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ABSTRACT: Data center industries have been facing huge energy challenges due to escalating power consumption
and associated carbon emissions. In the context of carbon neutrality, the integration of data centers with renewable
energy has become a prevailing trend. To advance the renewable energy integration in data centers, it is imperative
to thoroughly explore the data centers’ operational flexibility. Computing workloads and refrigeration systems are
recognized as two promising flexible resources for power regulation within data center micro-grids. This paper identifies
and categorizes delay-tolerant computing workloads into three types (long-running non-interruptible, long-running
interruptible, and short-running) and develops mathematical time-shifting models for each. Additionally, this paper
examines the thermal dynamics of the computer room and derives a time-varying temperature model coupled to
refrigeration power. Building on these models, this paper proposes a two-stage, multi-time scale optimization schedul-
ing framework that jointly coordinates computing workloads time-shift in day-ahead scheduling and refrigeration
power control in intra-day dispatch to mitigate renewable variability. A case study demonstrates that the framework
effectively enhances the renewable-energy utilization, improves the operational economy of the data center microgrid,
and mitigates the impact of renewable power uncertainty. The results highlight the potential of coordinated computing
workloads and thermal system flexibility to support greener, more cost-effective data center operation.
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1 Background and Motivation
Artificial Intelligence (AI) has experienced explosive growth in recent years and plays a pivotal role in

improving productivity and driving economic development. Under this background, data has increasingly
emerged as a primary factor of production, and society is rapidly transitioning into the digital economy
era that stimulates unprecedented demand for computational capacity. Data centers, functioning as the
backbone for data processing and storage, are thus emerging as vital socio-economic infrastructure during
this transition [1].

The data center industries are facing huge energy challenges due to their high power consumption
and carbon emissions. Worldwide, data centers consume approximately 460 TWh of electricity annually,
comprising nearly 2% of the global electricity use [2]. With world’s over 8000 data centers, the United States,
Europe, and China host a significant portion of these facilities, which are 33%, 16% and 10%, respectively.
In 2022, US data centers consumed 200 TWh of electricity, accounting for about 4% of the national
electricity consumption. China’s data center electricity consumption reached 216.6 TWh, roughly 2.6% of
the societal electricity consumption in 2021. The CO2 emissions from data centers reached 135 million tons,
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approximately 1.14% of the national emissions [3]. Emerging AI models with billions of parameters demand
enormous energy during their training, and as AI technology evolves, data centers’ power consumption
and carbon emissions will continue to grow [4]. In the pursuit of carbon neutrality, the integration of data
centers with renewable energy sources has emerged as an inevitable trend [5]. China’s ‘Channeling computing
resources from the east to the west’ policy was introduced against this backdrop, aiming to optimize the data-
center layout and promote green energy utilization by leveraging the abundant wind and solar resources of
the western regions [6].

To effectively integrate the intermittent renewable energy, it is essential to extensively analyze the
operation flexibility of data centers [7]. Fig. 1 illustrates the structural overview of a green data center
micro-grid. The information technology (IT) equipment mainly includes the servers that provide computing
resource for workloads. The refrigeration system provides cooling resources to extract the heat generated
from the IT equipment. The power infrastructure connects the wind, photovoltaic (PV) power system and
main-grid in supply side and IT equipment, refrigeration system in power demand side.

Figure 1: Structure of green data center

Data centers manage an exponentially increasing volume of computational workloads driven by
continuous enhancements in processing capabilities. As computing workloads migrate across the network in
temporal and spatial domains, the associated power consumption of the data center correspondingly varies.
Thus, computing workloads exhibit significant spatiotemporal adjustable characteristics [8]. Additionally,
computer room temperature can fluctuate within predefined limits, and the temperature change exhibits a
temporal delay relative to the cooling power change. By dynamically modulating the refrigeration power
within acceptable temperature bounds, fluctuations in renewable energy generation can be effectively
managed [9]. Consequently, the refrigeration system functions as an auxiliary flexible resource for data center
micro-grid operations.

This study concentrates on formulating power regulation models for delay-tolerant computing work-
loads and refrigeration system within data centers, and incorporating these flexible regulation models
into power scheduling framework of data centers to increase the operational economy and maximize the
utilization of renewable energy. Section 2 reviews pertinent literature to delineate the existing state of
research and to identify critical knowledge gaps.

2 Literature Review
In recent studies, leveraging the spatiotemporal flexibility of computing workloads in data centers to

promote renewable energy utilization has emerged as a new research focus. Chen et al. [10] analyzed the
topology of computing power networks from an energy perspective, and used price leverage to guide the
spatial shift of workloads from interconnected data centers to promote the renewable energy utilization and
improve the grid resilience. Yang et al. [11] proposed a spatial migration mechanism of computing workloads
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based on the spatiotemporal distribution complementarity of renewable energy in multiple regions around
the world, and conducted simulations using Google’s interconnected multiple data centers to minimize
carbon emissions. However, the aforementioned research focuses mainly on the spatial redistribution of
computing workloads across multiple data centers, with limited attention to the temporal shift of workloads
within individual data centers.

The flexibility of computing workloads within an individual data center primarily manifests in their
temporal transferability. According to the length of response delay, workloads can be categorized into
delay-sensitive and delay-tolerant types [12]. Delay-sensitive workloads primarily refer to ‘online tasks’, or
’interactive workloads’ that provide real-time feedback to users. Delay-tolerant workloads, by contrast, refer
to ‘offline tasks’ or ‘batch processing workloads’ that execute a series of jobs based on a computer program
without human intervention; Their maximum response time can range from several minutes to days [13].
By dynamically adjusting the delay-tolerant workloads’ start time and the amount of computation load for
each time interval within the response deadline, the power consumption of workloads can be controlled.
This study concentrates on the temporal flexibility of workloads within an individual data center.

Studies regarding the temporal flexibility modeling of delay-tolerant workloads within an individual
data center have been conducted. Liu et al. [14] proposed a power consumption model for the delay-tolerant
workloads and integrated it with a renewable power supply model. The optimal plan of generator units’ out-
puts and workloads scheduling was obtained with the objective of minimizing operation cost of data centers.
Cupelli et al. [15] simulated the power consumption of delay-tolerant workloads considering their arrival,
queuing, and execution process. By coordinating workloads scheduling with cooling systems and energy-
storage devices, they demonstrated reductions in overall data-center energy costs. Kwon [16] analyzed the
time-shift characteristics of a simple delay-tolerant workload and developed a flexible mechanism model
to shift workloads power consumption towards periods of high renewable generation. The studies above
highlight the potential of delay-tolerant workloads to provide flexible regulation in individual data centers.

However, existing studies have primarily focused on modeling single, simple time-shiftable work-
load and haven’t comprehensively accounted for multiple time-shiftable workload types with distinct
operational characteristics and shifting behaviors. Comprehensive modeling of multiple delay-tolerant
workloads, and systematic integration of these models into data center power dispatch frameworks, remain
insufficiently explored.

Furthermore, the refrigeration system serves as an additional flexible resource in data center opera-
tions. Data centers commonly employ refrigeration systems to maintain suitable thermal conditions. With
advancements in technology, the temperature requirements for server clusters have become less stringent.
The ASHRAE introduced the ‘Data Center Environmental Thermal Guidelines’ in 2014, extending the design
ranges for maximum allowable computer room temperatures to 32○C, 35○C, 40○C, and 45○C across A1–
A4 classifications. Considering the temperature fluctuation range and thermal inertia, existing research
investigated the feasibility of utilizing refrigeration modulation to optimize data center operation. Tang
et al. [17] established the first-order equivalent thermal parameter model to analyze the thermal load
dynamics of the air condition system in base stations. By incorporating temperature variation boundaries,
they employed day-ahead demand response strategies utilizing start-stop control to manage cooling and
heating loads. Zhu et al. [18] formulated a temperature response model considering thermal inertia within
data center environments and proposed dynamic temperature regulation strategies to optimize real-time
renewable energy utilization. These investigations demonstrate the potential of using temperature and
refrigeration modulation to enhance power scheduling efficiency in data centers. However, they don’t
address the coordination of computing workloads time-shift and refrigeration modulation in data center
operational management.
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In light of the deficiencies, this research aims to provide a power scheduling framework for data center
by incorporating the computing workloads shift and refrigeration regulation. To this aim, this work first
analyzes the time-shift characteristics of three kinds of typical delay-tolerant computing workloads and
establishes the corresponding time-shift models. Then, this work quantitatively examines the heat transfer
process of data center and builds the time-variant model of computer room temperature. Last, this work
proposes a two-stage multi-time scale optimization scheduling framework for the green data center, where
the time-shift models of workloads are incorporated into the day-ahead optimization scheduling, and the
refrigeration power is set as the control variable in the intraday scheduling. The proposed multi-time scale
energy management method is applied to a data center to verify its effectiveness.

3 Methods

3.1 Time-Shift Models of the Delay-Tolerant Workloads
This section introduces three kinds of delay-tolerant workloads, i.e., Long-running non-interruptible,

long-running interruptible, and short-running workloads, and models the time-shifting processes of
the workloads.

