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ABSTRACT: To address the issues of insufficient and imbalanced data samples in proton exchange membrane fuel
cell (PEMFC) performance degradation prediction, this study proposes a data augmentation-based model to predict
PEMFC performance degradation. Firstly, an improved generative adversarial network (IGAN) with adaptive gradient
penalty coefficient is proposed to address the problems of excessively fast gradient descent and insufficient diversity of
generated samples. Then, the IGAN is used to generate data with a distribution analogous to real data, thereby mitigating
the insufficiency and imbalance of original PEMFC samples and providing the prediction model with training data rich
in feature information. Finally, a convolutional neural network-bidirectional long short-term memory (CNN-BiLSTM)
model is adopted to predict PEMFC performance degradation. Experimental results show that the data generated by
the proposed IGAN exhibits higher quality than that generated by the original GAN, and can fully characterize and
enrich the original data’s features. Using the augmented data, the prediction accuracy of the CNN-BiLSTM model is
significantly improved, rendering it applicable to tasks of predicting PEMFC performance degradation.

KEYWORDS: PEMFC; performance degradation prediction; data augmentation; improved generative adversarial
network

1 Introduction

Hydrogen energy, as a green and efficient energy carrier, plays a crucial part in the global energy shift.
Proton exchange membrane fuel cells (PEMFC) are extremely promising devices for converting hydrogen
into electricity, due to their advantages such as elevated energy density, superior conversion efficiency, and
moderate operating temperatures [1,2]. However, PEMFC experience irreversible performance degradation
during operation, which is caused by both environmental factors and inherent material constraints [3].
Forecasting PEMFC performance degradation is of great significance for cutting down PEMFC maintenance
expenses, avoiding malfunctions, and prolonging their lifespan.

PEMEFC performance degradation prediction primarily relies on model-driven and data-driven
approaches [4,5]. Model-driven approaches typically describe the PEMFC degradation process via math-
ematical models, followed by identifying, estimating, and updating model parameters to predict the
degradation trajectory [6]. These methods rely heavily on precise mathematical models. However, PEMFCs
have intricate internal characteristics, which impede the development of accurate models and result in
low degradation prediction accuracy [7]. Furthermore, mathematical models exhibit poor generalization
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under varying design parameters and operating conditions [8], limiting the practical application of model-
driven approaches. Data-driven methods eliminate the need to establish mathematical models for PEMFCs.
Instead, they leverage statistics, machine learning, and artificial intelligence to mine patterns and features
from massive historical experimental data, thereby forecasting performance degradation trends [9-12].
Currently, various data-driven methods have been applied to PEMFC performance degradation prediction,
including backpropagation neural networks (BPNN) [13], kernel extreme learning machines (KELM) [14],
recurrent neural networks (RNN) [15], long short-term memory networks (LSTM) [16], convolutional neural
networks (CNNs) [17], bidirectional long short-term memory (BiLSTM) [18], CNN-LSTM [19], CNN-
BiLSTM [20,21], Transformer [22] and others. Among these methods, CNN-BiLSTM achieves a relatively
balanced performance in prediction accuracy and computational efficiency. Meanwhile, it can efficiently
extract local spatial features and bidirectional temporal information, and has strong processing capabilities
for multi-dimensional, spatiotemporally intertwined prediction tasks [23].

Although data-driven methods offer numerous advantages. However, they all require substantial
training data to enhance the accuracy of prediction models. In practical operational environments, most data
monitoring for PEMFC occurs under normal operating conditions, while monitoring data for faults, failures,
and unknown states is scarce [24]. Such imbalanced and insufficient training data will degrade prediction
models’ performance [25]. As data mining techniques and artificial intelligence keep advancing, generative
adversarial network (GAN) have been widely applied in data analysis and data mining [26]. GAN generate
synthetic data that follows a distribution similar to that of the original real data, thereby addressing issues
such as insufficient sample size and sample imbalance [27]. Nevertheless, GAN are plagued by issues such as
network gradient vanishing and instability. Wasserstein generative adversarial networks (WGANs) were put
forward to tackle the issue of gradient vanishing [28], but their use of the fastest gradient descent prevents
them from fully extracting more feature information. The WGAN based on gradient penalty (WGAN-GP)
was put forward to address the problem of excessively fast gradient descent [29]. However, the distribution
of generated samples relies more heavily on the distribution of original samples. In PEMFC prediction, it
cannot generate more sample points near the failure criticality, which is unfavorable for the progress of
prediction tasks.

