi2, C. J. Jing3 and N. Imaishi4

Abstract: In this paper, our recent numerical studies
on the Czochralski (CZ) crystal growth of oxide are
surveyed. In the first part of the analysis, a “global”
heat transfer model for an inductively heated CZ fur-
nace is introduced and depicted in detail. It is empha-
sized that accounting for the internal radiation within the
crystal and/or melt is of crucial importance since they
are often semitransparent to infrared radiation. Results
coming from such a “global” approach suggest that the
melt/crystal interface shape is strongly affected by the
optical properties of the crystal, of the melt and by the
melt convection. The second part of the article is de-
voted to illustrate some convective instabilities that can
arise in the CZ oxide melt. They are discussed within the
framework of a numerical analysis for unsteady, three-
dimensional flows. It is demonstrated that “spoke pat-
terns” seen on the melt surface are due to a Marangoni
instability, while “wave patterns” are caused by a baro-
clinic instability.

keyword: CZ crystal growth, Oxide, Numerical sim-
ulation, Internal radiation, Marangoni instability, Baro-
clinic instability.

1 Introduction

Oxide single crystals such as yttrium aluminum garnet,
gadolinium gallium garnet and lithium niobate are uti-
lized as solid-state laser hosts and materials for acoust-
opt-electronic devices, and are commonly grown by the
Czochralski (CZ) method which is one of the crystal
growth techniques from the melt. Melt flow and other
transport phenomena in the CZ furnace are strongly in-
fluenced by forces, such as buoyancy, the centrifugal and
Coriolis forces due to the crystal rotation, and the ther-
mocapillary force due to the temperature dependence of
the surface tension on the melt surface. Their inten-
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sity and interaction determine the melt flow structure,
the heat and mass (dopant) transport in the furnace, the
melt/crystal interface shape, and consequently the quality
of the final oxide crystals. For instance, gaseous bubble
inclusions, the appearance of the central column-shaped
core area, defect and crack formations in the crystal (all
factors closely related to the crystal quality) are influ-
enced by the melt flow patterns and temperature distri-
butions in the crystal and melt and additionally by the
melt/crystal interface shape. Moreover, in addition to
the convective effects, the crystals tend to be sometimes
twisted or separated from the melt surface during growth
process, depending on the shape of the melt/crystal inter-
face.

Although the CZ furnace has a very simple structure, the
heat transfer mechanism is very complex. Since most
of the oxide melt growth is operated at very high tem-
perature, the heat transfer is controlled by radiation as
well as conduction and convection. Particularly, when
oxide single crystals are not opaque to infrared radia-
tion, the radiative heat absorption and emission in the
crystal strongly influence the heat transfer behavior and
the shape of the melt/crystal interface. For instance, it
is experimentally known that the radiative heat trans-
fer through the crystal renders the interface deeply con-
vex toward the melt [Cockayne, Chesswas and Gas-
son (1969); Kvapil, Kvapil, Manek, Perner, Autrata and
Scuer (1981)], and that the change in the absorption
coefficient of the crystal affects the growth characteris-
tics [Brandle, Fratello, Valentine and Stokowski (1987);
Okano, Tsuji, Yoon, Hoshikawa and Fukuda (1994)].
Therefore, it is important to acquire correct knowledge
on transport phenomena in the furnace, in order to grow
large, high-quality oxide single crystals. Also, the heat
transfer and the interface shape must be properly con-
trolled.

Recently, numerical simulations have been extensively
used as an useful method to investigate these effects.
In order to calculate the temperature distributions in the
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melt and crystal, some parameters/conditions must be
known: geometrical conditions, such as the size of the
crucible, diameter and length of the crystal, operating
conditions, such as, rotation rate of the crystal, volume
of the melt, temperature of the crucible and ambient solid
walls and also thermophysical properties of the materials.
In addition to those values, the shape of the melt/crystal
interface, the heater power or the pulling rate should be
also known. These conditions can not be given a priori,
however, since the heat transfer mechanisms in a CZ fur-
nace are tightly combined each other often in non-linear
ways.

In practice, all these combined values/conditions can be
determined on the basis of an analysis able to consider
all the mechanisms affecting heat transfer in the whole
CZ furnace, namely a “global analysis of heat trans-
fer”, as shown by Derby, Atherton and Gresho (1989);
Derby and Xiao (1991); Tsukada, Hozawa and Imaishi
(1994). When semitransparent oxide crystals are consid-
ered, the influence of the radiative heat transfer in the
crystal on the crystal growth behavior must be also mod-
eled within the framework of the global analysis of heat
transfer [see Xiao and Derby (1993, 1994); Tsukada,
Kakinoki, Hozawa and Imaishi (1995); Kobayashi,
Hagino, Tsukada and Hozawa (2002); Yuferev, Bu-
denkova, Vasiliev, Rukolaine, Shlegel, Vasiliev and Zh-
makin (2003); Hayashi, Kobayashi, Jing, Tsukada and
Hozawa (2004)].

Since the Prandtl number of oxide melts is relatively
high, the convection strongly affects the heat transfer
in the melt, and consequently, the melt/crystal interface
shape.

In the CZ crystal growth of oxides, it is well known
that the melt/crystal interface changes abruptly from con-
vex to concave toward the melt as the crystal rotation
rate or crystal diameter increases. This abrupt change,
called “interface inversion”, is attributed to the change
of the dominant melt flow near the interface from free
convection to forced convection driven by crystal rota-
tion. The cause-effect relationship between melt con-
vection and interface inversion has been investigated nu-
merically in many previous works [Tsukada, Imaishi
and Hozawa (1988); Kopetsch (1990); Derby and Xiao
(1991); Tsukada, Hozawa and Imaishi (1994)], because
the interface shape during the crystal growth is closely
related to the crystal quality as mentioned above. The
recent global analyses of heat transfer have also demon-

strated the effect of the radiative heat transfer in the crys-
tal on the interface inversion [Xiao and Derby (1993,
1994); Kobayashi, Hagino, Tsukada and Hozawa (2002);
Hayashi, Kobayashi, Jing, Tsukada and Hozawa (2004)].

