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Effects of Rotation on Heat Flow, Segregation, and Zone Shape in a Small-scale
Floating-zone Silicon Growth under Axial and Transversal Magnetic Fields

C. W. Lan1, B. C. Yeh

Abstract: The suppression of unstable Marangoni
convection in floating-zone crystal growth by magnetic
fields has enjoyed over recent years a widespread use as a
reliable and useful strategy. A transversal direction of the
field is particularly efficient, but asymmetric zone shapes
and thus segregation are induced. Counter-rotation of the
feed and of the crystal rods is a common way to improve
dopant homogeneity. However, its effects under mag-
netic fields are complex and have not yet been studied
in detail. In the present analysis, three-dimensional (3D)
simulations based on a finite-volume/multigrid method
are used to illustrate the effects of rotation on the heat
flow, dopant segregation, and the zone shape for a small-
scale floating-zone silicon growth under both axial and
transversal magnetic fields. The role of electrical con-
ductivity of the crystal is also taken into account.

keyword: Rotation, Convection, Segregation, Mag-
netic field, Lorentz force, Floating-zone method.

1 Introduction

The floating-zone (FZ) technique is a crucible-less and
thus a contamination-free process for growing single
crystals. However, the free surface of the molten zone
often induces significant Marangoni flow leading to un-
stable convection, growth striations, and distorted inter-
faces, even in microgravity environment (Schweizer et
al., 1999). Suppressing the unsteady Marangoni flow has
been an important research topic in crystal growth over
the years (Nakamura et al., 1998; Amberg and Shiomi,
2005), and static magnetic fields seem to be particularly
useful in this regard. Striation-free crystals can be grown
under a strong static magnetic field (see Schweizer et al.,
1999; Dold et al., 1998).

In practice, both axial (Schweizer et al., 1999; Dold et
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al., 1998) and transversal configurations (Robertson and
O’Connor, 1986; Herrmann and Müller, 1995) have been
investigated in the literature, and rotation can be applied
as an additional control means.

With an induction heated needle-eye configuration, some
improvement of radial dopant distribution by rotation (up
to 20 rpm) were reported under a weak magnetic field
(0.1-0.14T) by Riemann et al. (1996). With a highly
simplified model, Ma et al. (2000) further investigated
the role of a weak transversal magnetic field and rotation
on the flow structure. They claimed that the centrifugal
pumping force overwhelms the inward convection and
produces radial outward flow over the entire crystal-melt
interface leading to an improvement of radial segrega-
tion. However, for a small-scale FZ zone, the interac-
tion of Marangoni flow and rotation could be quite dif-
ferent. Under magnetic fields the effect of rotation is not
yet fully understood.

Self-consistent simulations must be regarded as a good
means to shed some light on this problem and, in particu-
lar, to provide a detailed picture of the transport behavior.

In a recent study by Lan and Yeh (2004), the effects
of axial and transversal magnetic fields were investi-
gated numerically through a three-dimensional (3D) self-
consistent model. They illustrated that the transver-
sal field is more effective in suppressing the unsteady
Marangoni flow. The required magnetic strength for get-
ting a steady flow by means of the transversal field is
lower than that required by the use of the axial one.
However, the flow suppression/dumping by the transver-
sal field tends to be effective only in the meridian plane
parallel to the magnetic field. The flow in the plane per-
pendicular to the direction of the magnetic field is not
suppressed due to the induced electric potential, and this
leads to a highly asymmetric molten zone and growth
interface. The use of rotation, especially the counter-
rotation, is believed to be an useful strategy for reduc-
ing such an asymmetry. The growth experiment for the
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needle-eye configuration (Riemann et al., 1996) is a pos-
itive and relevant example.

To simulate the FZ growth problem in a self-consistent
manner, because the zone shape is unknown and cou-
pled with the heat flow, numerical methods able to pro-
vide an ”ensemble” picture of the system are required.
During the past 10 years, numerical methods based on
a finite-volume method have been developed by our re-
search group (Lan and Yeh, 2004; Lan, 1996; Lan and
Liang, 1997). The global Newton’s method (Lan, 1996)
has been found powerful for 2D problems. However,
for 3D problems, it is less robust and requires tremen-
dous computer memory and CPU time (Lan and Liang,
1997). Along these lines, point iterative methods seem
to reduce the memory dramatically required by 3D mod-
eling; however they suffer slow convergence; when the
grid is refined the convergence rate degrades rapidly, be-
cause long-wavelength errors cannot be removed effec-
tively. The slow convergence associated with the solu-
tion of the transport equations can significantly affect the
global convergence of the zone shape computation. How-
ever a multigrid (MG) approach has been recently devel-
oped (Lan and Yeh, 2004; Lan and Liang, 1999) that can
amend this slow convergence problem.