In this paper, an improved generative adversarial network (IGAN) with adaptive gradient penalty
coefficient is proposed to address the problems of excessively fast gradient descent and insufficient diversity
of generated samples. Data generated by IGAN that matches the PEMFC distribution and has high diversity
to address insufficient data at failure critical points in performance degradation prediction. A CNN-BiLSTM
prediction model is used to forecast PEMFC performance degradation. Experimental results demonstrate
that the synthetic data generated by the proposed IGAN exhibits higher quality, and it can fully characterize
and enrich the features contained in the original data. With data augmentation, the CNN-BiLSTM model’s
prediction accuracy gets enhanced, making it suitable for PEMFC performance degradation prediction tasks.

This paper is structured as follows: Section 2 introduces the relevant theoretical methods and the
improvements made in this paper. Section 3 thoroughly describes the structure and core steps of the
proposed approach. Section 4 carries out experimental studies to validate the effectiveness of the proposed
method and compares it with other techniques. Lastly, Section 5 draws the conclusions.

2 Methodology
2.1 Generative Adversarial Network (GAN)

Motivated by the Nash equilibrium theory, Goodfellow et al. put forward GAN [30]. GAN allows
generated data to match the distribution of actual data through adversarial training.
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In this paper, GAN is utilized to generate and augment PEMFC data to address the sample imbalance
issue. Fig. 1 illustrates the schematic diagram of the GAN model, which mainly consists of two parts:
a generator G and a discriminator D. The generator is in charge of creating PEMFC data, while the
discriminator is responsible for identifying the authenticity of the data. The specific steps are as follows:
random noise z with the distribution P, is fed into generator G to generate PEMFC data G(z) conforming to
the distribution P,. Generated data G(z) and real data x with the distribution P,,, are combined and input
into discriminator D training purposes. During this process, discriminator D is trained to tell if sample data
comes from generated data or real data. After that, the trained discriminator is utilized to train generator G,
allowing it to create samples more similar to actual fuel cell data. Ultimately, the generator creates data so
similar to real data that it can fool the discriminator, whereas the discriminator can no longer tell real and
fake data apart. Through this adversarial process, generated data conforming to the distribution of actual
PEMEFC data is obtained.

x~P,

data

Discriminator network

Generator network

P

z~P Vi il G(2)~ P,

Real or
Fake?

Training and parameters adjustment

Figure 1: The schematic diagram of the GAN model

Discriminator loss function, generator loss function, and overall optimization objective function of
GAN are as follows, respectively:

L(D) = max Ey.p,,, [log D(x)] + E:.p. [log(1 - D(G(2))]
L(G) = min E;.p. [log(1 - D(G(2))] , ®
rnGin max V(D,G) = Ex.p,,,[log D(x)] + E..p,[log(1 - D(G(2))]

where, L (D) and L¢ represent the loss functions of the discriminator and the generator, respectively.
mGin max V (D, G) denotes the overall objective function of GAN. E[-] denotes the mathematical expectation
of the distribution function. D(:) and G(:) serve as the functions of the discriminator and the generator,
respectively. E,.p, . [log D (x)] indicates the probability that the discriminator classifies real data as authen-
tic samples, and E...p, [log(1 -~ D(G(z))] indicates the probability that the discriminator classifies generated
samples as fake ones.

Minimizing the divergence between the G (z) and x which can also be represented by the distance
between the distributions P, and Py,,. The objective function can be expressed as:

min F (D, G) = 2Dy (Pg | Paata) - 2In(2), (2)

where, Djs(Pq||Paata)) denotes the Jensen-Shannon (JS) divergence between P, and Py, which is a
metric for gauging the distance between these two distributions. When the discriminator D is trained to



4 Energy Eng. 2026;123(2):18

its optimal state, the divergence between the two distributions vanishes, and the generator converges to the
global minimum.

Following numerous rounds of adversarial training, the generator and discriminator achieve Nash equi-
librium. This means that the probability of the discriminator distinguishing between real and fake samples
approaches 0.5, indicating that the generator generates data of high quality, which is indistinguishable from
real data.