3.1.1 Workloads Classification and Time-Shift Characteristics Analysis
Time-shiftable workloads are categorized into long-running and short-running workloads, distin-

guished by their processing time length. Long-running workloads include continuous non-interruptible and
interruptible workloads based on their interruptibility.

Analysis of large internet data centers shows that processor resource consumption of computing
workloads follows a heavy-tailed distribution, indicating that a small portion of long-running workloads
consume a significant amount of processor resources [19]. These energy-intensive long-running workloads
present opportunities for power regulation. Additionally, analysis reveals that most workloads in Google’s
cluster last only a few minutes [19], while over 90% of batch jobs in Alibaba’s data cluster run for less than
15 min [20]. Short-running computing tasks, when combined, can effectively help mitigate fluctuations in
renewable energy.

• Long-running non-interruptible workload

Some workloads, e.g., continuous integration and continuous deployment jobs (CI/CD), test suites,
compilation jobs, database migration, and backups, can’t be paused or interrupted once execution begins
and must run continuously until completion. Workload with this working characteristic are identified as
‘long-running non-interruptible workload’.

The temporal mitigation pattern for this kind of workload is to shift the overall workload within a certain
time range while keeping the original shape of the computing power load curve unchanged.

• Long-running interruptible workload

Certain workloads, e.g., machine learning training, block-chain mining, protein folding, or long-
running scientific simulations, can be paused or interrupted during execution and resumed at an appropriate
time. Workload with this working characteristic is regarded as ‘long-running interruptible workload’.

According to its time-shift characteristics, long-running interruptible workload can be viewed as a
holistic task comprised of multiple sequential subtasks. The shift strategy is to adjust each subtask forward
or backward to a certain time point within a specified time frame, while ensuing the sequential order
dependency among the subtasks.
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• Short-running workloads

Some workloads, including function as a service, scheduled data backups, log cleaning, report genera-
tion, email or notification sending, etc., typically require brief execution time and don’t demand immediate
response. These workloads can tolerate delays ranging from minutes to several hours, classifying them as
short-running workloads.

Short-running workloads exhibit two defining characteristics: short execution duration and high task
volume. When numerous short-running workloads aggregate, they form a short-running workload cluster,
which presents significant potential for power regulation. The time-shifting mechanism for managing these
workloads involves rescheduling all or part of the short-running tasks from their original time slots to
alternative periods in future time window for execution.

3.1.2 Modelling of Long-Running Non-Interruptible Workload
Set the day-ahead scheduling period to 24 h, and define the scheduling time step as Δt and the number of

daily scheduling periods as T. Introduce For i
a to denote the original computing power demand time series of

the long-running non-interruptible workload. For i
a is a constant vector with dimensions of 1*T, represented

as follows:

For i
a = [x 1

a , x2
a , x3

a , . . . xt
a , . . . , xT−1

a , xT
a ] (1)

where x 1
a , x2

a , xt
a are the computing power demand values of the long-running non-interruptible workload

at the time point of 1, 2, and t. In vector For i
a , there exists a continuous period of computing power demand

values, and the elements before and after these continuous periods are zero. Thus, the vector For i
a can be

more specifically written as:

For i
a = [0, 0, . . . , f 1

a , f 2
a , . . . f k

a , . . . , f K
a , . . . , 0, 0] (2)

where f 1
a represents the computing power demand value at the starting node of the long-running continuous

workload; f 2
a , f k

a , f K
a , is the computing power demand value at the 2nd, kth, Kth time points following the

starting node, respectively. K represents the processing time of the long-running non-interruptible workload
execution, which is a constant.

The mitigation pattern for the long-running non-interruptible workload is to shift the entire workload
along the time axis. Once the start time of the workload is determined, the computing power demand for
each subsequent time point can be uniquely ascertained. Therefore, the pivotal parameter for the time-shift
modelling of long-running non-interruptible workload is the time-shift vector of start node.

Use Ua to represent the time-shift vector of start node of the long-running non-interruptible workload.
Ua is the variable with a dimension of 1*T, represented as Eq. (3):

Ua = [u1
a , u2

a , u3
a . . . , ut

a , . . . , uT−1
a , uT

a ] (3)

where the element ut
a represents whether the start node of the long-running non-interruptible workload

is located at a certain time point. When ut
a is 1/0, it signifies that the start node of the workload is/isn’t

positioned within the t time point.
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For Ua , only one element in the vector can have a value of 1, thus the sum of all elements is constrained
to 1, denoted by:

T
∑
t=1

ut
a = 1 (4)

The time at which the start node is positioned is denoted as U ind ex
a , which is expressed as Eq. (5):

U ind ex
a = [1, 2, 3, . . . , T]trans pose ∗Ua (5)

The long-running non-interruptible workload has the earliest start time point te and the latest start time
point tl , allowing the start node of the workload to shift within [te , tl ]. The constraint is expressed as:

te ≤ U ind ex
a ≤ tl (6)

The relation between the computing power demand time series of workload after shifting Fmov
a and the

time-shift vector of the workload start node Ua is expressed as Eq. (7):

Fmov
a = Ua ∗Mmat

a (7)

where the dimension of Fmov
a is 1*T; Mmat

a is a constructed auxiliary constant matrix, with a dimension of
T*T, as shown in Eq. (8).

Mmat
a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1,1
a m1,2

a m1,3
a . . . m1,t

a . . . m1,T−1
a m1,T

a
m2,1

a m2,2
a m2,3

a . . . m2,t
a . . . m2,T−1

a m2,T
a

m3,1
a m3,2

a m3,3
a . . . m3,t

a . . . m3,T−1
a m3,T

a
. . . . . . . . . . . . . . . . . . . . . . . .
mt ,1

a mt ,2
a mt ,3

a . . . mt ,t
a . . . mt ,T−1 mt ,T

a
. . . . . . . . . . . . . . . . . . . . . . . .
mT−1,1

a mT−1,2
a mT−1,3

a . . . mT−1,t
a . . . mT−1,T−1

a mT−1,T
a

mT ,1
a mT ,2

a mT ,3
a . . . mT ,t

a . . . mT ,T−1
a mT ,T

a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Mmat
a can be more specifically written as Eq. (9). In this matrix, elements from ‘column k, row k’ to ‘row

k, column k+K − 1’ (k= 1, 2, . . ., T + 1−K) are filled with the computing power demand values corresponding
to the start node and subsequent nodes of the long-running uninterruptible workload, and the elements at
the remaining positions are 0.

Mmat
a =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 1
a f 2

a . . . f K
a 0 . . . 0 0

0 f 1
a . . . f K−1

a f K
a . . . 0 0

0 0 . . . . . . . . . . . . 0 0
0 0 . . . . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . . . . . . . 0 0
0 0 . . . f 1

a f 2
a . . . f K

a 0
0 0 . . . 0 f 1

a . . . f K−1
a f K

a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)
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3.1.3 Modelling of Long-Running Interruptible Workload
Introduce For i

b to denote the original time series of computing power demand of long-running
interruptible workload. For i

b is a constant vector with a dimension of 1*T, represented as follows:

For i
b = [y1

b , y2
b , y3

b , . . . yt
b , . . . yT−1

b , yT
b ] (10)

where y1
a , y2

a , yt
a are the computing power demand values of the long-running interruptible workload at the

time point of 1, 2, and t.
According to the time-shift characteristics of long-running interruptible workload, this study considers

the long-running interruptible workload as a holistic task composed of multiple subtasks in sequence. The
duration of each subtask is consistent with the scheduling time step Δt. Record the start node of the long-
running interruptible workload as the 1st subtask, and the subtasks in subsequent time points as the 2nd,
. . ., kth and Kth subtask in sequence, and the corresponding computing demand value as f 1

b , f 2
b , . . ., f k

b , . . .,
f K
b . K represents the processing time of long-running interruptible workload execution, which is a constant.

The constant vector Fmat
b can be constructed from f 1

b to f K
b , as illustrated below:

Fmat
b = [ f 1

b , f 2
b , . . . f k

b , . . . , f K
b ] (11)

Hence, the original computing demand time series of the long time interruptible workload For i
b can be

more specifically written as:

For i
b = [0, 0, . . . , f 1

b , f 2
b , . . . , f k

b , . . . , f K
b , . . . , 0, 0] (12)

In this vector, there exists a period of time with computing power demand value, and the elements
before and after this period are zero.

The mitigation pattern for the long-running interruptible workload is scheduling individual subtasks
to new time points within a specified time frame while preserving their sequential dependencies. Once
the execution time of each subtask is determined, the computing power demand for the workload can
be uniquely ascertained. Thus, the key parameter for time-shift modelling of long-running interruptible
workload is the time-shift matrix of its subtasks.