The flow mode of the melt is dependent on the temper-
ature profile in the furnace. Often the temperature and
velocity fields in the melt become three-dimensional and
time dependent, particularly when the size of the crucible
is relatively large. The spatial distributions of dopants
and defects in the grown crystals, which affect the opti-
cal properties and degradation of the oxide crystal, are
dependent on the amplitude of temperature and dopant
concentration fluctuations at the melt/crystal interface,
which is mainly caused by the flow instability. There-
fore, the characteristics of the flow instabilities, their ori-
gin and critical conditions for their incipience should be
well understood so as to fabricate high-quality crystals.

It is relatively easy to observe experimentally the flow
patterns on the free surface due to the flow instability.
For instance, Takagi, Fukazawa and Ishii (1976), Whif-
fin, Bruton and Brice (1976), and Brandle (1977) re-
ported that the so-called spoke patterns and wave pat-
terns were seen on the free surface in some oxide melts.
Concerning the spoke patterns, many efforts have been
made to reveal the mechanism. Miller and Pernell (1981,
1982) performed some experiments using water as a sim-
ulated garnet melt and reported that the thermocapil-
lary instability could be an indispensable factor in form-
ing the spoke patterns. This inference was supported
by Hurle (1983), Shigematsu, Anzai, Morita, Yamada
and Yokoyama (1987), and Morita, Sekiwa, Toshima
and Miyazawa (1993). Recently, Jing, Imaishi, Ya-
suhiro and Miyazawa (1999), Jing, Imaishi, Sato and
Miyazawa (2000), Jing, Imaishi, Yasuhiro, Sato and
Miyazawa (2000), Jing, Kobayashi, Tsukada, Hozawa,
Fukuda, Imaishi, Shimamura, and Ichinose (2003), and
Jing, Hayashi, Kobayashi, Tsukada, Hozawa, Imaishi,
Shimamura, and Ichinose (2003) demonstrated numeri-
cally that the thermocapillary instability could be an in-
dispensable factor in forming the spoke patterns, by car-
rying out three-dimensional unsteady state analyses of
melt convection with the thermocapillary effect on the
melt surface. Concerning the wave patterns, Jones (1983,
1984a, 1984b, 1989) took water and a mixture of wa-
ter and glycerol as working fluids and built many cold
model experiments for melt convection in the CZ cru-
cible. He presented some interesting wave patterns seen
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on the free surface of the cold model fluid and attributed
the cause of the wave patterns to the baroclinic instabil-
ity. Recently, Enger, Basu, Breuer and Durst (2000) first
succeeded in numerically reproducing the wave patterns
reported by Jones. However, from the viewpoint of the
crystal growth, their model corresponding to a cold en-
vironment is not sufficient, and thus the radiative heat
loss from the free surface should be taken into account.
Therefore, in order to understand the oxide melt flows
in a realistic CZ crystal growth, Jing, Tsukada, Hozawa,
Shimamura, Ichinose and Shishido (2004) simulated nu-
merically the wave pattern on the LiNbO3 melt in a large-
scale crucible, and then suggested that the cause of the
pattern could be attributed to the baroclinic instability,
comparing with the experiments of Lee and Chun (1999).

In the present paper, we survey our recent numerical
studies for the CZ crystal growth of oxide. First, we de-
scribe the numerical results using the global heat transfer
model for an oxide CZ furnace inductively heated by Ra-
dio Frequency (RF) ac current, particularly the effect of
the internal radiation within the crystal and/or melt on the
CZ crystal growth process. Second, the numerical results
of unsteady, three-dimensional flows, i.e., the spoke pat-
tern and wave pattern generated on the melt surface, are
shown and the origins of their patterns are discussed from
view points of buoyancy, thermo-capillary and baroclinic
instabilities.

2 Mathematical model

2.1 Global heat transfer analysis

The CZ growth of an oxide crystal by RF induction heat-
ing as shown in Fig.1 is considered here. The ac electric
current in the coil induces the eddy current in the metal
crucible wall, and consequently, the raw material of the
crystal inside the crucible is melted by the Joule heating
from the eddy current. Therefore, in the global analysis
of heat transfer in the inductively heated CZ furnace, first
the electromagnetic field in the system should be com-
puted to obtain the distributions of the eddy current, i.e.,
heat power in the crucible and the after heater; then flow
and temperature fields in the furnace as well as the shapes
of the melt/crystal and melt/gas interfaces should be cal-
culated. Moreover, if necessary, the thermal stress fields
in the crystal which is closely related to the crystal qual-
ity, particularly the crack formation in the crystal, can be
calculated according to the temperature distributions ob-

Figure 1 : Schematic diagram of the inductively heated
CZ furnace (lengths are in mm)

tained by the global model. For brevity, mathematical
details of calculating the electromagnetic field in the fur-
nace are not included here, but are available in our pre-
vious work [Tsukada, Hozawa and Imaishi (1994)]. In
calculations, we assume 1) all structures are axisymmet-
ric, 2) temperature and flow fields are in a pseudo-steady
state, 3) the melt is Newtonian and the flow is laminar,
4) the Marangoni effect on the melt surface is absent,
5) heat transfer to the surroundings is controlled by ra-
diation alone and the convective heat loss is negligible,
and 6) the crystal and/or melt are semitransparent.

The dimensionless forms of the governing equations of
melt convection, i.e., the continuity equation and the mo-
mentum equation based on the Boussinesq approxima-
tion, are expressed as follows.

∇ · vvvl = 0, (1)

vvvl ·∇vvvl = −∇pl −∇ · τττl +Gr(Tl −1)eeez. (2)

Here, Gr is the Grashof number defined by β′g′T ′
mr′3c /ν′2

l .
The length is scaled with the crucible radius r′c, ve-
locity with ν′

l/r′c, the pressure and viscous stress with
ρ′

0lν
′2
l /r′2c , and the temperature with the melting point
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temperature T ′
m, in which the superscript “ ′” refers to

the dimensional value.

The dimensionless energy equations, for instance, for the
semitransparent crystal and the opaque melt and other
solid structures in the furnace, are given as follows.

Crystal:

Peeeez ·∇Ts = κs∇2Ts +asNR
(
Js −4n2

s T 4
s

)
(3)

Melt:

Pr vvvl ·∇Tl = ∇2Tl (4)

Crucible and after heater:

κ j∇2Tj +αQ0 = 0 ( j = c,h) (5)

Elsewhere:

κ j∇2Tj = 0 (6)

Pe, Pr and κi, are the Peclet number, Prandtl number and
thermal conductivity ratios to that of the melt, defined
by ρ′

0,sC
′
psV

′
s r′c/k′l , µ′lC

′
pl/k′l and k′j/k′l , respectively. Q0 is

the dimensionless heat generation rate by the Joule heat
in the crucible and after heater for a reference value of the
electric current (I′0) in the RF coil, and is obtained from
the analysis of the electromagnetic field in the furnace.
In the global analysis, α is determined as a part of the
solutions so as to make the temperature at the tri-junction
to be at the melting point.