2.2 An Improved GAN

During the adversarial training of GAN, the stochastic mini-batch gradient descent algorithm is
employed to update the parameters of the generator and discriminator. However, when there is no overlap
between the distribution of real data and that of generated data, the Jensen-Shannon divergence between
the two turns into a constant. This gives rise to the issue of gradient vanishing and further causes instability
in GAN’s training process. Besides, GAN typically adopts shallow network architectures, which makes it
challenging to learn complex data structures and thereby restricts the diversity of samples. To tackle these
problems, this paper puts forward an improved GAN (IGAN) strategy as follows.

The smoother Wasserstein distance is utilized to substitute the Jensen-Shannon divergence for gauging
the distance between generated samples and real ones. The Wasserstein distance can be expressed as follows:

1
Dy (Paatas Pg) = 1 599 By, Lf ()] = Ber, [f (G ()], )
11 <k
where, | f|, x denotes that the function f is Lipschitz continuous, and its Lipschitz constant does not exceed
K. In another words, any two independent variables within the domain satisfy:

f () = f (2) < K- oer = s (4)

Since it is impossible to solve by traversing all joint distributions, a set of parameters {w; } is used to fit
the function f via a neural network to represent all possible functions f,,. Thus, the Wasserstein distance can
be approximately expressed as:

KD, (Paatar Py) = X Beepy, [fu ()] = Eeer, [ (G (2))]. )

According to Eq. (5),a discriminative network f,, with parameters {w; } is constructed, whose final layer
excludes a non-linear activation layer. Under the constraint that the parameters {w; } are bounded within a
certain range w; € [—c, ¢]. Maximizing D,, (Pdm, Pg) to approximate the Wasserstein distance between the
real and generated distributions.

After optimizing the discriminator, the generator is then optimized to cut down the Wasserstein distance
between the real distribution and the generated one, thus making generated data more similar to real data.
The loss functions for the discriminator and the generator can be stated as:

L, (D)= E;p, [fw (G (2))] = Exnpyy, [fw (%)]5 (6)
Ly (G) = =E..p, [fw (G (2))]. (7)

The loss functions can indirectly reflect the training status, thereby enhancing the interpretability of the
training process.
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Although the problem of gradient vanishing can be avoided using the Wasserstein distance, the
parameter {w; } must be bounded within a certain range to ensure that the discriminator satisfies Lipschitz
continuity. However, the clipping strategy for parameters {w; } has a significant negative impact on optimiza-
tion: weights are often clipped to c or —c, causing the neural network to adopt the simplest method to achieve
the fastest gradient descent. In this case, the network can only learn simple features, which limits the quality
of generated samples. To address this issue, this study introduces gradient penalty (GP) into discriminator
D’s loss function to add gradient constraints on input samples, thereby reducing the update rate of weights
and ensuring that weight changes remain within a reasonable range. The gradient penalty method is stated
as follows:

GP = BEs-p, [ (V2o (£)

-1, (®)

where,  denotes the penalty coefficient, and x represents the linear interpolation between generated samples
and real samples, which can be described as:

2=nx+(1-1)G(2), 9)

where, 7 is uniformly distributed over the interval [0, 1].

In PEMFC data, the sample size corresponding to normal states is typically large, while that corre-
sponding to abnormal states is small. During GAN training, the distribution of gradient norms |V f,, (%)||,
dynamically changes under the influence of factors such as data distribution and the generator. The use of a
fixed penalty coefficient 8 may lead to excessively strong or weak constraints. Excessively strong constraints
will make the generator more inclined to generate “normal state data” with a large sample size, while
excessively weak constraints will result in training collapse. To address this issue, we apply the adjustment

mechanism of the proportional controller to the regulation of the penalty coefficient, as detailed below:

Besr=(x (e =1) +1) e (10)

where, ; denotes the penalty coeflicient at the ¢-th training iteration, y, represents the moving average of
gradient norms at the ¢-th iteration, and y is the adjustment rate. By continuously correcting the error, the
gradient norms are stabilized around the target value, thus approximately satisfying the 1-Lipschitz condition.

The discriminator’s objective loss function is updated in the following way:

R 2
Lup (D) = ~Exepyy, L ()] + Eeer, [ (G (2)]+ BiBson, | (95 f (2], =1)°] (1)

IGAN can achieve uniform distribution of gradients during the training process, enabling it to better
extract features and boost the stability of training.