Use ut ,k
b to indicate whether the kth subtask is moved to time point t, with a value of 0 or 1. The time

shift matrix variable Ub with a dimension of T*K is formed, which is represented as:

Ub =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1
b u1,2

b ⋅ ⋅ ⋅ u1,k
b ⋅ ⋅ ⋅ u1,K

b
u2,1

b u2,2
b ⋅ ⋅ ⋅ u2,k

b ⋅ ⋅ ⋅ u2,K
b

u3,1
b u3,2

b ⋅ ⋅ ⋅ u3,k
b ⋅ ⋅ ⋅ u3,K

b
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
ut ,1

b ut ,2
b ⋅ ⋅ ⋅ ut ,k

b ⋅ ⋅ ⋅ ut ,K
b

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
uT−1,1

b uT−1,2
b ⋅ ⋅ ⋅ uT−1,k

b ⋅ ⋅ ⋅ uT−1,K
b

uT ,1
b uT ,2

b ⋅ ⋅ ⋅ uT ,k
b ⋅ ⋅ ⋅ uT ,K

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

For each column in matrix Ub , the sum of the element values in each row is 1, represented by Eq. (14),
implying that a subtask can only transfer from one time point to another, not to multiple time points.

T
∑
t=1

ut ,k
b = 1 (k = 1, 2, . . . , K) (14)
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The matrix of time points where subtasks locate after shifting is denoted as U ind ex
b , which is a variable

with a dimension of 1*K, expressed as Eq. (15). U ind ex
b is calculated using Eq. (16). uind ex ,k

b represents the
time point where each subtask locates after shifting. Eq. (17) enforces that the time position at which the
(k + 1)-th subtask moves to should be greater than the time position at which the kth subtask moves to.

U ind ex
b = [uind ex ,1

b , uind ex ,2
b , . . . , uind ex ,k

b , . . . , uind ex ,K
b ] (15)

U ind ex
b = [1, 2, 3, . . . , T] ∗Ub (16)

uind ex ,k+1
b − uind ex ,k

b ≥ 1 (17)

The computing power demand time series of each subtask after shifting is denoted as Fmov
b , which is a

variable with a dimension of 1*T, expressed as below:

Fmov
b = [Ub ∗ (Fmat

b )trans pose]trans pose (18)

3.1.4 Modelling of Short-Running Workloads
Introduce For i

c to denote the original computing power demand time series of short-running workloads.
For i

c is a constant vector with a dimensions of 1*T, represented as Eq. (19). Use Fmov
c to denote the computing

power demand time sequence of the short-running workloads after shift. For i
c is a variable with a dimension

of 1*T, represented Eq. (20):

For i
c = [ f 1

c , f 2
c , . . . f k

c , . . . , f T
c ] (19)

Fmov
c = [ f 1

c∗, f 2
c∗, . . . f t

c∗, . . . , f T
c∗] (20)

where f 1
c , f 2

c , f k
c are the computing power demand values of short-running workloads at original status at

time point 1, 2, and k; f 1
c∗, f 2

c∗, f t
c∗ are the computing power demand values of short-running workloads after

shifting at time point 1, 2, and t.
The time shifting pattern for short-running workloads is shifting all or part of the tasks from the original

time periods to new time periods. The key parameter for the time shift modelling of short-running workloads
is the time shift matrix of the inflow and outflow amount of computing power demand at each time point.

Use ut ,k
c to represent the amount of computing power demand of short-running workloads that is

transferred from the original time point k to another time point of t. The time shift matrix variable of the
inflow and outflow amount of computing power demand Uc with a dimension of T*T is formed, which is
expressed as:

uc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1
c u1,2

c . . . u1,k
c . . . u1,T−1

c u1,T
c

u2,1
c u2,2

c . . . u2,k
c ⋅ ⋅ ⋅ u2,T−1

c u2,T
c

. . . . . . . . . . . . . . . . . . . . .
ut ,1

c ut ,2
c . . . ut ,k

c . . . ut ,T−1
c ut ,T

c
ut+1,1

c ut+1,2
c . . . ut+1,k

c . . . ut+1,T−1
c ut+1,T

c
ut+2,1

c ut+2,2
c . . . ut+2,k

c . . . ut+2,T−1
c ut+2,T

c
ut+3,1

c ut+3,2
c . . . ut+3,k

c . . . ut+3,T−1
c ut+3,T

c
ut+4,1

c ut+4,2
c . . . ut+4,k

c . . . ut+4,T−1
c ut+4,T

c
. . . . . . . . . . . . . . . . . . . . .
uT−1,1

c uT−1,2
c . . . uT−1,k

c . . . uT−1,T−1
c uT−1,T

c
uT ,1

c uT ,2
c . . . uT ,k

c . . . uT ,T−1
c uT ,T

c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)
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Uc should meet the following constraint:

0 ≤ Uc ≤ Cmat
c ∗M (22)

In this formula, Cmat
c is a constructed constant matrix with the same dimension as the variable Uc . Cmat

c
is expressed by:

Cmat
c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1
1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . . .
1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1
1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1
1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 0
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

To illustrate the specific form of Cmat
c , we first introduce a constant value H to represent the maximum

deferrable time periods of short-running workloads. The short-running workloads of the original time points
are allowed to be fully or partially transferred to the 1st to Hth time point thereafter. In Cmat

c , when k = 1, 2,
. . ., T −H, the elements from ‘column k, row k,’ to ‘column k, row k +H’, and when k = T −H + 1, T −H + 2,
. . ., T, the elements from ‘column k, row k’ to ‘column k, row T’ and from ‘column k, row 1’ to ‘column k, row
H − T + k’, are filled with the value of 1, and the elements at the remaining positions are 0. Set the maximum
deferrable time periods H to be 11, the Cmat

c can be specifically written as Eq. (23). The vector Cmat
c can be

changed as the parameter H varies.
M is a constant, equal to the peak computing power demand f max

c of the short-running work-
loads. Eq. (22) indicates that the transferred computing power demand from the original time point to the
new time period should be less than f max

c and greater than 0.
Another constraint for Uc is that, for the kth column, the sum of all the elements equals to the original

computing power demand f k
c at time point k. For the tth column, the accumulated elements of all the rows

equals to the computing power demand at time point t of workloads after shifting f t
c∗.

f k
c =

T
∑
t=1

ut ,k
c (t = 1, 2, . . . , T) (24)

f t
c∗ =

T
∑
k=1

ut ,k
c (k = 1, 2, . . . , T) (25)

To prevent invalid shifting, a penalty cost coefficient matrix Dmat
c with dimension of T*T is established,

as expressed in Eq. (26). Setting the unit penalty cost coefficient for the transfer amount of computing power
demand at all possible time points to be 0.05 ¥/kWh, when k = 1, 2, . . ., T − H, the elements in positions of
Dmat

c from the ‘column k, row k + 1’ to ‘column k, row k + H’, and when k = T – H + 1,T – H + 2, . . ., T − 1,
elements from the ‘column k, row k + 1’ to ‘column k, row T’ and from ‘column k, row 1,’ to ‘column k, row H
− (T − k)’, and when k = T , elements from the ‘column k, row 1’ to ‘column k, row H’ are filled with 0.05, and
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the other elements are set to be 0. One can adjust the matrix Dmat
c according to concrete parameter value of

the unit penalty cost coefficient.

Dmat
c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . . . . 0.05 0.05
0.05 0 . . . . . . . . . 0.05 0.05
. . . . . . . . . . . . . . . . . . . . .
0.05 0.05 . . . . . . . . . 0.05 0.05
0.05 0.05 . . . . . . . . . 0 0.05
0.05 0.05 . . . . . . . . . 0 0
0 0.05 . . . . . . . . . 0 0
0 0 . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 . . . . . . . . . 0 0
0 0 . . . . . . . . . 0.05 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

The penalty cost function Cd ata is expressed as:

Cd ata =
T
∑
t=1

T
∑
k=1

Uc . ∗ Dmat
c

Fmax
c pu

∗ Emax
c pu ∗ Δt (27)

where Fmax
c pu represents the maximum computing power of the CPU chip, which is 1600 GFLOPS in this

paper, as indicated in Table 1. Emax
c pu represents the maximum power consumption of the CPU used in this

study, which is 150 W, as indicated in Table 1.

3.1.5 Relation of Computing Power and Electricity Power
Computing power refers to a device’s capability to perform data processing and generate specific outputs.

The computing power is implemented through various computing chips such as CPU, GPU, FPGA, ASIC,
which are carried by computers, servers, and other systems. The standard measurement for computing power
is the number of FLoating-point Operations executed Per Second (FLOPS).

The computing power of a chip is determined by three key factors: the number of computing cores of
the chip Ncore , the core frequency fcore , and the double-precision floating-point operands per clock cycle
Zcore of the core. The computing power Fmax

chi p of the chip follows the formula:

Fmax
chi p = Ncore ∗ fcore ∗ Zcore (28)

The computing power capacity of the data center Fmax
d c using CPU chips is expresses as:

Fmax
d c = Nrack ∗ Nserv er ∗ NCPU ∗ Fmax

c pu (29)

where Nrack is the number of racks in the datacenter. Nserv er is the number of servers per rack. NCPU is
the number of CPU chips per server. Fmax

c pu is the maximum computing power of the CPU chip studied in
this paper.