Recently, Lappa (2003, 2004, 2005) and Gelfgat et al.
(2005) also developed efficient numerical methods for
solving 3D FZ problems. However, these studies did not
take into account melt/solid front tracking, i.e. a fixed
geometry was considered.

In this report, we investigate the effects of rotation for a
small-scale FZ silicon growth under axial and transver-
sal static magnetic fields through 3D self-consistent sim-
ulation relying on the aforementioned efficient finite vol-
ume/multigrid method (Lan and Liang, 1999). The flow
structure, dopant distribution, and zone shape for various
growth conditions are presented and discussed. The next
section describes the mathematical model. Section 3 is
devoted to the numerical method followed by the results
and discussion. Conclusions are drawn in Section 5.

2 Mathematical model

A generic FZ crystal growth in a mono-ellipsoid mirror
furnace is illustrated in Fig. 1; the total sample length
is L. The mesh used for calculation (after convergence)
is also shown. The long axis of the mirror (a) is 9 cm
and the short axis (b) is 8 cm (Schweizer et al., 1999;

Figure 1 : Schematic of a floating-zone crystal growth
in a mono-ellipsoid mirror furnace; a sample mesh for
simulation is also shown; a small portion of the melt is
removed to illustrate the mesh inside the molten zone.

Lan and Yeh, 2004; Lan and Chian, 2001). Since ax-
isymmetry is no longer assumed here, the system is de-
scribed by a Cartesian coordinate (x,y, z) system. The
point-source model (Lan, 1996) for the mirror furnace is
adopted for the heat input condition. A more complete
model for the lamp heating has been reported by Rivas
and Haya (2002), but it requires tedious computation for
an arbitrary zone shape.

The feed rod is steadily moved downward at speed Uf ,
while the crystal pulling speed is Uc. For a pseudo-steady
state growth, for the same density of the feed and the
crystal, A fUf = AcUc, where A f and Ac are the cross-
section area of the feeding rod and of the crystal, respec-
tively. However, the shape of the grown crystal, which
can be represented by a local radius Rc(θ), remains un-
known and needs to be calculated; θ is the azimuthal an-
gle. When the molten zone is asymmetric, the cross sec-
tion of the steadily-growing crystal is not exactly round.
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Then, rotating the non-axisymmetric crystal can generate
time-dependent oscillations. For the sake of the simplic-
ity, we have ignored this effect; this is reasonable when
the deviation from the round shape in the cross section is
small.

The flow and temperature fields, as well as the melt/feed
(h f (y, z)) and melt/crystal (hc(y, z)) interfaces, and the
meniscus (Rm(x,y, z)) are also represented in Cartesian
coordinates.

In this study, growth conditions have been chosen to have
a steady-state growth, so that time-dependent calculation
is not necessary.

The dimensionless variables are defined by scaling length
with the feed rod diameter D f , velocity with αm/D f ,
pressure with ρmα2

m/D2
f , temperature with the melting

point Tm, and dopant concentration by the feed rod con-
centration C0, where αm is the melt thermal diffusiv-
ity and ρm the melt density. The steady-state governing
equations describing the convection, with the Boussinesq
approximation, and heat and dopant transport in the melt
read:

∇ · vvv∗ = 0, (1)

vvv∗ ·∇vvv∗ = −∇P∗ +Pr∇2vvv∗ +FFF∗, (2)

vvv∗ ·∇T ∗ = ∇2T ∗, (3)

vvv∗ ·∇C∗ =
Pr
Sc

∇2C∗, (4)

where the body force term FFF∗ in Eq. (2) (Baumgartl and
Müller, 1992; Ben Hadid and Henry, 1996) can be writ-
ten as follows:

FFF∗ = PrRaT (T∗ −1)eeex +PrHa2(−∇Φ∗ +vvv∗ ×eeeB)×eeeB

In the above equations, vvv∗, P∗, T ∗, and C∗ are the di-
mensionless velocity, pressure, temperature and dopant
concentration, respectively; without the asterisk, the vari-
ables are assumed to be dimensional. In addition, Pr =
νm/αm is the Prandtl number and Sc = νm/D the Schmidt
number, where νm is the kinematic viscosity and D is the
dopant diffusivity. Also, eeex and eeeB are the unit vectors in
the x and magnetic directions, respectively, and they are
considered in the x−y plane only:

eeeB = cos(β)eeex + sin(β)eeey,

where eeey is the unit vector in the y direction. In this
study, β = 0◦ and 90◦ are used for the axial and transver-
sal fields, respectively.