In Eq. (3), the second term on the right-hand side rep-
resents the contribution of the internal radiative heat
transfer, in which a and NR are the optical thickness
and radiation-conduction interaction parameter defined
by a′r′c and σ′T ′3

m r′c/k′l , respectively. Here, the opti-
cal absorption coefficient a′ is independent of the wave-
length, since we consider the radiative heat transfer in
gray absorbing-emitting media. ns is the refractive index
of the crystal. J is the irradiance defined by the zeroth-
order moment of radiative intensity I, i.e.,

J =
∫

ω=4π
Idω. (7)

The radiative intensity I is governed by the equation
of transfer which represents the radiative heat transfer
in an absorbing-emitting, nonscattering medium. Here,

to solve the radiative transfer equation, we adopt ei-
ther the “P1” approximation [Matsushima and Viskanta
(1990); Modest (1993); Tsukada, Kakinoki, Hozawa
and Imaishi (1995); Kobayashi, Hagino, Tsukada and
Hozawa (2002)] or the finite volume method (FVM)
[Liu, Shang and Chen (2000); Hayashi, Kobayashi, Jing,
Tsukada and Hozawa (2004)]. The governing equations
of P1 model for the crystal are given as follows,

1
3as

∇2Js = as
(
Js −4n2

s T 4
s

)
, (8)

where J is scaled with σ′T ′4
m (note that J was scaled

with 4σT ′4
m in the previous paper [Kobayashi, Hagino,

Tsukada and Hozawa (2002)]. While, if the FVM is used
to evaluate the radiative heat transfer, a series of the equa-
tions of transfer along discrete directions is solved, where
the 4π angular domain at any spatial location is divided
into a finite number of discrete, M, nonoverlapping solid
angles by the azimuthal discretization strategy. With the
discretization of the angular domains, the radiative trans-
fer equation along a specified discrete direction ωm can
be expressed as follows,

µm

r
∂(rIm)

∂r
− 1

r
∂(ηmIm)

∂φ
+ξm ∂Im

∂z
= −asI

m +asIb. (9)

Here, µm, ηm and ξm are the direction cosines along the
cylindrical coordinates, and φ is the azimuthal angle mea-
sured from the r-direction. Ib is the blackbody radiant
intensity at the temperature of the medium.

The boundary conditions for the system with opaque melt
and semitransparent crystal are given by the following
equations.

At the melt/crystal interface:

vvvl ·nnnls = vvvl · ttt = 0, vvvl · eeeθ = rRe, Tl = Ts = 1 (10a-e)

(for P1 model)

−∇Tl ·nnnls +κs∇Ts ·nnnls

= − εlsNR

2(2−εls)
(Js −4n2

s T 4
s )−PeSt(eeez ·nnnls) (10f)

− 1
3as

∇Js ·nnnls = − εls

2(2−εls)
(
Js −4n2

s T 4
s

)
, (10g)

(for FVM)

−∇Tl ·nnnls +κs∇Ts ·nnnls

= NR

M

∑
m′

Im′
Dm′

ωm′ −PeSt(eeez ·nnnls)
(10h)
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Im = n2
s εlsT

4
s +ρls

M

∑
Dm′ 〉0

Im′
Dm′

ωm′
(Dm < 0). (10i)

At the melt/gas interface:

vvvl ·nnnlg = 0, τττl : nnnlgttt = τττl : nnnlgeeeθ = 0, (11a-c)

−∇Tl ·nnnlg = εout
lg NR

(
T 4

l −qout
i,l

)
, (11d)

At the crucible wall:

vvvl ·nnnlc = vvvl · ttt = vvvl · eeeθ = 0, (12a-c)

∇Tl ·nnnlc = κc∇Tc ·nnnlc, (12d)

At the crystal surface:

∇Ts ·nnnsg = 0, (13a)

(for P1 model)

− 1
3as

∇Js ·nnnsg =
1
2

(
1−ρin

sg

1+ρin
sg

)(
Js −4n2

s qout
i,s

)
, (13b)

(for FVM)

Im = τout
sg qout

i,s +ρin
sg

M

∑
Dm′

>0

Im′
Dm′

ωm′
, (Dm < 0) (13c)

Elsewhere:

−κ j∇Tj ·nnn jg = εout
jg NR

(
T 4

j −qout
i, j

)
, (14)

where Re=r′c2ω′/ν′
l and St=∆H ′

f /C
′
psT

′
m are the Reynolds

number based on the crystal rotation rate and the Stefan
number, respectively. In Eq.(11-b), we ignore the ther-
mocapillary (Marangoni) effect on the melt/gas interface.
If the effect is considered, however, the tangential force
balance on the interface in Eq.(11-b) becomes;

τττl : nnnlgttt = Ma∇T · ttt, (15)

where Ma is the Marangoni number defined by
(−dγ′/dT ′)T ′

mr′c/ρ′
0lν

′2
l .

If the melt is semitransparent, the term representing the
radiative heat transfer must be added to Eq.(4) as follows,

Pr vvvl ·∇Tl = ∇2Tl +alNR
(
Jl −4n2

l T 4
l

)
, (16)

and the boundary conditions at the melt/crystal and
melt/gas interfaces and at the crucible wall are

also replaced by the appropriate boundary conditions
[Kobayashi, Hagino, Tsukada and Hozawa (2002)].

In the CZ crystal growth system, each material consti-
tuting the furnace, such as the melt, the crystal and the
crucible, is surrounded by a transparent gas, and the inci-
dent radiative heat flux to their surfaces through the am-
bient gas, i.e., irradiation qout

i , is partially absorbed and
reflected if the material is opaque. In the case of the semi-
transparent material, moreover, a part of the irradiation
transmits inside the material. Thus, the boundary con-
ditions, Eqs. (11d), (13b,c) and (14), include qout

i . The
superscripts “out” and “in” refer to the outside and in-
side of the surface adjoining the surrounding gas, respec-
tively, and the subscript “i” of qout

i implies the incident
flux.