Based on the assumption that: (1) all servers in the data center are homogeneous; (2) all servers in the
computer room are turned on. The power consumption of servers can be modelled as Eq. (30) [21,22]:

Ed ata = Eid l e + (Epeak − Eid l e) ∗ uc pu (30)
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where uc pu is the processor utilization rate. Eid l e represents the power of servers when uc pu is zero, Epeak
represents the power of servers when uc pu reaches 100%.

The formula for calculating CPU utilization is uc pu , expressed as:

uc pu =
Fd ata

Fmax
d c

(31)

where Fd ata is the computing power demand of workloads.
This model provides a quantitative approach to estimate the electricity power consumption of workloads

based on their computing power demand.

Table 1: Parameters for CPU, server, and rack

Item Parameter
Number of racks (Nrack) 60

Type of rack 42U
Type of server DELL PowerEdge R940xa 4U

Number of servers per rack (Nserv er) 10
Total number of servers in the data center 600

Number of CPU per server (NCPU) 4
Type of CPU Intel Gold 6210U [23]

Number of cores per CPU (Ncore) 20
Core frequency ( fcore) 2.5 GHz

Double-precision floating-point operands per clock
cycle of the core (Zcore)

32

Rated power for each CPU (Emax
c pu ) 150 W

Rated computing power for each CPU (Fmax
c pu ) 1600 GFLOPS

3.2 Time-Variant Model of Computer Room Temperature
Data center computer room temperature is influenced by multiple factors including server cluster heat

generation, environmental maintenance structure, heat load, cooling power, and outdoor temperature. To
simplify the problem-solving process when constructing a thermal model for the data center, the heat transfer
through the walls is treated as a one-dimensional problem, and the physical properties of the walls is assumed
to be remain constant over time. In addition, the indoor temperature is represented as a single node. The
simplified heat transfer process for the data center room is depicted in Fig. 2.

Figure 2: Schematic diagram of the equivalent model of heat transfer process in data center computer room
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The energy conservation equation for the indoor air and the walls are constructed as Eqs. (32) and (33).

Cin ∗ dθt
in

dt
= Pt

heat − Pt
col d −

θt
in − θt

w al l
R1

(32)

Cw al l ∗ dθt
w al l

dt
=

θt
in − θt

w al l
R1

−
θt

w al l − θt
out

R2
(33)

In the formula, t represents the current time point; Cin is the equivalent heat capacity of indoor air;
Cw al l is the equivalent heat capacity of the wall; R1 is the equivalent thermal resistance of indoor air and the
inner side of the wall; R2 is the equivalent thermal resistance of the outer wall and outdoor air; θt

in is the
indoor temperature at time t; θt

w al l is the wall temperature at time t; θt
out is the outdoor temperature at time

t; Pt
heat is the heat generation of the servers at time t; Pt

col d is the refrigeration power at time t.
In order to calculate the indoor temperature changes at different discrete time periods within a

day, differential equations of Eqs. (32) and (33) are transformed into differential equations, as expressed
as Eqs. (34) and (35), with a time step of Δτ.

Cin
θt+Δτ

in − θt
in

Δt
= (Pt

heat − Pt
col d) −

θt
in − θt

w al l
R1

(34)

Cw al l
θ t+Δτ

w al l − θt
w al l

Δt
=

θt
in − θt

w al l
R1

−
θt

w al l − θt
out

R2
(35)

Transforming Eqs. (34) and (35) yields Eqs. (36) and (37):

θt+Δτ
in = [(Pt

heat − Pt
col d) −

θt
in − θt

w al l
R1

] ∗ Δτ
Cin
+ θt

in (36)

θt+Δτ
w al l = (

θt
in − θt

w al l
R1

−
θt

w al l − θt
out

R2
) ∗ Δτ

Cw al l
+ θt

w al l (37)

Eqs. (36) and (37) can be used to update the indoor temperature and wall temperature at each time
point. Furthermore, according to the practical engineering situation where the variation amplitude of θt

w al l
is very small compared to that of θt

in , θt
w al l can be regarded as its mean value θstabl e

w al l , and Eq. (38) can be
derived from Eq. (37).

θt
w al l =

R1 ∗ θt
out + R2 ∗ θt

in
R1 + R2

(38)

Regarding the determination of the time step Δτ, it is crucial to balance accuracy with computational
complexity. In this context, Δτ is set as 1 min. Combining Eqs. (36) and (38), the equilibrium constraints of
the indoor temperatures at adjacent time points of θt+1

in and θt
in can be expressed as:

θt+1
in = θt

in +
Pt

heat − Pt
col d

Cin
− θt

in − θt
out

(R1 + R2) ∗ Cin
(39)

Combined with the initial indoor temperature θ0
in , the dynamic indoor temperature throughout the day

can be calculated using the time-varying temperature model of computer room. Through the temperature
time-variant model, dynamically adjusting the refrigeration power within the temperature range can achieve
the regulation of electricity, thereby further promoting the consumption of renewable energy.
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4 Two-Stage Multi-Time Scale Optimization Model for Data Center1

4.1 Two-Stage Multi-Time Scale Scheduling Framework
4.1.1 Day-Ahead and Intra-Day Optimization Scheduling Diagram

The multi-time scale optimization scheduling includes a two-stage day-ahead and intraday rolling
optimization scheduling, as illustrated in Fig. 3. The day-ahead scheduling operates on a 24-h optimization
scale with 15 min as the time step. Based on the day-ahead forecasts of renewable power and load, the
scheduling plan for next 24 h can be formulated with the goal of minimizing the daily operating cost. The
intraday rolling optimization scheduling takes 15 min as a rolling round, 60 min as the optimization scale,
and 1 min as the time step for each round of optimization. Each round of optimization scheduling is based on
60-min ahead predictions of renewable power and load, aiming to minimize the operating costs of each
round of optimization and minimize the fluctuations of exchange power between day-ahead and real-
time plans.

Figure 3: Diagram of the two-stage multi-time scale optimization scheduling framework of data center

4.1.2 Regulation Characteristics at Different Time Scales of Computing Workloads and Refrigeration System
The time step of day-ahead scheduling is generally set as 15 min, which is consistent with sampling inter-

val of power supply and demand. On the one hand, the fluctuations trend of renewable power throughout
a day typically exhibit periodic changes. The 15-min interval allows for capturing the primary fluctuation
characteristics of wind and PV power, while mitigating the computational burden caused by overly frequent
data points. On the other hand, the workloads power consumption is relatively steady throughout the day.
Using 15 min as the interval for the measuring of power consumption and as the minimum unit for its
movement offers sufficient accuracy to illustrate the load shift mechanism while simplifying data processing.
Consequently, the time-shifting model of workloads is suitable to be incorporated into the day-ahead
optimization scheduling model. By shifting these workloads along the time axis, the fluctuations of wind and
PV power can be offset.

1The optimization in this article is without considering cross day load shifting; To isolate the time-shift effect of computing workloads, the energy
storage in data center is not considered; The purchase and sale price of electricity in the power grid does not change over time.
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However, the volatilities of wind and PV power at the 1-min level are notably faster and more irregular
compared to the daily fluctuations forecasted within a 15-min interval. To address this problem, intra-day
real-time scheduling are needed. In this study, the time step in the real-time scheduling stage is 1min, which
is consistent with the time interval of the time-variant model of the computer room temperature. Given that
refrigeration power serves as the only controllable variable for regulating computer room temperature, by
embedding the time-varying temperature model into the intra-day optimization scheduling model, adjusting
the refrigeration power every 1 min can effectively cope with the instantaneous fluctuations of wind and PV
power. Thus, the refrigeration power can be used as a control variable for intra-day optimization scheduling.

4.2 Day-Ahead Scheduling Optimization Objective
The day-ahead optimization scheduling is designed to minimize operational costs within the dispatch-

ing day, expressed as:

OBJ =min Cgr id + Ccur + Cd ata (40)

The optimization function comprises the net cost of electricity transactions with the main-grid Cgr id
(¥), penalties for wind and PV power curtailment Ccur , and penalty costs for the computing workloads
scheduling Cd ata(¥), which are expressed as Eqs. (41)–(43).

Cgr id =
T
∑
t=1

Kbu y Et
bu y Δt − Ksel l Et

se l l Δt (41)

Ccur =
T
∑
t=1

Kcur Et
cur Δt (42)

Cd ata =
T
∑
t=1

T
∑
k=1

Uc . ∗ Dmat
c

Fmax
c pu

∗ Emax
c pu ∗ Δt (43)

where Kbu y/Ksel l is the unit electricity purchase/sale price from/to the main grid during time period t, which
is 0.8 and 0.4 ¥/kWh, respectively2; Et

bu y/Et
se l l is the day-ahead planned purchased/sold electricity power

during time period t; Kcur is the unit penalty price for wind and PV power curtailment, which is set as
0.6 ¥/kWh; Et

cur is the day-ahead planned renewable power curtailment in time period t. Δt is the duration
of time period t, set at 15 min in this paper.