The associated dimensionless thermal Rayleigh (RaT )
and Hartmann (Ha) numbers are defined as:

RaT =
βT g0TmD3

f

νmαm
; Ha = |B|D f (σm/µm)1/2,

where βT is the thermal expansion coefficient of the melt,
g0 the gravitational acceleration, σm the melt electric
conductivity, µm the melt viscosity, and | B | the applied
magnetic field strength. Because the solutal effect on
the solidification temperature and the melt density has
been neglected due to the light-doping approximation,
the value of C0 is arbitrary.

Furthermore, Φ is the electric potential, which requires
the solution of the continuity equation for the electri-
cal current density vector jjj∗, i.e., ∇ · jjj∗ = 0, where
jjj∗ = σ∗

i (−∇Φ∗ + vvv∗ × eeeB); σ∗
i = σi/σm, i = (m,c, f ), is

the normalized electric conductivity of the melt (m), the
crystal (c), and the feed rod ( f ). Here, the electrical cur-
rent density vector jjj∗ has been rescaled by σmαm|BBB|/D f

and Φ∗ by αm|BBB| . In other words, we need to solve the
following equation as well,

∇ ·σ∗
i ∇Φ∗ = ∇ ·σ∗

i (vvv∗ ×eeeB). (5)

The magnetohydrodynamic (MHD) equations used
above are the same as the MHD2 model in Baumgartl
and Müller (1992) and the model used by Ben Hadid and
Henry (1996). Furthermore, due to the light-doping ap-
proximation, the interfaces are assumed isothermal and
at the melting temperature corresponds to that of pure
silicon. Accordingly, thermoelectromagnetic convection
(TEMC) (Khine et al., 2000) can also be neglected.

In the crystal (c) and the feed rod ( f ), only heat transfer
needs to be considered:

∂T ∗

∂τ
+vvv∗i ·∇T ∗ = ∇ ·κi∇T ∗, i = ( f ,c) (6)

where vvv∗i is the dimensionless solid velocity including the
rotational component. Also, κi = αi(T)/αm is the dimen-
sionless thermal diffusivity of feed and crystal; αi is the
thermal diffusivity of the feed rod (i = f ) or of the crystal
(i = c) .

The no-slip condition is used for the velocity at solid
boundaries. At the free surface, the shear stress balance
is imposed:

τ∗ : nnnsss = Ma∂T ∗/∂s∗, (7)
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where τ : nnnsss is the shear stress at the n− s plane of the
free surface; n and s are the unit normal and tangential
vectors at the free surface, respectively. Also, Ma is the
Marangoni number, defined as:

Ma =
|∂γ/∂T |TmD f

ρmvmαm

where ∂γ/∂T is the surface-tension-temperature coeffi-
cient of the melt. Two tangential directions need to be
considered for the stress balance. In addition, the kine-
matic condition (nnn ·vvv∗ = 0) at the free surface and the nor-
mal stress balance (the Young-Laplace equation) must be
also satisfied, i.e.,

τ∗ : nnnnnn = (2H∗)Bo+λ∗
0, (8)

where 2H∗ is the mean curvature scaled by 1/D f , Bo =
γ/(ρmg0D2

f ) is the static Bond number; γ is the surface
tension of the melt. The detailed procedure for calculat-
ing the mean curvature can be found elsewhere (Lan and
Liang, 1997). Also, λ∗

0 is a reference pressure head that
needs to be determined to satisfy the growth angle con-
straint for a steady growth, i.e., at the melt/gas/crystal
tri-junction line,

nnnm ·nnnc = cos(φ0), (9)

where nnnm and nnnc are the unit vectors at the melt and crys-
tal surfaces, respectively, at the tri-junction line and φ0

is the growth angle for the growing crystal having a con-
stant local radius. The growth angle can also depend on
the crystallographic orientation. During calculation, the
radius and the shape of the crystal are not known a pri-
ori. Therefore, the growth angle constraint is used for
the calculation of the local crystal radius Rc(θ). How-
ever, the static head λ0 is used to satisfy the global mass
conservation, Ac = A fUf/Uc. With rotation, the interface
velocity vvv = (Uieeex + rΩieeeθ)/γc, i = ( f ,c), where Uf and
Uc are the feeding and pulling speeds, respectively; Ω f

and Ωc are rotations speeds of the feed rod and crystal
rod, respectively; γc is the density ratio of the crystal to
the melt.