To solve the above governing equations, Eqs.(1)-(6), (8),
(9) and (16) with the boundary conditions, Eqs.(10)-(15),
qout

i should be given explicitly. Here, we consider that
the gas phase in the CZ furnace shown in Fig.1 is the
enclosure surrounded by N opaque and semitransparent
diffuse-gray surfaces of uniform temperature. The irra-
diation onto a surface j, qout

i, j , is given by the following
equation, creating an energy balance regarding the sur-
face j in the enclosure:

qout
i, j =

1
1−ρout

j

(
εout

j T 4
j +τin

j qin
i, j −q j

)
, (17)

where qin
i, j is the incident radiative heat flux on the inside

of a semitransparent surface j, such as the crystal sur-
face, and is expressed with the irradiance J or radiative
intensity I as

(for P1 model)

qin
i, j =

Jj

4
− 1

6a j
∇Jj ·nnn jg (18a)

(for FVM)

qin
i, j = ∑

Dm′ 〉0
Im′

Dm′
ωm′

(18b)

In addition, the net radiative heat flux at surface j, q j in
Eq.(17), is obtained as a solution of the following matrix
equations which describe the balance of radiative heat
fluxes in the enclosure:
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(
1

1−ρout
j

)
q j −

N

∑
k=1

ρout
k

1−ρout
k

Fjkqk

=
1

1−ρout
j

(εout
j T 4

j +τin
j qin

i, j)

−
N

∑
k=1

1
1−ρout

k

Fjk(εout
k T 4

k +τin
k qin

i,k)

( j = 1,2, . . .,N),

(19)

where Fjk is the view factor. We proposed an effi-
cient method for calculating the view factors in an ax-
isymmetric system by combining the analytical solutions
[Tsukada, Hozawa and Imaishi (1994)]. If the material of
surface j is opaque, the transmissivity τ j in Eqs.(17) and
(19) is set to be zero, while the emissivity ε j is neglected
in the case of semitransparent materials.

The melt/crystal interface shape is determined so that
Eqs.(10d and e) are satisfied, i.e., so that the interface
coincides with the melting point isotherm. In addition,
the melt/gas interface shape is calculated by solving the
non-dimensional Young-Laplace equation.

The finite element method has been used for the calcu-
lations of the temperature field in the furnace and ve-
locity field in the melt, as well as for the shapes of
the melt/crystal and melt/gas interfaces. The SUPG
(streamline upwind Petrov-Galerkin) method [Brooks
and Hughes (1982)] can be applied for the treatment
of the convective term. The calculation domain is dis-
cretized by isoparametric quadrilateral elements, and in
each element, velocity vectors, temperature and irradi-
ance are approximated with bilinear polynomials and the
pressure is considered to be constant. The details of
numerical procedure in the global heat transfer analysis
are available in our previous studies [Kobayashi, Hagino,
Tsukada and Hozawa (2002); Hayashi, Kobayashi, Jing,
Tsukada and Hozawa (2004)]. Only in the numerical
simulation of Eq.(9) for the radiative heat transfer, the
control volume method was used as numerical procedure.

When the distribution of the thermal stresses in the crys-
tal is needed, a three-dimensional finite element anal-
ysis of thermal stress fields can be carried out. Here,
the crystal is assumed to be a linear elastic material
whose mechanical properties, i.e., elastic constant and
thermal expansion coefficient, are anisotropic. The von
Mises equivalent stresses in the crystals can be calcu-
lated with the temperature distributions obtained by the

Figure 2 : Coordinate system in three-dimensional un-
steady state analysis of melt convection

global heat transfer analysis in the CZ furnace. The
mathematical details of calculating the thermal stress
fields in the crystal are also available in our previous
studies [Miyazaki, Uchida, Tsukada and Fukuda (1996);
Kobayashi, Tsukada and Hozawa (2002)].

2.2 Three-dimensional unsteady state analysis of the
oxide melt convection

To investigate the origins of the spoke pattern and wave
pattern generated on the oxide melt surface, a three di-
mensional unsteady state analysis of melt convection is
needed. Since the present status of the “global model”
does not permit three-dimensional unsteady global simu-
lation, however, such an investigation has been limited to
the crucible with a simple cylindrical geometry depicted
in Fig.2. In calculations, the free surface of the melt and
the melt/crystal interface are treated as flat, where the
temperature of the melt/crystal interface is maintained at
the melting point. The heat loss from the free surface
of the melt is assumed to be due to radiation alone to an
ambient temperature. In most cases, the sidewall of the
crucible is heated by a constant and uniform heat flux or
is kept at a constant temperature. The bottom of the cru-
cible is adiabatic. The no-slip condition is used for all
physical boundaries of the melt except for the free sur-
face. The free surface is considered to be free of stresses
or not according to the fact that the Marangoni effect is
taken into account in some cases. Under the above as-
sumptions, Eqs.(1), (2), (4) or (16) are solved using the
finite difference method.
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3 Global simulation of heat transfer in CZ furnace

In this section, the effect of variations in the absorp-
tion coefficients, i.e., internal radiation, of the oxide
crystal and/or melt, on the interface inversion as well
as the thermal stress field in the crystal is discussed
on the basis of the global model [Kobayashi, Hagino,
Tsukada and Hozawa (2002); Kobayashi, Tsukada and
Hozawa (2002)]. We consider the melt flow, heat trans-
fer and melt/crystal interface shape in an inductively
heated CZ furnace with 4.6 kHz radio-frequency cur-
rent, as shown in Fig.1, where a LiNbO3 single crystal
(22.8mm diameter) is pulled continuously at the rate of 4
mmh−1 from the melt in a Pt crucible (59.3 mmO.D.×60.4
mmH×1.1mmT ). Using the thermo physical properties
of LiNbO3 melt [Tsukada, Hozawa and Imaishi (1994)],
the Prandtl number Pr and the Grashof number Gr in this
system are 13.6 and 4.67× 105, respectively. In addi-
tion to the physical properties, the optical properties of
the melt and crystal, that are necessary in calculations
of internal radiative heat transfer, i.e., the transmissivi-
ties on both sides of the semitransparent melt and crys-
tal surfaces, were estimated with the refractive indices
(nl = ns=2.3) [Spuckler and Siegel (1992, 1994)]. On
the other hand, when the melt is opaque, the emissivity
of the melt into the gas phase was estimated to be 0.80
using the same equation as that for transmissivity, and
also the emissivity into the crystal was set to 1.0 because
nl was assumed to be equal to ns. Since the absorption
coefficients of the melt and crystal are not well known,
especially at high temperature, we adopted these values
as disposable parameters.