2.3 CNN-BiLSTM

The CNN can alternately use convolutional layers and pooling layers through local connectivity and
weight sharing, enabling it to obtain effective representations from original signals, automatically capture
local data features, and build dense, comprehensive feature vectors [31]. BILSTM is made up of two separate
LSTM structures, conducting forward and backward feature learning on the input sequence [32]. This lets
it thoroughly capture the past and future info of the input time-series data, efficiently enhance the model’s
capacity to capture dependencies, and boost prediction accuracy. This paper uses the CNN-BiLSTM hybrid
model as the predictor for fuel cell performance degradation, with its structure depicted in Fig. 2.
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Figure 2: The model structure of CNN-BiLSTM

The CNN consists of an input layer, convolutional layers, pooling layers, fully connected layers, and an
output layer. The convolutional layer acts as the core part of the whole CNN, where the convolutional kernel
is utilized to filter and capture local features from the data, which is expressed as follows:

Cj:fR(ZA*W-Fb), (12)

where, C; denotes the convolutional kernel, fr represents the non-linear ReLU activation function, A is the
input, W denotes the weight, * represents the convolution operator, and b is the bias.

Pooling layers serve to compress data and eliminate redundant information to avoid overfitting. This
paper adopts max-pooling layers. After pooling, features are integrated in fully connected layers to obtain
the CNN’s output data.

BiLSTM consists of forward and backward LSTM units. Each LSTM cell has a forget gate F;, an input
gate I;, and an output gate O, with their structure displayed in Fig. 3.



Energy Eng. 2026;123(2):18 7

Figure 3: The structure of BILSTM

The input gate I; regulates the state of the current input in the memory cell, the forget gate F; screens
the handling outcomes of the previous memory cell to decide whether to keep them; and the output gate O,
governs the output state of the memory cell. The network computation procedure of LSTM can be stated as
follows:

F, =0 (Wf [xs, b ] + bf) , (13)
I =0 (W;[x, hi] + ), (14)
C; = tanh (W, [x;, by ] + be) s (15)
Ci=F®C+1;0C, (16)
O =0 (W, [x, hi—1] +b,), 17)
h; = Oy ® tanh (C;), (18)

where, C, signifies the current cell state, C,_; stands for the previous cell state, C; denotes the updated cell
state, h; represents the LSTM’s hidden layer, h,_, is the previous hidden layer, o is the Sigmoid activation
function, tanh is the hyperbolic tangent activation function, x; is the current input. Wy, Wi, W, and W, are
the gate-corresponding weight coefficients. by, b;, b, and b, are the respective gate biases.

In BiLSTM, the hidden layer h; at each level is formed by the combination of the forward hidden layer
and the backward hidden layer, and can be expressed as:

— «—

ht: ht®ht> (19)

where, h, stands for the forward LSTM’s hidden layer, h, denotes the backward LSTM’s hidden layer, ®
indicates the element-wise sum of the forward output component and the backward output component.

In this paper, the CNN employs 2 convolutional layers to extract data features, and 1 pooling layer to
filter the extracted data features. Subsequently, the pooled feature data are used for prediction via BILSTM.
The specific parameter settings are as follows: The two convolutional layers of the CNN have 32 and
64 kernels, respectively, and employ the ReLU activation function. The BiLSTM contains 64 memory units
in the unidirectional mode, with a total of 128 memory units in the bidirectional mode. The fully connected
layer employs the ReLU activation function. For the CNN-BiLSTM model, the number of training epochs is
set to 300, the learning rate is 0.001, and the dropout rate is 0.2.

3 The Structure and Key Steps of the Proposed Method

In this paper, IGAN is put forward to augment PEMFC data, so as to balance data distribution
and fully reflect PEMFC’s degradation characteristics. Meanwhile, CNN-BiLSTM is utilized to predict
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PEMEC’s performance degradation. To clearly illustrate steps and architecture of the proposed approach, the
framework diagram is presented in Fig. 4. Main steps of this method are outlined as follows:

@riginal data of PEMF§
Abnormal data rejection Data smoothing
Data processing ¢ ¢
Data reconstruction Data selection
A 4
Real data » IGAN > Generated data

Data augmentation T T
by IGAN v

Augmentation data

!