The thermal boundary conditions at the growth and feed-
ing fronts are set by the heat flux balances:

Q∗|m −Q∗|i + γcSt(vvv∗i ·nnn) = 0, i = (c, f ) (10)

where nnn is the unit normal vector at the feeding or grow-
ing interface pointing to the melt. Q∗|m, Q∗|c, and Q∗| f

are the dimensionless total heat fluxes at the melt, the
crystal, and the feeding sides, respectively. The Stefan
number St = ∆H/CpmTm scales the heat of fusion ∆H
released during solidification to the sensible heat in the
melt; Cpm is the specific heat of the melt. The heat trans-
fer between the sample and the surrounding is similar to
that in the 2D case described before (Lan, 1996). The
boundary condition for the dopant transport at the growth
interface is given by (where the solid-state diffusion is
neglected):

nnn ·∇C∗|m +
Sc

Prγc
(1−K)C∗(vvv∗ ·nnn) = 0, (11)

where K is the segregation coefficient. For the feeding
interface, (1−K)C∗ is replaced by (C∗−1).
The boundary condition for the electrical potential Φ is
set by the continuity of the electrical current density at
the interfaces. In addition, the surface of the material and
the end boundaries are assumed electrically insulated,
i.e., jjj∗ · nnn = 0, where nnn is the surface normal. Again,
because jjj∗ = σ∗

i (−∇Φ∗+vvv∗×eeeB), the insulation condi-
tion becomes nnn ·∇Φ∗ = nnn · (vvv∗ ×eeeB).

3 Numerical method

3.1 Co-ordinate transformation

Because the melt/solid interfaces and the meniscus are
not know a priori, the co-ordinates (x,y, z) are trans-
formed into a general curvilinear co-ordinate (ξ1, ξ2, ξ3)
system, that fits all the interfaces and the free surface as
shown in Fig. 2. Simple geometric transformations are
used as follows:

crystal:

r = Rc(ξ2)ξ
3
(ξ3) (12)

θ = 2πξ
2
(ξ2) (13)

y = r cos(θ); z = r sin(θ) (14)

x = hc(ξ2,ξ3)ξ
1
(ξ1) (15)

melt:

r = Rm(ξ1,ξ2)ξ
3
(ξ3) (16)

x = hc(ξ2,ξ3)+[h f (ξ2,ξ3)−hc(ξ2,ξ3)]ξ
1
(ξ1) (17)
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Figure 2 : Schematic illustrationof co-coordinate transformation: (a) the physical domain, and (b) the computational
domain.

feed rod:

r = R f (ξ2)ξ
3
(ξ3) (18)

x = h f (ξ2,ξ3)+[L−h f (ξ2,ξ3)]ξ
1
(ξ1) (19)

where ξ
i
(ξi) is a stretch function ranging from 0 to 1 in

the computational domain. Simple analytical functions
could be used to control grid distribution. For example, a
hyperbolic tangent function with the following form for

ξ
1
(ξ1) is used for the melt:

ξ
1
(ξ1) = 0.5

[
1+ tanh

(B[(ξ1 −ξ1
a)/(Nξ1

−ξ1
a)−0.5

0.5B

)]
,

(20)

where B is a stretch constant and Nξ1 the number of con-
trol volumes (CVs) in the ξ1 direction. During iterations,
if the melt/ambient free surface shape Rm, the grown
crystal shape Rc, and the melt/solid interfaces (h f and
hc) are estimated based on the proper boundary condi-
tions, the above coordinate transformations can be used
to define the boundaries of CVs. For example, the coordi-
nates of each CV in the physical space, as shown Fig. 3a,

are calculated according to the transformations. The cell
faces are represented by surface vectors, i..e., A1, A2, and
A3, while the values of variables in each CV are defined
at the geometric center.