Since the following results shown in Figs.3 to 7 were ob-
tained being based on the P1 approximation for the radia-
tive transfer equation, we must point out that the results
should be limited to the case of a medium with a rela-
tively large optical thickness, i.e., as or al > 1.

Fig.3 shows the effect of the crystal rotational Reynolds
number Re, the non-dimensional crystal rotation rate, on
the temperature distributions in the furnace and the flow
pattern in the melt for two values of optical thickness of
the crystal as, where the melt is opaque, i.e., al = ∞. The
stream functions in the figures are scaled with r′cν′

l . When
the crystal is not rotated, i.e., Re=0, only the clockwise
vortex caused by free convection is present in the melt,
and the flow pattern exhibits an undulating structure at
the bottom of the crucible due to a retarding force caused

by the vertical stratification of the melt. For Re=280, the
flow pattern in the melt is almost the same as that for
Re=0 in the case of an optically thinner crystal (as=1),
but a counterclockwise vortex due to crystal rotation ex-
ists under the crystal, in addition to free convection, when
the optical thickness is large, i.e., as=100. Consequently,
the interface inversion occurs for optically thicker crys-
tal, but not for optically thinner one at Re=280. The
melt convection affects the temperature distributions in
the melt and crystal, but the influence of the radiative
heat transfer within semitransparent crystals is still more
significant. The figures show that the temperature gra-
dients in the crystal decrease when the optical thickness
decreases, because the contribution of the radiation to the
total heat transfer through the crystal increases and the
role of the thermal conduction diminishes. The larger
heat flux due to the radiation through the crystal brings
about the larger heat flux to the melt/crystal interface
from the melt to compensate it. Consequently, the power
of the RF coil becomes large, and the melt/crystal inter-
face increases its area and becomes more convex toward
the melt.

The effect of the crystal rotational Reynolds number Re
on the melt/crystal interface shapes are shown in Figs.4
(a) and (b) for four different values of optical thick-
ness of the crystal, when al = ∞. In these figures,
∆z|r=0 in (a) represents the axial displacement of the in-
terface at the centerline from the axial position of the
melt/crystal/gas tri-junction (r = rs), and ∆z|r=0.5rs in
(b) denotes the axial displacement at the half position
of the crystal radius. If both ∆z|r=0 and ∆z|r=0.5rs are
negative, the interface shape is completely convex to-
ward the melt. For all as, ∆z|r=0 and ∆z|r=0.5rs increase
with Re, and the melt/crystal interface shape changes
from convex to a doubly curved, in other words ‘gull-
wing’ or ‘M’ shape, and then becomes completely con-
cave toward the melt, where the doubly curved inter-
face corresponds to the case that satisfies the following
relations, ∆z|r=0 < ∆z|r=0.5rs and ∆z|r=0.5rs > 0. Fig.4
demonstrates numerically that the interface inversion oc-
curs with the increase of Re. When Re is relatively small
and the interface is convex toward the melt, the mag-
nitude of the interface deflection ∆z|r=0 becomes larger
(more convex toward the melt) as the optical thickness
of the crystal as decreases, and consequently critical
Reynolds number at which the interface inversion occurs,
Rec, shifts to a larger value. In addition, d∆z|r=0/dRe
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Figure 3 : Effect of the crystal rotational Reynolds number on the temperature distributions in the furnace and the
flow pattern in the melt, when the crystal is semitransparent and the melt is opaque.

and d∆z|r=0.5rs/dRe near Rec increases remarkably as as

decreases, and thus the interface shape changes more
abruptly. These steep increases of ∆z|r=0 and ∆z|r=0.5rs

are due to the melt flow toward the melt/crystal interface
caused by the crystal rotation. However, as Re increases
further beyond Rec, the difference between ∆z|r=0 and
∆z|r=0.5rs for the same Re and their dependence of Re
become smaller. Also, the differences of ∆z|r=0 and
∆z|r=0.5rs between the each case of as becomes smaller.

Here, the thermocapillary (Marangoni) convection is not
taken into account. However, it is expected that the criti-
cal Reynolds number for the interface inversion should
become larger in the presence of the thermocapillary
force because it tends to strengthen the buoyancy driven
flow and to suppress the appearance of the centrifugal-
force-driven flow related to the crystal rotation [Tsukada,
Hozawa and Imaishi (1994)].

Since some experimental studies [Okano, Tsuji, Yoon,
Hoshikawa and Fukuda (1994)] revealed the possibility
of the influence of the radiative heat transfer in the melt
on the crystal growth processes, particularly on the melt
convection, the effect of the crystal rotation on the CZ

crystal growth process should be investigated when both
melt and crystal are semitransparent. Along these lines,
Fig.5 shows the effect of the crystal rotational Reynolds
number Re on the temperature distributions in the fur-
nace and the flow pattern in the melt for two values of
optical thickness, where al = as. In the case of optically
thicker melt and crystal, i.e., al = as=100, the shapes of
the temperature distributions and flow patterns are almost
the same as those in Fig.3, and the interface inversion oc-
curs as Re increases. However, for al = as=1 and Re=0,
compared with the results for al = as=100, the undulating
flow structure near the crucible bottom disappears, and a
relatively simple convection with the vortex center at the
middle part of the melt occurs. In addition, the intensity
of the convection in the melt is larger despite the decrease
of the maximum temperature in the melt. The radiative
energy emitted at the crucible wall is absorbed inside the
melt and heats it. Also, the contribution of radiation to
the total heat loss through the melt becomes larger, and
the conduction becomes less significant. Consequently,
vertical density stratification of the melt disappears, but
the horizontal temperature gradient in the melt drives the
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Figure 4 : Effect of the crystal rotational Reynolds number on the melt/crystal interface shape when the crystal is
semitransparent and the melt is opaque.

Figure 5 : Effect of the crystal rotational Reynolds number on the temperature distributions in the furnace and the
flow pattern in the melt, when both the crystal and melt are semitransparent.
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buoyant flow which is stronger than that in the optically
thicker melt. In this case, also, the melt/crystal interface
shape becomes more convex toward the melt as the opti-
cal thickness of both melt and crystal decreases.