CNN-BIiLSTM prediction model

!

(Performance degradation prediction results>

Figure 4: The framework diagram of the proposed prediction model

Step 1: Abnormal data in the original dataset is removed, and massive redundant data within the original
data is eliminated via data reconstruction. The quality of the data is improved via moving average processing.
Variables highly correlated with PEMFC performance are selected to predict performance degradation.

Step 2: The IGAN algorithm proposed in this paper is employed to generate synthetic data consistent
with the distribution of real PEMFC data. Real data and synthetic data are merged to form augmented data,
so as to improve the balance and diversity of the data.

Step 3: The CNN-BiLSTM model is used to predict the stack voltage of PEMFC, and performance
degradation of PEMFC is analyzed based on the prediction results.

4 Experimental Study

4.1 Data Description and Data Processing

An experimental dataset provided by the French Fuel Cell Laboratory (FCLAB) is used. A PEMFC was
tested for more than 1000 h on the platform. The fuel cell stack consists of 5 single cells with a rated power
of 1 kW, a single-cell active area of 100 cm?, the rated current density of 0.70 A/cm?, and a maximum current
density of 1 A/cm?* [33]. The steady-state dataset FCI was obtained under the condition that the operating
current density was constant at 0.7 A/cm?, while the quasi-dynamic dataset FC2 was acquired when the
operating current density varied within the range of (0.7 + 0.07) A/cm?. The feature parameters in the dataset
include time, single-cell voltage, stack voltage, current, as well as the temperature, humidity, flow rate, and
pressure of the reactant gas at the inlet and outlet. Observed from the original data, the stack voltage shows
a significant decrease or fluctuation over time. Therefore, this paper selects the stack voltage as the indicator
of PEMFC performance degradation and conducts prediction on it.
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During data collection, the data is susceptible to external interference, resulting in a large amount of
noise and abnormal data points in the original data. Meanwhile, there are numerous redundant samples in
the data, which can adversely affect the prediction results and increase the computational load of prediction.
Therefore, preprocessing of the original data is required. This paper employs the stationary wavelet transform
(SWT) algorithm to perform smoothing and denoising on the original data, and reconstructs the data at
a time interval of 0.5 h. After reconstruction, FC1 contains 2308 data samples and FC2 contains 2041 data
samples. The comparison between the stack voltage after smoothing and reconstruction and the original
stack voltage is shown in Fig. 5. As observed from the figure, the processed data not only preserves the
primary trend of the original data but also successfully removes noise and abnormal data points.
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Figure 5: The original data and processed data of stack voltage. (a) FC1; (b) FC2

The sampled data contains a large number of variables, but not every variable has a predictive
effect on battery performance degradation. Using irrelevant variables for prediction not only increases the
computational complexity of the model but also affects the prediction accuracy of the model. Therefore,
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this paper adopts the principal component analysis (PCA) method to analyze high-dimensional data, the
explained variance and cumulative explained variance is shown in Fig. 6.

T T - T |' T T T T T T T B /|®( _ —OI" - b_, ) 100
B Explained variance _e—-%
—© -Cumulative variance o~ "~

Explained variance / %
Cumulative variance / %

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Principal component

Figure 6: The explained variance and cumulative explained variance of PCA

The cumulative explained variance of the first nine principal components exceeds 90%. The loading
matrix of these nine principal components is used to calculate the weighted sum of each variable, so as
to measure the importance of each original variable. Variables with larger weighted sums are selected as
input variables. Finally, time, stack voltage, 5 single-cell voltages, current, current density, inlet air and
hydrogen temperatures, along with outlet air and hydrogen temperatures, are chosen as input variables for
the prediction model.

4.2 Augmented Data by IGAN

In this paper, 60% of PEMFC data is chosen as training data for the proposed predictor, with 40%
used as validation data. To verify the role of the proposed IGAN in data augmentation, the real PEMFC
training data is augmented. Among them, FC1 contains 1384 real samples and FC2 contains 1224 real samples.
GAN and IGAN are used respectively to generate samples. To verify quality of synthetic samples produced
here, t-distributed stochastic neighbor embedding (t-SNE) dimensionality reduction is performed on both
real samples and generated samples, and visualization is used to show the distribution of different datasets,
depicted in Fig. 7.