By considering system operation constraints and combining day-ahead forecasts of renewable genera-
tion and electricity consumption of fundamental interactive computing workloads, this model can optimize
the time shift plan of various delay-tolerant workloads, refrigeration output plan, exchange power plan, wind
and PV power utilization plan under the goal of minimizing the operating costs of data center micro-grid
during the scheduling day.

2The primary objective of this study is to demonstrate how workload shifting alleviates renewable energy curtailment, which is a core technical
contribution. To isolate this mechanism, this paper initially adopt a simplified price assumption, i.e., the purchase and sell price from/to the main
grid is a constant, to avoid conflating the curtailment-mitigation effect with price-driven load redistribution. Readers can modify the model’s price
settings for further analyses, and the framework remains applicable under these extended scenarios.
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4.3 Constraints of Day-Ahead Optimization Scheduling
(1) Constraints of delay-tolerant batch processing workloads

The control variables of the long-running non-interruptible workloads, long-running interruptible
workloads, and short-running workloads are Ua , U ind ex

a , Fmov
a ; Ub , U ind ex

b , Fmov
b and Uc , Fmov

c . Constraints
of the control variables are detailed in Sections 3.1.2–3.1.4.

In addition to the above constraints, the other constraints are listed as follows.
(2) Computing power demand balance constraint

This study considers two long-running non interruptible workloads A1 and A2, two long-running
interruptible workloads B1 and B2, and short-running workloads C. The total computing power demand of
all the workloads at the original state For i

d ata and after shifting Fmov
d ata should follow the below constraints.

For i
d ata = For i

a1 + For i
a2 + For i

b1 + For i
b2 + For i

c + For i
mg (44)

Fmov
d ata = Fmov

a1 + Fmov
a2 + Fmov

b1 + Fmov
b2 + Fmov

c + For i
mg (45)

where For i
a1 , . . . , For i

C are the computing power demand of delay-tolerant workloads A1, . . . , C at the original
state. Fmov e

a1 , . . ., Fmov e
c are the computing power demand of delay-tolerant workloads A1, . . . , C after shift.

Since the delay-sensitive workloads don’t shift, their computing power demand are denoted as For i
mg .

(3) Relation of computing power demand and electricity consumption

Et
d ata = Eid l e + (Epeak − Eid l e) ∗

F t
d ata

Fmax
d c

(46)

where F t
d ata is the computing power demand of all workloads during time period t.

(4) Indoor temperature constant constraint

θt
in = 25○C (47)

If day-ahead forecasted indoor temperature are set to be variable, aligning with the 1-min time step of the
time-variant computer room temperature model, day-ahead scheduling would require matching this granu-
larity, which would result in each day-ahead decision variable increasing to 1440 and significantly increasing
computational burden. Thus, indoor temperature is fixed at 25○C during day-ahead scheduling. Updates are
applied via intraday optimization, which incorporates a refined 1-min temperature variation model.
(5) Refrigeration constraint

The refrigeration power at time point t should meet the upper and lower limits constraints:

Pmin
col d ≤ Pt

col d ≤ Pmax
col d (48)

In this research, Pmin
col d is 0, Pmax

col d is 500 kW. Detailed analysis can be found in Section 5.1.3.
The relation of Pt

col d and the electricity power consumption of refrigeration system Et
col d is:

Et
col d = Pt

col d/3.5 (49)

(6) Upper and lower limit of renewable power utilization
The utilized wind and PV power at time point t. Et

w ind and Et
pv have the constraints as below.

0 ≤ Et
w ind ≤ Et

w ind ,max (50)
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0 ≤ Et
pv ≤ Et

pv ,max (51)

where Et
w ind ,max and Et

pv ,max are the forecasts of maximum wind and PV power generation at time t.
(7) Exchange power constraint

The day-ahead planned purchased power and sold power Et
bu y and Et

se l l , as well as the state of power
purchase and sell Bt

bu y and Bt
se l l have the following constraint.

Bt
bu y ∗ Emin

bu y ≤ Et
bu y ≤ Bt

bu y ∗ Emax
bu y (52)

Bt
se l l ∗ Emax

se l l ≤ Et
se l l ≤ Bt

se l l ∗ Emax
se l l (53)

Bt
bu y + Bt

se l l = 1 (54)

where Emin
bu y is 0, Emax

bu y is 360 kW, Emin
se l l is 0, Emax

se l l is 200 kW.
(8) Power supply and demand balance constraint

The total power at supply side of data center equals to the power on demand side:

Et
w ind + Et

pv + Et
bu y = Et

d ata + Et
col d + Et

se l l (55)

4.4 Intraday Rolling Optimization Objective
Due to the different time steps of intra-day and day-ahead scheduling, in order to distinguish, the time

point in intra-day scheduling is recorded as τ; The time step is recorded as Δτ; The number of time points
of a scheduling day is denoted as Γ. For each round of real-time optimization, the objective is to minimize
the fluctuation of power purchase and sale and to optimize the operating cost during the optimization time
frame, expressed as:

ob j = min
Vgr id

V max
gr id
+

Co p

Cmax
o p

(56)

In the formula, there is:

Vgr id =
60
∑
τ=1
∣Eτ

bu y∗ − Eτ
bu y ∣ + ∣Eτ

se l l∗ − Eτ
se l l ∣ (57)

Co p =
60
∑
τ=1

Eτ
bu y∗Kbu y Δτ − Eτ

se l l∗Ksel l Δτ +
Γ
∑
τ=1

Kcur Eτ
cur∗Δτ (58)

where Vgr id is the fluctuation of the purchased and sold power between day-ahead plan and real-time
plan for each round. Co p is the optimized operation cost for each round. V max

gr id is the fluctuation of the
purchased and sold power between day-ahead and real-time plan with the minimization of operation costs
as the only goal for each round of optimization. Cmax

o p is the operating costs with the minimization of
fluctuation of the purchased and sold power between day-ahead and real-time plan as the only goal for
each round of optimization. Eτ

bu y/Eτ
se l l is the day-ahead planned purchased/sold electricity power at time

point τ. Eτ
bu y∗/Eτ

se l l∗ is the real-time purchased/sold electricity power at time period τ. Eτ
cur∗ is the real-time

renewable power curtailment at time period τ.
For each round, the control variables are real-time refrigeration power Pτ

col d∗, refrigeration electricity
consumption Eτ

col d∗, utilized wind power Eτ
w ind∗, utilized solar power Eτ

pv∗, purchased power Eτ
bu y∗, sold

power Eτ
se l l∗, and indoor temperature θτ

in∗. The workloads aren’t suitable to be the control variable in
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the rolling optimization. The day-ahead time-shift plan of workloads Et
d ata are only adopted as boundary

conditions in the intra-day scheduling. By considering the system operation constraints and combining real-
time forecasts of renewable power generation and server electricity consumption (Eτ

w ind∗,m ppt , Eτ
pv∗,m ppt ,

Eτ
d ata), the control variables are solved using the rolling optimization model.

With reference to Fig. 3, for each round optimization, the first 15-min time period of Eτ
col d∗, Eτ

w ind∗,
Eτ

pv∗, Eτ
bu y∗, Eτ

se l l∗, θτ
in∗ will be saved. After multiple rounds of rolling optimization scheduling, the results

of the control variables in 1440 min are obtained.

4.5 Constraints of Intraday Rolling Optimization
Constraints regarding these variables are described in the following section.

(1) Indoor temperature constraint
For each round, the real-time indoor temperature θτ

in∗ need to satisfy the upper and lower limit:

5○C ≤ θτ
in∗ ≤ 30○C (59)

The adjacent indoor temperature θτ+1
in∗ and θτ

in∗ in the intra-day scheduling satisfies the equilibrium
constraint:

θτ+1
in∗ = θτ

in∗ +
Pτ

heat − Pτ
col d∗

Cin
− θτ

in∗ − θτ
out∗

R1 ∗ Cin + R2 ∗ Cin
(60)

where the indoor temperature at the start time θ0
in∗ is 25○C. For each round of optimization thereafter, θ0

in∗
is equal to the optimized indoor temperature at the 15th time point of the last optimization round. Pτ

heat is
equal to Eτ

d ata , which is a known boundary condition derived from day-ahead scheduling plan.
The refrigeration power should satisfy the ramp constraint.

θτ+15
in∗ − θτ

in∗ ≤ Δθmax15
in∗ (61)

θτ+1
in∗ − θτ

in∗ ≤ Δθmax1
in∗ (62)

where θτ+1
in∗ and θτ

in∗ are the indoor temperature at time τ + 1 and τ. In this paper, Δθmax15
in∗ and Δθmax1

in∗ is the
max fluctuation of indoor temperature within 15 min and 1minute, which are set to be 15○C and 0.33○C [24].
(2) Refrigeration power

The refrigeration power should satisfy the ramp constraint.