3.2 Finite volume integration

After coordinate transformations, following Lan and
Liang (1999) the governing equations can be rewritten
in a general conservation-law form for each block in (ξ1,
ξ2, ξ3) :

∂
∂ξi (Ciφ+Di)+JSφ = 0, (21)

where J = det |∂(x,y, z)/∂(ξ1,ξ2,ξ3)|. The generic vari-
able φ stands for the Cartesian velocities (u∗, v∗, w∗ in
the x-, y-, z-components, respectively), temperature and
dopant concentration, respectively. For the equation of
continuity, the variable φ can be set to unity. The de-
tailed coefficients of Eq. (21) can be found in Lan and
Liang (1999). Then, the finite volume method consists of
simply integrating Eq. (21) over each CV in the compu-
tational domain. After the Gauss theorem is applied, the
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integration over each CV results in a flux balance equa-
tion:

Ie − Iw + In − Is + It − Ib +
∫

∆V
SφdV = 0, (22)

where Ii, i = (e,w,n, s, t,b), represents the fluxes of φ
cross the faces of the CV. Each of the fluxes Ii is made of
two distinct parts, namely a convective contribution Ciφi

and a diffusive contribution Di. Both terms are approxi-
mated by the central difference scheme. In fact, accord-
ing to the conditions considered here, upwind schemes
are not necessary.

Owing to the fact that the pressure does not appear ex-
plicitly in the equation of continuity, the use of linearly
interpolated velocity from the face values for the col-
located grids could lead to the pressure/velocity decou-
pling, i.e., the so-called checkerboard pressure oscilla-
tion. To amend this, we have adopted the Rhie-Chow mo-
mentum interpolation scheme (Rhie and Chow, 1983) to
interpolate the velocity values at cell faces directly from
the momentum equations. Then, the SIMPLE method
(Patankar, 1980) is used to correct the pressure for satis-
fying the continuity equation.

3.3 Solution scheme

The finite volume approximation in Eq. (22) leads to a
general nonlinear form at each CV center as

aφ
Pφ−∑

nb

aφ
nbφnb = Sφ∆V (23)

for variable φ, and φ = v∗,P∗,T ∗ and C∗. The assembly
of the above equation for all variables and all blocks leads
to a sparse block matrix. The strong implicit procedure
(SIP) based on the incomplete LU decomposition (Stone,
1968) is used to solve the block matrix. Then global iter-
ation is performed variable wise and block wise. Never-
theless, the performance is found satisfactory for coarse
grids, but becomes poor as the grid is refined. In fact,
for most of iterative methods, the convergence becomes
slower as the number of equations increases. The con-
vergence rate is usually fast at the initial stage, but it
degrades rapidly as the iteration proceeds further. As
mentioned before, this is because, generally, the short
wavelength errors can be smoothed out efficiently by lo-
cal iterations, but when fine grids are used, the reduc-
tion/control of long wavelength errors becomes more dif-
ficult.

An effective way to overcome the slow convergence is to
use different meshes during iterations, i.e., the so-called
multigrid (MG) methods. Because we are dealing with
a free boundary problem, an accurately description of
the boundary shapes is crucial. Therefore, the interface
updates have to be considered for the finest grid. After
setting up the finest grid, eight contiguous control vol-
umes (the kid cells) are coalesced into a larger finite vol-
ume (the parent cell). A simple parent-kid link-list data
structure is used for computation. With a given boundary
shape, the full approximation scheme (FAS) proposed by
Brandt (1977) is adopted here. After the MG iteration
convergence process, the melt/solid interfaces are calcu-
lated using the isotherm migration method (IMM). Then,
the meniscus calculation is performed according to the
normal stress balance, in which there is an outer iteration
loop for moving the local radii and getting the reference
pressure to satisfy the growth angle and the overall mass
conservation. A conceptual sketch of this V-cycle itera-
tion procedure is shown in Fig. 3b. Usually, the total in-
ner iteration number for the fine grid, required to reduce
the relative errors of about five orders, is of several hun-
dred. This also includes about 30 to 120 iterations for the
interfaces. One calculation takes about 2 hours of CPU
time using a Pentium-4 (2GHz) PC. A sample converged
mesh for calculation is shown in Fig. 1. As shown, finer
grid spacing is placed near the interfaces to enhance the
accuracy of calculation. Detailed benchmark comparison
with the previous 2D and 3D calculations can be found
elsewhere (Lan and Yeh, 2004; Lan and Liang, 1999).

4 Results and discussion

The growth of an 8-mm Si crystal with phosphorous dop-
ing is considered; the heating configuration is illustrated
in Fig. 1 and the power is set at 700W (Lan and Yeh,
2004). Although the furnace model is highly simplified,
the power consumption is still comparable to real ex-
periments (500∼600W, Dold et al., 1998). The detailed
physical properties and input conditions are the same as
in Lan and Yeh (2004).