Fig. 7 shows that the distribution of generated data points is highly similar to that of real data points,
verifying that the data augmentation approach can acquire data with features akin to the real data. It can be
further observed that the distribution of GAN shows partial over-concentration, which is attributed to the
problem of insufficient features in generated data caused by gradient vanishing. In contrast, the distribution
of IGAN is more uniform than that of GAN, implying the IGAN proposed herein has better performance
and the generated data has higher quality.

To quantify the effect of data augmentation more clearly, the voltage decay interval of the FC1 stack is
used to measure the sample distribution before and after data augmentation, as shown in Table 1.
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Figure 7: The t-SNE view of the distribution of reduced features of real data and generated data. (a) Data augmentation
by GAN of FCI; (b) Data augmentation by IGAN of FCI; (¢) Data augmentation by GAN of FC2; (d) Data augmentation
by IGAN of FC2
Table 1: Data sample size and distribution under different methods
Voltage decay interval Methods Sample size Percentage
Xgﬁgﬁtﬁfgi 252 18.21%
0419
Decay 0%-1% GAN 483 17.45%
IGAN 500 18.07%
X;iﬁﬁ:iféi 412 29.77%
040
Decay 1%-2% GAN 839 30.31%
IGAN 823 29.73%
swgmentaton 5 750%
0,30,
Decay 29%-3% GAN 1048 37.86%
IGAN 1032 37.28%
:X;ﬁgﬁtif;i 201 14.52%
i 0,
Decay exceeding 3% GAN 398 14.38%
IGAN 413 14.92%

As can be seen from the table, in the original data, the distribution proportions in the 1%-2% decay
interval and 2%-3% decay interval are relatively large, while the proportion of data with stack voltage
decay greater than 3% is small, which is not conducive to the prediction of stack performance degradation.
Through data augmentation methods such as GAN and IGAN, the number of stack prediction samples



12 Energy Eng. 2026;123(2):18

can be effectively increased, thereby improving the prediction accuracy. The data imbalance coeflicients of
the original data, the data augmented by GAN, and the data augmented by IGAN are 0.6128, 0.6202, and
0.5998, respectively.

The above conclusions indicate that data augmentation can effectively increase the number of samples.
Furthermore, the sample features generated by the IGAN data augmentation method proposed in this paper
are more consistent with the distribution of the original samples, and the degree of stack voltage imbalance
in the generated samples has been improved.

4.3 PEMEFC Performance Degradation Prediction

To check the enhancement brought by the proposed IGAN method to the prediction ability for PEMFC
performance degradation, the real dataset is split into training data (60%) and prediction validation data
(remaining 40%), and the real data is augmented with IGAN. For comparison, two more data groups are
established: one augmented by GAN and the other using original real data. These three data groups are
respectively used for prediction via the CNN-BiLSTM model, and the prediction outcomes are presented
in Fig. 8
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Figure 8: Prediction results by CNN-BiLSTM with different datasets. (a) FC1; (b) FC2
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It can be seen from the Fig. 8 thatin both FC1and FC2 datasets, the CNN-BiLSTM method can well track
the trend of PEMFC voltage changes, yet the error between predicted values and true values is notably larger
than that of methods with data augmentation. In contrast, predicted values of the IGAN-CNN-BiLSTM
method proposed in this paper basically overlap with the actual curve. To more intuitively show deviations
between predicted values and true values of the three methods, residual plots and residual distribution plots
of these three methods are presented in Figs. 9 and 10.
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Figure 9: Residual of prediction results. (a) FC1; (b) FC2
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Figure 10: Residual distribution of prediction results. (a) FCl1 by CNN-BiLSTM; (b) FC1 by GAN-CNN-BiLSTM;
(c) FC1 by IGAN-CNN-BILSTM; (d) FC2 by CNN-BiLSTM; (e) FC2 by GAN-CNN-BILSTM; (f) FC2 by IGAN-CNN-
BiLSTM

From residual plots and residual distribution plots, models based on data augmentation have smaller
prediction errors, and their distributions are more concentrated and stable. In particular, the prediction
error of this paper’s proposed IGAN-CNN-BiLSTM model is extremely small. This indicates that data
augmentation is vital for enhancing the model’s prediction capability, and this paper’s proposed IGAN’s effect
is superior to that of the original GAN.
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Since this paper integrates the iGAN data augmentation and the CNN-BiLSTM prediction model, which
consists of multiple components, we conduct ablation experiments to verify the role of each module in
prediction. We use RMSE, Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R*)
as performance metrics to evaluate the role of each module in prediction on the FCI dataset. Meanwhile,
training time and prediction time are used to measure the computational efficiency of each method. All
time measurements are performed on the same computer platform, with the main configurations as follows:
Matlab 2024a, Intel i9-13900H, RTX-4070 Ti. The results of the ablation experiments are listed in Table 2.