Pτ+1
col d∗ − Pτ

col d∗ ≤ ΔPmax
col d∗ (63)

where Pτ
col d∗ and Pτ+1

col d∗ are the refrigeration power at time point τ + 1 and τ. In this paper, ΔPmax
col d∗ is set to

be 100 kW.
The relationship of Pτ

col d∗ with the refrigeration electricity consumption Eτ
col d∗ is:

Eτ
col d∗ =

Pτ
col d∗
3.5

(64)
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(3) Upper and lower limit of renewable power utilization
Real-time utilized wind and PV power at time τ Eτ

w ind∗ and Eτ
pv∗ have the constraints as below.

0 ≤ Eτ
w ind∗ ≤ Eτ

w ind∗,m ppt (65)

0 ≤ Eτ
pv∗ ≤ Eτ

pv∗,m ppt (66)

where Eτ
w ind∗,m ppt and Eτ

pv∗,m ppt are the 60-min ahead forecasts of maximum wind and PV power generation
at time τ.
(4) Exchange power constraint

Real-time electricity purchase and sale Eτ
bu y∗ and Eτ

se l l∗, as well as the state of electricity purchase and
sale Bτ

bu y∗ and Bτ
se l l∗ have the following constraint.

Bτ
bu y∗ ∗ Emin

bu y∗ ≤ Eτ
bu y∗ ≤ Bτ

bu y∗ ∗ Emax
bu y∗ (67)

Bτ
se l l∗ ∗ Emin

se l l∗ ≤ Eτ
se l l∗ ≤ Bτ

se l l∗ ∗ Emax
se l l∗ (68)

Bτ
bu y∗ + Bτ

se l l∗ = 1 (69)

where Emin
bu y ∗ is 0, Emax

bu y ∗ is 360 kW; Emin
se l l ∗ is 0, Emax

se l l ∗ is 200 kW.
(5) Power supply and demand balance constraint

For each optimization round, the power balance equation constraint at time τ is expressed as:

Eτ
w ind∗ + Eτ

pv∗ + Eτ
bu y∗ = Eτ

d ata + Eτ
col d∗ + Eτ

se l l∗ (70)

5 Boundary Conditions and Multi-Time Scale Optimization Scheduling Results

5.1 Boundary Conditions and Parameters of the Data Center
5.1.1 Parameters of the CPU, Server, Rack and Data Center

This study selected a medium-sized data center room in northern China as the example. The data center
room occupies an area of 200 m2, with a height of 4 m. The external wall area of the computer room is
240 m2, and the roof area is 200 m2. The data center room is equipped with 60 42U racks, each housing 10
4-way 4U servers. Detailed parameters for the CPU chip, server and rack are outlined in Table 1.

Based on Table 1, in this paper, Fmax
d c is 3.84 ∗ 106 GFLOPS, Epeak is 360 kW. The Eid l e is 216 kW, which

is calculated by multiplying Epeak with a coefficient of 0.6 [25].
The thermal parameters of the computer room is adapted from literature [26] in accordance with the

standards and specifications of data center room construction. The thermal parameters for the equivalent
model of heat transfer process in the data center room are given in Table 2.

5.1.2 Parameters of Delay-Sensitive and Delay-Tolerant Workloads
The study considers two long-running non-interruptible workloads (A1 and A2), two long-running

interruptible workloads (B1 and B2), and short-running workloads (C). The original computing power
demand time series curves for the delay-sensitive interactive workload and delay-tolerant batch processing
workloads are depicted in Fig. 4.

The shifting time range [te , tl ] for the start node of the long-running non-interruptible workload A1
and A2 is [33, 73] and [1, 87]. The short-running workloads are allowed to be fully or partially transferred to
the 1st–11th time points after the initial time point.
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Table 2: Parameters for the equivalent model of heat transfer process in data center room

Parameters Value
Equivalent thermal resistance of indoor air and

the inside of wall R1/(○C/W) 4.8 × 10−4

Equivalent thermal resistance of outside wall
and outdoor air R2/(○C/W) 3.68 × 10−3

Equivalent heat capacity of indoor air
Cin/(J/○C) 4.60 × 105

Figure 4: The original computing power demand time series curves of the delay-sensitive and various delay-tolerant
workloads

5.1.3 Configuration of Refrigeration Power System
The heat load of data center mainly stems from the heat generated by servers and environmental

maintenance structure. The rated refrigeration capacity of refrigeration system is determined based on the
server equipment power and the area of data center room, as described by the formula:

Prated
col d = Pmax

heat + βSa (71)

where Pmax
heat represents the maximum heat generation of the server cluster, which is equal to Epeak [17]. Sa

denotes the area of the computer room, set as 200 m2 for this study. The empirical coefficient β is assigned
with a value of 0.7 [27]. Hence, the rated refrigeration capacity Prated

col d is determined to be 500 kW for the
computer room. With a comprehensive refrigeration performance coefficient of 3.5, the corresponding rated
electricity consumption of the refrigeration system Erated

col d is calculated to be 143 kW.
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5.1.4 Configuration of Wind and PV Power System
The installed capacity of wind and PV power system, denoted as Emax

vre , is determined by formula (72)
as follows:

Emax
vre ∗ ηvre = Erated

col d + Epeak (72)

In this formula, the average power generation efficiency of renewable energy ηvre is assumed to be 0.5.
With Erated

col d and Epeak having the values of 143 and 360 kW, Emax
vre is calculated to be 1000 kW. This study

stochastically set the proportion of wind and PV power capacity to be 3:7, resulting in capacities of 300
and 700 kW for wind and PV power system, respectively. This study focuses on developing a scheduling
method considering the time-shiftable workloads and refrigeration system to facilitate the renewable energy
utilization, while the economic analysis of allocating renewable energy is not the main concern. It is noted
that varying the capacity ratios of wind and PV doesn’t affect the effectiveness of the control strategy and
conclusions drawn in this paper.

Wind and PV power generation data used in the study are sourced from a reliable database [28]. To
align with the configured capacities of wind and PV power systems, the data is scaled to generate 24h-ahead
forecasts of wind and PV power generation used in this study, as depicted in Fig. 5.

Figure 5: 24 h-ahead forecasts of wind and PV power generation for data center

5.2 Results of Multi-Time Scale Optimization Scheduling
This paper formulates both day-ahead scheduling and intra-day real-time scheduling optimization as

Mixed Integer Programming (MIP) optimization problems. The optimization involves continuous variables,
e.g., key time-shift parameter variables for various batch computing workloads, and binary variables, e.g., the
status of power purchases and sales. Based on the decision variables, equality and inequality constraints, and
objective function established in previous sections, the optimization model is solved using Gurobi solver in
MATLAB R2024a. The Gurobi solver, widely recognized in academia and industry, employs techniques such
as the interior point method, branch and bound method, and cut plane method to find optimal solutions.
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This section presents the scheduling results after multi-time scale optimization. Section 5.2.1 details
the operational costs and renewable power curtailment results after day-ahead scheduling and verifies its
effectiveness by comparing with a simple scheduling scenario. Additionally, it analyzes the comparison
of workloads at original status and after scheduling to illustrate the feasibility of the proposed time-shift
modelling. Section 5.2.2 reports the operational costs and power exchange volatility results after real-
time optimization scheduling. A comparison between the optimization scheduling and a plain real-time
scheduling is also conducted to highlight the necessity of incorporating refrigeration regulation in real-time
scheduling to cope with the instantaneous power volatility from renewable energy and load demand.

5.2.1 Results after Day-Ahead Optimization Scheduling
To quantitatively verify the effect of considering workloads time-shift, this paper sets up a simple

scheduling scenario where the workloads don’t shift over time. In the simple scheduling scenario, the power
balance results of utilized wind power Ew ind#, utilized PV power EPV #, purchased power Ebu y#, server
power consumption Ed ata#, refrigeration electricity consumption Ecol d# and sold power Ese l l # are illustrated
in Fig. 6. By considering the 24 h-ahead forecasts of wind and PV power generation and the system operation
constraints, the daily operation plan in this scenario is obtained. Fig. 6 indicates that in this scenario,
electricity sales mainly occur from the 39th–66th time periods, while electricity purchases predominantly
occur from the 1st–38th and 67th–96th time periods. Considering the purchase and sale electricity prices, as
well as the penalties for wind and PV power curtailment, the daily operating cost in this simple scheduling
scenario amounts to ¥2980.6, and the planned curtailment of wind and solar power is 294.6 kWh (3.8% of
the forecasted daily renewable generation).

Ewind# Epv# Ebuy# Edata# Ecold# Esell#

Figure 6: The power balance results in the day-ahead simple scheduling scenario

In the day-ahead optimization scheduling scenario where the time-shiftable workloads are involved,
the power balance results of Ew ind , EPV , Ebu y , Ed ata , Ecol d , and Ese l l for the scheduling day are presented
in Fig. 7. A comparison of wind and PV power curtailment between the day-ahead simple scheduling
scenario and the optimization scheduling scenario is depicted in Fig. 8. The computing power demand time
series of workloads at the original state and after the temporal shift are shown in Figs. 9 and 10, respec-
tively. Upon observing Figs. 9 and 10, it is evident that after optimization, long-running non-interruptible
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workload A1 and A2, long-running interruptible workload B2 all moves to the 43rd–66th time periods,
and long-running interruptible workload B1 and short-running workloads C partially shift to these time
periods. Consequently, the renewable power curtailment during the 43rd–66th periods is reduced, while
the electricity purchases during the 1st–38th periods and the 67th–96th periods decreases. The optimized
operating cost plan is ¥1885.3 for the scheduling day, and the planned wind and PV power curtailment is
145.9 kWh (1.9% of the daily renewable generation), which respectively represents a 36.7% and 50.5%
decrease compared to simple scheduling scenario. These comparison results prove that considering workload
time-shift for the day-ahead optimization scheduling is advantageous in increasing the economic benefits of
data center operation and promoting the consumption of renewable power.