Fig. 4 shows the calculated results with 5 rpm counter
rotation for an axial magnetic field at 0.5T. At this condi-
tion, a steady-state result is obtained. The results on the
x−y and x−z planes show that the flow in the core region
is greatly suppressed, but the thermocapillary flow is still
quite strong close to the melt/gas surface. This is consis-
tent with previous 2D simulations (Lan, 1996). The flow
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Figure 3 : (a) a typical control volume; (b) the schematic
of V-cycle multigrid iteration with the interface and free
boundary updates at the top level.

and thermal fields on the x− z and x− y planes seem to
be identical in terms of symmetry. However, if we exam-
ine the result at x = 4.1cm on the y− z plane (about at
the middle of the molten zone), the temperature exhibits
a maximum at given locations; due to the related ther-
mal gradients, there are eight flow vortices caused by the
thermocapillary force. As a result, the induced electri-
cal potential distribution on the same plane also exhibits
an eight-cell structure. These results are very similar to
those in the case of no rotation (Lan and Yeh, 2004), with
the exception of the potential field.

When the magnetic field strength is increased to 1T, the
result becomes perfectly axisymmetric. The electric po-
tential contours on the plane at x = 4.1cm are perfect cir-
cles having the maximum field at the center. Increasing
the rotation speed up to 20 rpm does not change much
the overall flow and thermal fields.

Figure 4 : Calculated flow and thermal fields at different
cross sections, as well as the electrical potential at the
plane of z = 4.1cm (lower right figure), in the molten
zone under an axial magnetic field of 0.5T with 5 rpm
counter rotation.

With a transversal field, a steady-state result is obtained
at a lower magnetic field strength (0.15 T). The calcu-
lated result for 0.5T at a counter rotation of 5 rpm is
illustrated in Fig. 5. As shown, the results are asym-
metric, but have a two-fold symmetry viewed from the
y− z plane. The surface zone length on the plane (x− z
plane) perpendicular to the magnetic direction is longer
than that on the parallel plane. As mentioned previously,
the melt flow on the plane perpendicular to the magnetic
field is not suppressed as that on the parallel plane (lead-
ing to a longer zone length there). In the y− z plane (at
x = 4.1cm), the isotherms have an ellipsoid shape, while
the maximum temperature appears at the surface of the
x− z plane. Again, by critical comparison with the result
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Figure 5 : Calculated flow and thermal fields at different
cross sections, as well as the electrical potential at the
plane of z = 4.1cm (lower right figure), in the molten
zone under an transversal magnetic field of 5T with 5
rpm counter rotation.

of Lan and Yeh (2004), it is clear that 5 rpm counter ro-
tation has little effect on the overall flow and the thermal
fields. The calculated potential field is also similar to that
obtained in the case of no rotation.

Interestingly, although the effect of rotation on the ap-
parent heat flow for both axial and transversal fields is
weak, its effect on the zone shape and dopant segrega-
tion is not trivial. Figure 6 shows the effect of rotation
on the asymmetry of the zone length at the surface; the
asymmetry degree is herein defined in terms of the max-
imum difference of the zone length at the melt surface.
Under an axial field, the heat flow is axisymmetric (or
nearly), and the zone length is uniform. However, under
a transversal field, the zone length is not uniform with-

Figure 6 : Effect of rotation on the asymmetry of the
zone length for axial and transversal fields.

out rotation, and the asymmetry degree increases with
the transversal field magnitude. However, the asymme-
try reduces rapidly with rotation. As the rotation speed
is greater than 5 RPM, the zone length becomes uniform.
The reason for this can be found in the Stefan boundary
condition in Eq. (10). With rotation, the Stefan term in
the angular direction, i.e., St(r Ω f ,ceeeθ · nnn), plays an im-
portant role in reducing the asymmetry of the interface
shapes. Similar situations were also discussed in hori-
zontal zone melting (Lan et al., 2000a) and Bridgman
crystal growth (Lan et al., 2000b).

The effect of rotation on the radial dopant segregation in
terms of the normalized radial concentration difference
is summarized in Fig. 7a. Without rotation, the case
with 0.5T transversal field has the lowest radial segrega-
tion. As also discussed in earlier analyses (Lan and Yeh,
2004), this is due to better dopant mixing caused by the
stronger Marangoni convection in the plane perpendicu-
lar to the magnetic field (that is not suppressed). Interest-
ingly, the radial segregation increases with rotation when
the speed is less than 5 rpm. As the rotation speed is
further increased, the radial segregation decreases again.
Surprisingly, the case under 1T transversal field shows a
different trend. However, for the axial field, the effect of
rotation is trivial; the flow at 1T is greatly dumped, and
the flow due to rotation tends to be also suppressed.