Table 2: The results of the ablation experiments

RMSE MAPE ,  Training Prediction
V) (%) time (s)  time (s)
0.0047 01454  0.7353  8.1232 0.0001
0.0049 01213  0.7812 10.9951 0.0001
0.0036 0.0821  0.8768 16.1232 0.0001
0.0023 0.0514 09124 65.8127 0.0001
0.0010 0.0492  0.9611 69.1547 0.0001

No. GAN IGAN CNN BiLSTM

G W N =
|
|
LT <
L

It can be seen form the results, CNN and BiLSTM perform less favorably than CNN-BiLSTM in terms
of prediction model performance. After applying GAN for data augmentation, both RMSE and MAPE of
the prediction results decrease, indicating a reduction in the error between the predicted values and the
true values. The increase in R* demonstrates that the prediction model achieves a better fitting effect on
the data and exhibits higher accuracy in predicting fluctuating data. Following the improvement of GAN,
all performance metrics are further enhanced, which verifies the effectiveness of all key components in the
method proposed in this paper.

From the perspective of computational time, the proposed method in this paper exhibits a longer
training time due to the incorporation of GAN; however, this increase is fully acceptable for long-term
prediction tasks in PEMFC forecasting. Meanwhile, once the prediction model is trained, its inference time
(for the prediction phase) is essentially consistent with that of other methods. Therefore, the model can be
trained in an offline manner, and the offline-trained model can be deployed for online prediction.

4.4 PEMFC Performance Degradation Prediction by Different Prediction Methods

To verify how the proposed prediction approach performs under varying training set proportions, the
share of training data for the prediction model is set to 40%, 50%, and 60%, respectively. The proposed
approach is contrasted with other typical prediction techniques like CNN, BiLSTM, CNN-BiLSTM, and
GAN-CNN-BiLSTM. Root mean square error (RMSE) is used to assess each model’s prediction performance,
and each model’s prediction results are presented in Fig. 11.

Fig. 11 shows that each model’s prediction accuracy varies with different training set proportions of
the dataset. When training data is limited, CNN and BiLSTM models’ prediction accuracy is significantly
inferior to other methods. The CNN-BiLSTM model’s prediction performance has improved, indicating it
can effectively extract features from historical PEMFC data and yield favorable prediction results. Results
also show that data augmentation-based methods, especially this paper’s proposed method, have further
enhanced prediction accuracy. This suggests that data augmentation methods can further enrich the feature
information of PEMFC data, enabling accurate prediction of voltage variation trends.
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Figure 11: Prediction results by different methods with different training set ratio. (a) FCI; (b) FC2

5 Conclusions

To address the issue of insufficient and imbalanced data affecting the prediction accuracy of models
in PEMFC performance degradation prediction, this paper proposes an improved GAN (IGAN) data
augmentation method to augment the sample data, and adopts the CNN-BiLSTM prediction model to
predict PEMFC performance degradation. The proposed method is validated using data under two operating
conditions: stationary and quasi-dynamic. The conclusions are as follows:

(1)  Experiments show that the distribution of synthetic samples augmented by the proposed IGAN is
similar to that of real samples in terms of data features. Compared with the over-concentration issue of
samples generated by GAN, IGAN addresses inherent drawbacks such as gradient vanishing and can
generate more abundant feature information.
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(2) The prediction models based on data augmentation exhibit significantly higher prediction accuracy
than those that only use real samples. Data augmentation can notably enhance the performance of
prediction models.

(3) Comparative experiments indicate that the improvement in prediction accuracy of the proposed
method mainly benefits from data augmentation and the CNN-BiLSTM prediction model. Further-
more, future studies could conduct further investigations into the network structure. Meanwhile, the
present study has not addressed the issue of parameter selection in the model, which also merits
attention in future research.
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