Ewind Epv Ebuy Edata Ecold Esell

Figure 7: The power balance results in the day-ahead optimization scheduling scenario

Figure 8: Comparison of wind and PV power curtailment in the day-ahead simple scheduling scenario and the
optimization scheduling scenario
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Figure 9: The computing power demand time series of various delay-tolerant workloads at the original state

Figure 10: The computing power demand time series of various delay-tolerant workloads after temporal shift

The temporal shift details for the various delay-tolerant workloads are visualized in Figs. 11–15. Specif-
ically, Figs. 11 and 12 display the computing power demand of long-running non-interrupted workloads A1
and A2 before and after shifting. Figs. 13 and 14 illustrate the computing power demand of long-running
interruptible workloads B1 and B2, demonstrating that the sequential order of subtasks at different time
points and the total computing power demand remain consistent before and after shifting. Addition-
ally, Fig. 15 depicts the computing power demand of short-running workloads C before and after shifting.
The results indicate a redistribution of computing power demand as short-running workloads transfer from
initial time points to new time points, revealing a decrease in demand during the initial time periods and
an increase at the new time periods. The total computing power demand stays unchanged before and after
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the shifting process. These findings provide evidence supporting the feasibility of workloads’ time shifting,
demonstrating the adaptability and efficiency of the workloads scheduling strategy.

Figure 11: The computing power demand curve of long-running non-interruptible workload A1 at original state and
after moving

Figure 12: The computing power demand curve of long-running non-interruptible workload A2 at original state and
after moving
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Figure 13: The computing power demand curve of long-running interruptible workload B1 at original state and after
moving

Figure 14: The computing power demand curve of long-running interruptible workload B2 at original state and after
moving
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Figure 15: The computing power demand curve of short-running workloads C at original state and after moving

Among the three kinds of workloads, the short-running workloads have a special setting—a penalty
coefficient in their time shift model. This paper discusses the rationale behind this setting by comparing
the scenarios with and without the penalty coefficient. The time shift result of the various delay-tolerant
workloads after the day-ahead optimization scheduling without the penalty coefficient is shown in Fig. 16.

Figure 16: The computing power demand of delay-tolerant workloads after shifting in the scenario without the penalty
coefficient setting for short-running workloads

(1) In the scenario with the penalty coefficient setting, most of the short-running workloads C are
reallocated to the 43rd–66th time periods, where the surplus wind and solar power is utilized. The
reason of this behavior is that, the cost of reducing the wind and PV power sales volume (0.4 + 0.05 =
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0.45 ¥/kWh) is lower than the cost of purchasing electricity from other periods (1st–42nd and 67th–
96th periods) (0.8 ¥/kWh). For another, this behavior may also lead to electricity revenue (0.6 − 0.05
= 0.55 ¥/kWh) due to reducing penalties for wind and PV power curtailment. Hence, operators are
willing to pay lower costs or gain profits by using wind and PV power, rather than purchasing electricity
from the main grid.

(2) In the scenario without the penalty coefficient setting, there is still an inflow and aggregation of
short-running workloads in the 43rd−66th time periods. Meanwhile, there are also some workloads
transferring from the 70th−96th period to the 1st−33rd time period. The mutual transfer of short-
running workloads between the 1st−33rd and the 70th−96th time periods is an invalid time shift,
since the unit price of power purchase in these two time frames is the same. Thus, the comparison
indicates that setting the penalty coefficient for the time-shift model of short-running workloads can
avoid invalid movement.

5.2.2 Results after Intra-Day Rolling Optimization
Considering the uncertainty of the day-ahead forecasts of power supply and demand, the day-ahead

scheduling plans are updated and corrected by using the intra-day rolling optimization scheduling model. In
order to carry out this model, the ultra-short-term 60 min-ahead forecasts of the wind, PV power generation,
and server power consumption are needed. According to literature, the 7.5%, 5%, 2.5% mean absolute
percentage error of day-ahead forecasts of wind, PV power and server electricity load compared to real-time
forecasts are reasonable values [29,30]. Thus, the real-time forecasts of wind power, PV power generation, and
server power consumption with a fluctuation ranges of 15%, 10%, and 5% compared to day-ahead forecasts
are generated, as shown in Fig. 17a–c. The real-time outdoor temperature is given in Fig. 18.

Through the intra-day rolling optimization, the power balance results of utilized wind power Ew ind∗,
utilized PV power EPV∗, purchased power Ebu y∗, server power consumption Ed ata∗, refrigeration electricity
consumption Ecol d∗ and sold power Ese l l∗ are as shown in Fig. 19. The fluctuation of real-time optimized
exchange power relative to the day-ahead planed exchange power is shown in Fig. 20. Results show that the
daily operating cost after real-time rolling optimization scheduling is ¥1895.9, and the deviation of real-time
exchange power compared to day-ahead plan is 0.30 kW/min. Furthermore, optimized real-time indoor
temperature, refrigeration power and heat generation, and net heat are shown in Fig. 21a–c. It can be observed
that the indoor temperature fluctuates within the range of 15○C–30○C, and the temperature change rate is
within the specified limits. The refrigeration power also meets the ramping constraint. Results indicate that
the intra-day optimization scheduling can not only obtain the refined operation plan updates, but can also
minimize the impact of uncertainty on the exchange power volatility, proving that the intra-day optimization
scheduling plays an indispensable role in data center power scheduling.

For comparison, this paper sets up a simplified intra-day scheduling scenario that excludes refrigeration
modulation flexibility. The calculation determines intra-day power purchases and sales by subtracting 60-
min-ahead wind and PV generation forecasts from the combined day-ahead planned server and refrigeration
electricity consumption. Fig. 22 depicts the fluctuation of real-time optimized exchange power to day-ahead
planned exchange power in this simplified scenario.

After calculation, the exchange power deviation between real-time value and day-ahead plan is
14.92 kW/min, and the daily dispatching cost is ¥2141.4. In comparison to the simple intra-day scheduling
scenario, the intra-day optimization scheduling model significantly reduces exchange power fluctuation
(by 50 times) and lowers daily operation costs (by 12.9%). This demonstrates the model’s effectiveness in
minimizing fluctuations and optimizing system operation economy by leveraging the thermal inertia of the
data center computer room and the flexibility of the refrigeration system.
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(aa)

(bb)

(cc)

Figure 17: (a–c) Real-time forecasts (plans) and day-ahead forecasts (plans) of wind and PV power generation, and
server power consumption. (a) The 60 min-ahead and 24 h-ahead forecasts of wind power generation (step length:
1 min). (b) The 60 min-ahead and 24 h-ahead forecasts of PV power generation (step length: 1 min). (c) Real-time server
electricity consumption and day-ahead planned server electricity consumption (step length: 1 min)
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Figure 18: Real-time outdoor temperature (step length: 1 min)

Figure 19: Power supply and demand results after intra-day rolling optimization (step length: l min)

Figure 20: Fluctuation of real-time optimized exchange power relative to the day-ahead planed exchange power (step
length: 1 min)
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(aa)

(bb)

Figure 21: (a–c) Real-time indoor temperature, refrigeration power, heat generation, and net heat after the intra-day
rolling optimization (step length: 1 min). (a) The indoor temperature after rolling optimization (step length: 1 min).
(b) Real-time beat generation and seheduled refrigeration power (step length: 1 min). (c) Real-time net heat in the
intra-day scheduling (step length: l min)
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Figure 22: Fluctuation of real-time exchange power relative to day-ahead planned exchange power in the simple intra-
day scheduling scenario

6 Conclusion
This study investigates the use of delay-tolerant computing workloads and refrigeration systems

within data center micro-grid as flexible resources to accommodate volatile renewable generation. A two-
stage multi-time scale optimization framework that integrates workload time-shift models into day-ahead
scheduling and incorporates refrigeration power as a controllable variable in intra-day dispatch is developed
to support green data-center operation. The proposed model is validated on a representative data-center case.
Results show that accounting for workload shifting in day-ahead power scheduling reduces daily operating
costs by 36.7% and decreases renewable curtailment by 50.5%. Including refrigeration control in intra-day
scheduling further improves economic performance and mitigates the impact of renewable uncertainty on
exchange-power volatility.

The contribution of this paper includes:

• This work identifies and categorizes three types of delay-tolerant workloads with distinct characteristics.
Mathematical models are built to describe their time-shifting mechanisms. These models enable the
workload time-shift behavior to be incorporated into renewable-aware power scheduling, allowing
computing tasks to actively contribute to low-carbon data-center operation.