Clearly, the radial segregation is affected by the local
mixing in the melt core near the growth interface, but is
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Figure 7 : Effect of rotation on (a) radial dopant segregation and (b) effective segregation coefficient (Keff) for axial
and transversal fields.

difficult to discern these effects on the basis of the global
flow structure shown in Figs. 4 and 5. Nevertheless, it
should be pointed out that the poorer non-uniform dopant
mixing is, the larger radial segregation becomes. A uni-
form flow gives no mixing and thus the least segregation.
Similar results can be illustrated and discussed on the ba-
sis of the effective segregation coefficient Ke f f , which is
defined by C0/〈C〉 (Lan et al., 2000b); 〈C〉 is the average
dopant concentration in the molten zone. A better mixed
zone leads to a smaller Ke f f value. As shown in Fig. 7b,
for the rotation up to 20 RPM, in general, rotation has
little effect on the dopant mixing. This is consistent with
our observation. However, for the transversal field, the
effect of rotation on the global mixing is not trivial at
low rotation speeds. This also explains the subtle change
of the radial segregation caused by slow rotation shown
in Fig. 7a.

Finally, the 3D view of the dopant contours shown in Fig.
8 allows to easily discern the related effect of rotation.
For the transversal fields, the rotation brings the dopant
toward the center of the interface bridging the two dopant
peaks. On the other hand, similar to the Stefan effect at
the interface shape, rotation also generates angular segre-
gation due to the asymmetric interface shape, particularly
near the crystal surface, where the dopant concentration
has the lowest value. As a result, the rotation tends to

increase the radial segregation for the transversal field.
Similar simulation results for Bridgman crystal growth
could be found elsewhere. For the axial field at 1T, the
effect of rotation is not significant.

For silicon, the electric conductivity in the crystal is
about one order smaller than that in the melt. Therefore,
the centrifugal melt pumping (Hjellming and Walker,
1986; Lan and Yeh, 2004b) due to rotation in the
transversal field is not significant in the present study.
However, when the dopant level is high, the solid electri-
cal conductivity can be increased significantly. There-
fore, we also performed calculations by letting σc =
σm; accordingly the axial electric current across the
melt/crystal interface is increased significantly and en-
hances the centrifugal melt pumping. As shown in Fig. 8,
such an enhanced centrifugal pumping induces an over-
shoot on the dopant field at the center of the interface. As
a result, the radial segregation increases.

5 Conclusions

In this study, we have performed 3D calculations to in-
vestigate the effect of rotation on the flow and dopant
fields, as well as the zone shape, for a small-scale
floating-zone silicon growth in a mono-ellipsoid mirror
furnace under axial and transversal magnetic fields. In
general, when the counter rotation speed is less than 20
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Figure 8 : Effect of rotation on dopant distribution at the growth interface for transversal and axial magnetic fields;
the height and the color of each plot indicate the dopant concentration. The upper two rows are for the transversal
field, while the lowest row is for the axial field. The cases having σ f = σc = σm are also included for comparison.

rpm, the rotation effect on the overall flow and thermal
fields is small. However, the asymmetry of the zone
length and growth interface due to the transversal field
can be significantly reduced by rotation. The effect of
rotation on the radial segregation is also significant for
the transversal field, while its effect is smaller for the ax-
ial field case. Increasing the electrical conductivity of
the crystal enhances centrifugal melt pumping. For the
transversal field at a slow rotation rate, the centrifugal
pumping significantly increases radial segregation. Nev-
ertheless, rotation has little effect on the global dopant
mixing.
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Dold, P.; Cröll, A.; Benz, K. W. (1998): Floating-zone
growth of silicon in magnetic fields. I. Weak static axial
fields, J. Crystal Growth, vol. 183, no. 4, pp. 545-553.

Gelfgat A. Yu., Rubinov A., Bar-Yoseph P. Z. and
Solan A., (2005): On the three-dimensional instability of
thermocapillary convection in arbitrarily heated floating
zones in microgravity environment, FDMP, vol.1, no. 1.

Herrmann, F. M.; Müller, G. (1995): Growth of 20 mm
diameter GaAs crystals by the floating-zone technique
with controlled As-vapour pressure under microgravity,
J. Crystal Growth, vol. 156, pp. 350-360.

Hjellming, L. N.; Walker, J. S. (1986): Melt motion
in a Czochralski crystal puller with an axial magnetic
field, isothermal motion, J. Fluid Mechanics, vol. 164,
pp. 237-273.