Fig.6 shows the effect of the crystal rotational Reynolds
number Re on the melt/crystal interface shapes for five
different values of optical thickness, when both melt
and crystal are semitransparent and al = as. For all as,
∆z|r=0 increases in the range of relatively small Re and
the melt/crystal interface changes from convex to con-
cave toward the melt at Rec. This trend is similar to that
reported in the case of the opaque melt shown in Fig.4
although the gull-wing geometry of the interface has not
been clearly observed. However, Rec for as=1 is much
smaller than those for as=10. With regard to this aspect,
comparing the flow patterns in the melt between as=1 and
10, it is clear that the intensity of clockwise buoyant flow
for as=1 is weaker than that for as=10. This leads to the
decrease of the Rec at which the dominant melt flow near
the interface changes from free convection to forced con-
vection driven by crystal rotation. To sum up the behav-
ior on the shape of the melt/crystal interface, it is clearly
found that the Rec, when the melt is opaque, decreases
monotonously with the optical thickness of the crystal,
whereas the Rec shows a maximum value at a certain op-
tical thickness of the crystal and melt when the melt is
semitransparent and al = as.

Since the thermal field in the crystal and the melt/crystal
interface shape are strongly affected by both the radia-
tive heat transfer in the crystal and the melt convection
as mentioned above, it can be inferred that the thermal
stresses in the crystal also vary depending on the absorp-
tion coefficient of the crystal or the crystal rotation rate.
Fig.7 shows the effect of Re on the maximum values of
the thermal stresses in the crystal for four different val-
ues of optical thickness of the crystal when the melt is
opaque [Kobayashi, Tsukada and Hozawa (2002)]. In
the figure, the dotted lines are the maximum values of the
von Mises stresses in the whole crystal and the solid lines
are the maxima at the melt/crystal interface. For as = 0.1
and 1, the maxima always appear at the melt/crystal in-
terface for all Re. The results for as = 0.1 are rep-
resented to investigate extensively the effect of optical
thickness, although the P1 approximation to calculate the
radiative heat transfer in the crystal is not very suitable
for such optically thin crystals. For all as, the maxi-
mum value of the stresses at the melt/crystal interface

decreases with Re, and becomes minimum near the criti-
cal Reynolds number Rec, at which the interface is almost
flat, i.e., the interface inversion occurs. Beyond Rec, the
thermal stresses increase abruptly with Re. When Re is
relatively small and the interface is convex toward the
melt, the magnitude of the thermal stresses at the inter-
face is the largest for as = 1. This is explained by the
competition between the interface deflection ∆z|r=0 and
the temperature gradients in the crystal. As the optical
thickness decreases, the magnitude of the interface de-
flection becomes larger and consequently, the radial tem-
perature gradient near the melt/crystal interface becomes
larger, but simultaneously, the axial temperature gradient
through the crystal becomes smaller because the radiative
heat transfer becomes more dominant. In addition, it was
found that the dependence of the stresses on the optical
thickness for the opaque melt is larger than that for the
semitransparent melt [Kobayashi, Tsukada and Hozawa
(2002)].

Since the P1 approximation is not very reliable for opti-
cally thin materials to solve the radiative transfer equa-
tion, the melt and/or crystal with a relatively thick op-
tical thickness have been considered above. However,
it should be emphasized that oxide crystals have a wide
range of absorption coefficient values, and depending on
their values the contributions of radiation to heat transfer
and consequently the melt/crystal interface shape vary,
as shown in the previous experimental work [Cockayne,
Chesswas and Gasson (1969)]. Therefore, to remove the
aforementioned limitation related to the P1 approxima-
tion, the P1 model has been replaced by the finite vol-
ume method (FVM) [Liu, Shang and Chen (2000)] in
order to correctly take into account the radiative heat
transfer in crystals with a wide range of optical thick-
ness values. Fig.8 shows the effect of the crystal rota-
tional Reynolds number Re on the melt/crystal interface
shapes for the different values of optical thickness of the
crystal [Hayashi, Kobayashi, Jing, Tsukada and Hozawa
(2004)]. When as = 10 and 0.1, ∆z|r=0 increases with Re,
and the melt/crystal interface shape changes from con-
vex to concave toward the melt. These trends are almost
the same as those in Fig.4. In addition, when the opti-
cal thickness becomes less than 0.1, it is found that the
dependency of the optical thickness on the melt/crystal
interface becomes slight.
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Figure 6 : Effect of the crystal rotational Reynolds number on the melt/crystal interface shape when both the crystal
and melt are semitransparent.

Figure 7 : Effect of the crystal rotational Reynolds number on the maximum von Mises stresses in the crystal (Solid
line: at melt/crystal interface, dotted line: in whole crystal).

4 Flow instability in oxide melt

4.1 Marangoni instability

It is well known that asymmetric surface patterns, namely
spoke patterns or wave patterns, appear on the surface of
oxide melt in the CZ crystal growth configuration. As
mentioned in the introduction, it has been disclosed ex-

perimentally that the spoke pattern is generated due to
the Marangoni instability. Recently, we reproduced the
spoke patterns on LiNbO3 melt surface in the CZ system
by unsteady three-dimensional numerical simulations of
melt convection. The origin of the spoke patters was ex-
amined by a set of simulations for open melt, i.e., with-
out crystal, assuming the temperature coefficient of sur-
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Figure 8 : Effect of the crystal rotational Reynolds number on the melt/crystal interface shape when the crystal is
semitransparent and the melt is opaque.

Figure 9 : Criteria of the spoke patterns on open melt surface; (a) axial temperature distribution in the melt, (b) flow
diagram in Marangoni instability.

face tension as a disposable parameter [Jing, Imaishi,
Yasuhiro and Miyazawa (1999)]. Local values of the
Marangoni and the Rayleigh numbers were calculated
based on the thickness of the thermal boundary layer,