• The respective power regulation characteristics of delay-tolerant workloads and data center refrigeration
system are analyzed and modelled. Based upon this foundation, a novel multi-time scale power-
management framework is established, which achieves the coordination of these two kinds of flexible
resources across different time scales to handle renewable power uncertainty.

In future, the deployment of renewable energy in data centers as well as the accelerated expansion of
intelligent computation have become an inevitable trend. Further research into scheduling strategies and
quantification of power regulation potential of the flexible computing workloads will therefore become
essential. The time shift modelling methodology of workloads herein provides a solid foundation and could
be applied in these application scenarios. Moreover, the renewable energy uncertainty continues to pose a
significant challenge. The two-stage multi-time scale model developed in this study proves to be effective at
managing power uncertainty and can be adapted to other green data centers. Overall, this paper contributes
a practical management approach that leverages workload shifting and refrigeration flexibility to increase
renewable-energy utilization and improve the operational economy of data centers, which provides support
to the sector’s green transition.
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Nomenclature
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
A Long-running non-interruptible workload
For i

a Original computing power demand time series of the long-running non-interruptible workload
f 1

a Computing power demand value at the starting node of the long-running continuous workload
f k

a Computing power demand value of the long-running continuous workload at the kth time points
following the starting node

K Processing time of the workload execution
Ua Time-shift vector of the starting node of long-running continuous workload
ut

a Whether the starting node of the long-running non-interruptible workload is located at a certain time
point, with a value of 0 or 1

U ind ex
a The time at which the starting node is positioned

te The earliest start time point of the long-running non-interruptible workload
tl The latest start time point of the long-running non-interruptible workload
Fmov

a Computing power demand time series of the long-running non-interruptible workload after shifting
Mmat

a A constructed auxiliary constant matrix, with a dimension of T*T
B Long-running interruptible workload
For i

b Original computing power demand time series of long-running interruptible workload
f 1
b Computing demand value of the 1st subtask of long-running interruptible workload

f k
b Computing demand value of the kth subtask of long-running interruptible workload

Fmat
b A constant vector constructed based on values of f 1

b ,. . ., f K
b

Ub Time shift matrix variable of long-running interruptible workload
ut ,k

b Whether the kth subtask is moved to time point t, with a value of 0 or 1
U ind ex

b Matrix of time points where subtasks locate after shifting
uind ex ,k

b Time point where each subtask locates after shifting
Fmov

b Computing power demand time series of each subtask after shifting
C Short-running workloads
For i

c Original computing power demand time series of short-running workloads
Fmov

c Computing power demand time sequence of the short-running workloads after shift
f k
c Computing power demand value of short-running workloads at original status at time point k

f t
c∗ Computing power demand value of short-running workloads after shifting at time point t

ut ,k
c The amount of computing power demand of short-running workloads that is transferred from the

original time point k to another time point of t
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Uc The time shift matrix variable of the inflow and outflow computing power demand amount of short-
running workloads

Cmat
c A constructed constant matrix with the same dimension as the variable Uc

M A constant, equal to the peak computing power demand of the short-running workloads.
Dmat

c A penalty cost coefficient matrix to prevent invalid shifting
Fmax

c pu The maximum computing power of the CPU chip
Emax

c pu The maximum power consumption of the CPU used in this study
FLOPS FLoating-point Operations executed Per Second
Ncore The number of computing cores of the chip
fcore The core frequency
Zcore The double-precision floating-point operands per clock cycle of the core
Fmax

chi p The computing power of the chip
Fmax

d c The computing power capacity of the data center using CPU chips
Nrack The number of racks in the data center
Nserv er The number of servers per rack
NCPU The number of CPU chips per server
uc pu The processor utilization rate
Eid l e The power of servers when uc pu is zero
Epeak The power of servers when uc pu reaches 100%
Fd ata The computing power demand of workloads
Cin Equivalent heat capacity of indoor air
Cw al l Equivalent heat capacity of the wall
R1 Equivalent thermal resistance of indoor air and the inner side of the wall
R2 Equivalent thermal resistance of the outer wall and outdoor air
θt

in Indoor temperature at time t
θ t

w al l Wall temperature at time t
θ t

out Outdoor temperature at time t
Pt

heat Heat generation of the servers at time t
Pt

col d Refrigeration power at time t
θstabl e

w al l Mean value of wall temperature
θ0

in Initial indoor temperature
Cgr id Net cost of electricity transactions with the main-grid
Ccur Penalties for wind and PV power curtailment
Kbu y Unit electricity purchase price from the main grid
Ksel l Unit electricity sale price to the main grid
Et

bu y Day-ahead planned purchased electricity power during time period t
Et

se l l Day-ahead planned sold electricity power during time period t
Kcur Unit penalty price for wind and PV power curtailment
Et

cur Day-ahead planned renewable power curtailment in time period t
Δt Duration of time period t
For i

a1 Computing power demand of delay-tolerant workloads A1
For i

a2 Computing power demand of delay-tolerant workloads A2
For i

b1 Computing power demand of delay-tolerant workloads B1
For i

b2 Computing power demand of delay-tolerant workloads B2
For i

c Computing power demand of delay-tolerant workloads C
Fmov e

a1 Computing power demand of delay-tolerant workloads A1 after shift
Fmov e

a2 Computing power demand of delay-tolerant workloads A2 after shift
Fmov e

b1 Computing power demand of delay-tolerant workloads B1 after shift
Fmov e

b2 Computing power demand of delay-tolerant workloads B2 after shift
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Fmov e
c Computing power demand of delay-tolerant workloads C after shift

For i
mg Computing power demand of the delay-sensitive workloads

θt
in Day-ahead forecasted indoor temperature

Pmin
col d Lower limit of refrigeration power

Pmax
col d Upper limit of refrigeration power

Et
col d Day-ahead planned refrigeration electricity power consumption

Et
w ind Day-ahead planned utilized wind power at time point t

Et
pv Day-ahead planned utilized PV power at time point t

Et
w ind ,max Day-ahead forecasts of maximum wind power generation

Et
pv ,max Day-ahead forecasts of maximum PV power generation

Bt
bu y State of day-ahead power purchase

Bt
se l l State of day-ahead power sell

Emin
bu y Lower limit of power purchase

Emax
bu y Upper limit of power purchase

Emin
se l l Lower limit of power sell

Emax
se l l Upper limit of power sell

Vgr id Fluctuation of the purchased and sold power between day-ahead plan and real-time plan for
each round

Co p The optimized operation cost for each round
V max

gr id Fluctuation of the purchased and sold power between day-ahead and real-time plan with the
minimization of operation costs as the only goal for each round of optimization

Cmax
o p The operating cost with the minimization of fluctuation of the purchased and sold power between

day-ahead and real-time plan as the only goal for each round of optimization.
Eτ

bu y Day-ahead planned purchased electricity power at time point τ.
Eτ

se l l Day-ahead planned sold electricity power at time point τ.
Eτ

bu y∗ Real-time purchased electricity power at time period τ
Eτ

se l l∗ Real-time sold electricity power at time period τ
Eτ

cur∗ Real-time renewable power curtailment at time period τ
θτ

in∗ Real-time indoor temperature
θ0

in∗ Indoor temperature at the start time of intra-day rolling scheduling
Pτ

heat Day-ahead planned heat generation of the servers at time τ
Δθmax15

in∗ The max fluctuation of indoor temperature within 15 min
Δθmax1

in∗ The max fluctuation of indoor temperature within 1minute
Pτ

col d∗ Real-time refrigeration power at time period τ
ΔPmax

col d∗ Real-time ramp constraint of refrigeration power
Eτ

col d∗ Real-time refrigeration electricity consumption at time period τ
Eτ

w ind∗ Real-time planned utilized wind power at time point t
Eτ

pv∗ Real-time planned utilized PV power at time point t
Eτ

w ind∗,mppt 60-min ahead forecasts of maximum wind power generation
Eτ

pv∗,mppt 60-min ahead forecasts of maximum PV power generation
Bt

bu y∗ State of real-time power purchase
Bt

se l l∗ State of real-time power sell
Prated

col d Rated refrigeration capacity of refrigeration system
Erated

col d Corresponding rated electricity consumption of the refrigeration system
Pmax

heat The maximum heat generation of the server cluster
Sa The area of the computer room
β The empirical coefficient
Emax

vre The installed capacity of wind and PV power system
ηvre Average power generation efficiency of renewable energy
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Ew ind# Day-ahead planned utilized wind power in the simple scheduling scenario
EPV # Day-ahead planned utilized PV power in the simple scheduling scenario
Ebu y# Day-ahead planned purchased power in the simple scheduling scenario
Ed ata# Day-ahead planned server power consumption in the simple scheduling scenario
Ecol d# Day-ahead planned refrigeration electricity consumption in the simple scheduling scenario
Ese l l # Day-ahead planned sold power in the simple scheduling scenario
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