Effects of Rotation on Heat Flow, Segregation, and Zone Shape 43

Khine, Y. Y.; Walker, J. S.; Szofran, R. F. (2000):
Thermoelectric magnetohydrodynamic flow during crys-
tal growth with a moderate or weak magnetic field, J.
Crystal Growth, vol. 212, pp. 584-596.

Lan, C. W. (1996): Effect of axisymmetric magnetic
fields on radial dopant segregation of floating-zone sil-
icon growth in a minor furnace, J. Crystal Growth, vol.
169, no. 2, pp. 269-278.

Lan, C. W.; Liang, M. C. (1997): A three-
dimensional finite-volume/Newton method for thermal-
capillary problems, Int. J. Numerical Methods in Engi-
neering, vol. 40, pp. 621-636.

Lan, C. W.; Liang, M. C. (1999): Multigrid methods
for incompressible heat flow problems with an unknown
interface, J. Comput. Phys., vol. 152, pp. 55-77.

Lan, C. W.; Chian, J. H. (2001): Three-dimensional
simulation of Marangoni flow and interfaces in floating-
zone silicon crystal growth, J. Crystal Growth, vol. 230,
pp. 172-180.

Lan C. W.; Chian, J. H.; Wang, T. Y. (2000a): Inter-
face control mechanisms in horizontal zone-melting with
slow rotation. J. Crystal Growth, vol. 218, pp. 115-124.

Lan, C. W.; Liang, M. C.; Chian, J. H. (2000b): In-
fluence of ampoule rotation on three-dimensional con-
vection and segregation in Bridgman crystal growth un-
der imperfect growth conditions, J. Crystal Growth, vol.
212, pp. 340-351.

Lan, C. W.; Yeh, B. C. (2004): Three-dimensional
simulation of heat flow, segregation, and zone shape in
floating-zone silicon growth under axial and transversal
magnetic fields, J. Crystal Growth, vol. 262, pp. 59-71.

Lan, C. W.; Yeh, B. C. (2004b): Three-dimensional
analysis of flow and segregation in vertical bridgman
crystal growth under a transversal magnetic field with
ampoule rotation, J. Crystal Growth, vol. 266, pp. 200-
206.

Lappa, M. (2003): Three-dimensional numerical simu-
lation of Marangoni flow instabilities in floating zones
laterally heated by an equatorial ring, Physics of Fluids,
vol. 15, no. 3, pp. 776-789.

Lappa, M. (2004): Combined effect of volume and
gravity on the three-dimensional flow instability in non-
cylindrical floating zones heated by an equatorial ring,
Physics of Fluids, vol. 16, no. 2, pp. 331-343.

Lappa, M. (2005): Analysis of flow instabilities in con-

vex and concave floating zones heated by an equatorial
ring under microgravity conditions”, Computers & Flu-
ids, vol. 34, no. 6, pp. 743-770

Ma, N.; Walker, J. S.; Ludge, A.; Riemann, H. (2000):
Silicon float zone process with a weak transverse mag-
netic field and crystal rotation, J. Electrochemical Soci-
ety, vol. 147, pp. 3529-3534.

Nakamura, S.; Hibiya, T.; Kakimoto, K.; Imaishi,
N.; Nishizawa, S.; Hirata, A.; Mukai, K.; Yoda, S.;
Morita, T. S. (1998): Temperature fluctuations of the
Marangoni flow in a liquid bridge of molten silicon un-
der microgravity on board the TR-IA-4 rocket, J. Crystal
Growth, vol. 186, no. 1-2, pp. 85-94.

Rhie, C. M.; Chow, W. L. (1983): Numerical study of
the turbulent flow past an airfoil with trailing edge sepa-
ration, AIAA J., vol. 21, no.11, pp. 1525-1532.

S.V. Patankar (1980): Numerical Heat Transfer and
Fluid Flow, Hemisphere, Washington DC.

Riemann H., Ludge A., Hallmann B., Turschner T.,
High Purity Silicon IV, C.L. Claeys, P. Rai-Choudhury,
P. Stallhofer, J. E. Maurits, Editors, PV 86-13, The
Electrochemical Society Proceedings Series, Pennington,
NJ, pp. 49 (1996).

Rivas, D.; Haya, R. (2002): Analysis of secondary ra-
diation (multiple reflections) in monoellipsoidal mirror
furnaces, J. Crystal Growth, vol. 241, pp. 249-260.

Robertson, G. D.; O’Connor, D. J. (1986): Magnetic
field effects on floating-zone Si crystal growth. II. strong
transversal fields, J. Crystal Growth, vol. 76, pp. 100-
110.
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