δ′, and the temperature drop in the boundary layer, ∆T ′,
evaluated at r′ = 0.75r′c, as shown in Fig. 9(a). In ox-
ide melts, Pr is large and δ′ is much thinner than that
of semiconductor melts. According to the above men-
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tioned analysis, in the condition of crucible side wall
heated with a constant heat flux (Left in Fig.9(b)), the
Rayleigh number ranges between 40 and 20, and is too
small to initiate the Rayleigh instability in the thermal
boundary layer. However, spoke patterns appear when
Ma exceeds a certain threshold value, suggesting the
Marangoni instability in the thermal boundary layer is
responsible for the spoke patterns. The threshold value,
the critical Marangoni number for the incipience of the
instability, is about 60. No linear stability analysis has
been conducted for such a flow system. But Mac = 60 is
very close to the critical Marangoni number (Mac = 56.7)
[Higano(1981); Boeck and Thess (1997)] for the incipi-
ence of the Marangoni-Bènard convection in an infinitely
extended fluid layer bounded by an adiabatic top surface
and a bottom wall of free slip and constant temperature.
In a super critical condition, Marangoni instability trig-
gers roll cells in the boundary layer. Because of the dom-
inant basic flow in radial direction, the roll-axes are ex-
tended in radial direction and aligned as spoke pattern.
We believe that the Marangoni instability is indispens-
able to initiate the spoke patterns. However, for the sake
of the completeness, it should be pointed out that Szmyd,
Jaszczur, Ozoe and Kakimoto (2000) reported simula-
tion of spoke patterns on a high temperature melt sur-
face where thermocapillary effect was absent. In prac-
tice, their patterns are initiated by the Rayleigh insta-
bility in a much thicker thermal boundary layer. Gen-
erally, thermal boundary layer thickness and tempera-
ture drop in it are strongly dependent on the radiative
heat loss from the melt surface, on the boundary con-
dition at the side-wall and also on the surface velocity. In
some case, spoke pattern can not occur in a crucible with
a constant-temperature side-wall which significantly re-
duces the thermal boundary layer thickness [Jing, Ya-
suhiro, Suenaga, Sato and Imaishi (2000)].

The effect of the RF coil position on the spoke pat-
tern was investigated numerically by Jing, Kobayashi,
Tsukada, Hozawa, Fukuda, Imaishi, Shimamura and
Ichinose (2003). The conductive heat transfer in the cru-
cible was taken into account as well as the flow and ther-
mal fields in the melt, according to the distributions of
the heat generation rate in the crucible obtained by the
analysis of electromagnetic field in the furnace (similar
to the global heat transfer analysis). It was revealed that
the appearance of spoke pattern is dependent on the RF
coil position reflecting the distributions of the heat gen-

eration rate in the crucible. When the RF coil was set
low with respect to the crucible, the spoke pattern ap-
peared easily, otherwise, the spoke pattern was hard to
be obtained, as shown in Fig.10(a) and (b). These results
demonstrate that the thermal boundary layer thickness, in
other word, the Marangoni number, varies with the dis-
tributions of the heat generation rate in the crucible, and
support the theory related to the formation mechanism of
spoke patterns based on the Marangoni instability.

In addition, we revealed that the optical properties of the
melt are also important for the appearance of the spoke
patterns [Jing, Hayashi, Kobayashi, Tsukada, Hozawa,
Imaishi, Shimamura and Ichinose (2003)]. If the melt
is highly transparent, temperature gradient becomes very
small throughout the oxide medium because the contribu-
tion of internal radiation to heat transfer becomes larger
in comparison with conduction. In such a case, sec-
ondary flows caused by the Marangoni instabilities in the
thermal boundary layer may not occur, thus the spoke
pattern can not be observed on the melt surface.

4.2 Baroclinic instabilities in oxide melt

It is well known that asymmetric wavy and unsteady pat-
tern appear on the oxide melt surfaces at medium range
of crystal rotation rate. The surface patterns are depen-
dent on the nature of the bulk flow field, where the melt
flow is driven by the rotating crystal and the buoyancy. In
the absence of Marangoni forces (surface tension effects
neglected) the melt below the crystal tends to be sucked
upward and expelled out toward the crucible by the cen-
trifugal force induced by the rotating crystal. On the
other hand, the melt near the crucible tends to rise along
the crucible sidewall and flow towards the crystal along
the free surface owing to the buoyancy effect. When the
buoyancy-driven flow and crystal rotation-driven flow are
of a comparable magnitude, a wave pattern appears on
the melt surface. The unsteady three-dimensional nu-
merical simulations for the LiNbO3 melt convection in
a large-size cylindrical crucible with radius r′c = 100 mm
are discussed below [Jing, Tsukada, Hozawa, Shima-
mura, Ichinose and Shishido (2004)]. The Grashof num-
ber is 2.02×107.

Fig. 11(a) shows the grayscale expression of the tem-
perature on the free surface, and (b) and (c) show the
meridian view of the isotherms and velocity vectors for
the crystal rotation rate Ω′

s = 15 rpm, where a simpli-
fied constant heat flux is given at the crucible sidewall
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Figure 10 : Effect of RF coil position on the velocity
vectors and isotherms on the melt surface, where a
RF coil was set (a) low and (b) high with respect to
the crucible, respectively.

Figure 11 : The grayscale surface wave pattern (a) and
the side view of the temperature distribution (b) and the
velocity vectors (c) in the crucible.

and the bottom of the crucible is adiabatic. According
to the numerical results, a 3-folded wave pattern appears
on the melt surface and rotates at the rate of approxi-
mately 1 rpm which is completely different from that
of crystal rotation. A series of the numerical simula-
tions indicates that no surface pattern can be found when
the rotation rate of the crystal is Ω′

s < 10 rpm; whereas,
the wave patterns tends to move toward the crucible on
the free surface with the increase in the crystal rotation
rate and a 4-folded quadrilateral wave patterns occurs for
Ω′

s = 20 rpm. Then, when the crystal rotation-driven flow
becomes dominant and pushes the buoyancy-driven flow
toward the crucible wall, the wave pattern disappears.

One of the causes of the generation of the surface wave
patterns is the baroclinic instability, which arises from
the interaction between Coriolis and buoyancy forces.
This might be supported by comparing the present nu-
merical results with the experimental ones by Lee and
Chun (1999), who experimentally determined conditions
for the baroclinic instability in the liquid of oxide CZ
configuration using the aforementioned cold model flu-
ids. Fig.12 shows the flow regime diagram represent-
ing the region of baroclinic wave flows, where Rot is the
Rossby number, Rot = g′β′∆T ′h′/4ω′2

s (r′c − r′s)2 and Ta
the Taylor number, Ta = 4ω′2

s (r′c− r′s)5/ν′2h′. The range
of the rotation rates at which the wave patterns were ob-
served in the present simulations when the Marangoni
effect was ignored, i.e., the region depicted by the solid
squares, falls on the baroclinic wave flow region of Lee

and Chun (1999), despite the large difference between
the actual oxide melt and the cold model fluid, particu-
larly for the heat loss from the melt surface.

Comparing the temperature distributions for Ω′
s = 15 rpm

and Ω′
s = 20 rpm, it can be found that in the former case,

the isotherms of relatively low temperatures character-
izing the surface wave patterns are scraping the crystal
edge and rotating as shown in Fig.11, whereas in the lat-
ter case, they are rotating away from the crystal edge.
According to the fact that the isotherms in the former
case are much close to the melting point T ′

m and temper-
ature fluctuations occur in the growth system, the shape
of the grown crystal might not be ensured to be cylin-
drical. Along these lines, it was occasionally reported
during growth experiments that a spiral growth can occur
for some crystals, where the crystal grows in a spiral or
helix shape instead of the correct cylindrical shape. The
occurrence of the wave patterns in the former case might
be one of the causes of the spiral growth. Consequently,
the flow regime diagram in Fig.12 might suggest the ap-
propriate crystal rotation rate at which the spiral growth
is suppressed.

In addition, what kind of flow and surface pattern will ap-
pear if the Marangoni effect which is the primary cause
of spoke patterns is taken into account is even very in-
teresting. Adding the Marangoni effect to the numerical
simulation in Fig.11, the wave pattern disappears and no
pattern can be generated because the Marangoni effect
accelerates the inward flow along the free surface and,
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Figure 12 : Flow regime diagram. Baroclinic wave
flow regime exists between the buoyancy-driven and the
rotation-driven flow regimes.

Figure 13 : The grayscale surface wave-spoke pattern (a)
and the side view of the temperature distribution (b) and
the velocity vectors (c) in the meridian plane.

therefore, suppresses the outward flow driven by the ro-
tating crystal. When the rotation rate of the crystal is
increased to Ω′

s > 40 rpm, the outward flow driven by
the rotating crystal can overcome the inward flow driven
by both buoyancy and the Marangoni effects and push
the meeting front onto the free surface again. Fig.13(a)
shows the grayscale surface pattern, and Figs. 13(b) and
(c) show the bulk temperature distribution and flow in
the meridian plane, respectively, for the Ω′

s = 41 rpm. In
this case, the spoke pattern induced by the Marangoni in-
stability is also generated between the triangular-shaped
wave pattern and the crucible wall. This is the reason
why such a surface pattern was named as wave-spoke
pattern. The numerical simulations prove that when

Ω′
s > 45 rpm, the wave-spoke pattern disappears and the

rotation-driven flow becomes dominant. The mechanism
for the spoke pattern here is identical to that mentioned
in the previous section.

5 Conclusions

In the first part of the present paper we described the
latest in the “global” modeling of heat transfer in in-
ductively heated CZ furnaces used to grow oxide single
crystals. Particularly, it was emphasized that account-
ing for the internal radiation within the crystal and/or
melt in the model is important because they are often
semitransparent to infrared radiation. Some results of
the global analyses suggest that the melt/crystal inter-
face shape is strongly affected by the optical properties
as well as by the melt convection. Next, convective in-
stability generated in the oxide melt, i.e., spoke pattern
and wave pattern, have been discussed within the frame-
work of an unsteady three-dimensional analysis. It has
been demonstrated numerically that the spoke pattern is
due to a Marangoni instability, while the wave pattern is
cased by a baroclinic instability.

Nomenclatures

a = optical thickness [-]
a′ = absorption coefficient [m−1]
C′

p = heat capacity [J.kg−1.K−1]
D = product of the unit normal vector at
the surface and intensity direction

[-]

eee = unit vector [-]
Fjk = view factor [-]
g′ = gravitational acceleration [m.s−2]
Gr = Grashof number [-]

∆H ′
f = latent heat of solidification [J.kg−1]

h′ = melt depth [m]
I= radiative intensity [-]

I′0 = electric current [A]
J = irradiance [-]
k′ = thermal conductivity [W.m−1.K−1]
Ma = Marangoni number [-]
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Mac = critical Marangoni number [-]
NR = radiation–conduction interaction
parameter

[-]

n = refractive index [-]
nnn = normal unit vector [-]
Pe = Peclet number [-]
Pr = Prandtl number [-]

p = pressure [-]
Q0= standard volumetric heat generation
rate

[-]

q j = net heat flux due to the incident radi-
ation on jth boundary surface

[-]

qi, j =incident radiative flux on jth bound-
ary surface

[-]

Rot = Rossby number [-]

r = radial position in cylindrical coordi-
nates

[-]

r′c = crucible radius [m]
r′s = crystal radius [m]
Re = Reynolds number [-]
Rec = critical Reynolds number [-]

St = Stefan number [-]
T = temperature [-]
Ta = Taylor number [-]

T ′
m = melting temperature [K]

ttt =tangential unit vector [-]
V ′

s = crystal pulling rate [m.s−1]

vvv = velocity vector [-]
x′1, x′2, x′3 = Cartesian coordinates [m]
z = axial position in cylindrical coordi-
nates

[-]

∆z = axial displacement of the interface [-]

Greek symbols

α = heat generation coefficient [-]
β′ = thermal expansion coefficient [K−1]
δ′ = thermal boundary layer thickness [m]
ε = emissivity [-]

φ = azimuthal angle [rad]
γ′= surface tension [N.m−1]
γT

′= temperature coefficient of surface
tension

[N.m−1.K−1]

η = direction cosine along the

φ-axis. [-]
κ = ratio of thermal conductivity [-]
µ = direction cosine along the r-axis [-]
µ′ = viscosity [Pa.s]

ν′ = kinematic viscosity [m2.s−1]
ρ′

0 = density [kg.m−3]
ρ = reflectivity [-]

σ′ = Stefan-Boltzman constant [W.m−2.K4]
τττ = stress tensor [-]
τ = transmissivity [-]
ψ = stream function [-]

ξ=direction cosine along the z-axis [-]
Ω′ = crystal rotation rate [rpm]
ω = solid angle [sr]
ω′ = crystal rotation rate [s−1]

Superscripts
in= inside of boundary surface
m= discrete direction of solid angle

out = outside of boundary surface
′ = dimensional value

Subscripts
b = black body
c = crucible
h = after heater
j = material j

jg = pointing from material j to gas phase
l = melt

lc = pointing from melt to crucible

lg = pointing from melt to gas phase
ls = pointing from melt to crystal
max = maximum value
min = minimum value

s = crystal
sg = pointing from crystal to gas phase
z = z-direction
θ = θ-direction
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