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ABSTRACT: In view of the insufficient utilization of condition-monitoring information and the improper scheduling
often observed in conventional maintenance strategies for photovoltaic (PV) modules, this study proposes a predictive
maintenance (PdM) strategy based on Remaining Useful Life (RUL) estimation. First, a RUL prediction model is
established using the Transformer architecture, which enables the effective processing of sequential degradation data.
By employing the historical degradation data of PV modules, the proposed model provides accurate forecasts of the
remaining useful life, thereby supplying essential inputs for maintenance decision-making. Subsequently, the RUL
information obtained from the prediction process is integrated into the optimization of maintenance policies. An
opposition-based learning Harris Hawks Optimization (OHHO) algorithm is introduced to jointly optimize two
critical parameters: the maintenance threshold L, which specifies the degradation level at which maintenance should
be performed, and the recovery factor #, which reflects the extent to which the system performance is restored after
maintenance. The objective of this joint optimization is to minimize the overall operation and maintenance cost
while maintaining system availability. Finally, simulation experiments are conducted to evaluate the performance of
the proposed PdM strategy. The results indicate that, compared with conventional corrective maintenance (CM) and
periodic maintenance (PM) strategies, the RUL-driven PdM approach achieves a reduction in the average cost rate
by approximately 20.7% and 17.9%, respectively, thereby demonstrating its potential effectiveness for practical PV
maintenance applications.
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1 Introduction

In recent years, the scale of photovoltaic (PV) power generation has been growing rapidly, and effective
operation and maintenance of PV power generation systems is essential to ensure their reliability and
economy during operation. Usually, maintenance approaches for PV power generation systems are broadly
classified into three forms: corrective maintenance (CM), preventive maintenance (PM), and predictive
maintenance (PdM) [1-3].

The CM strategy for PV systems involves emergency repairs to restore operation after a system failure.
Reference [4] established a general economic evaluation model and found that when the response time of
the maintenance team is short, the CM strategy often has the lowest total cost in most scenarios, particularly
suitable for small-scale PV plants with fewer components. Reference [5] decomposed the CM process into
failure and repair processes and proposed an automated aggregation algorithm to model the failure and
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repair processes of multiple components in complex systems, simplifying the computational burden of
CM modeling.

The PM strategy for PV systems involves performing maintenance before failures occur, primarily by
establishing specific maintenance cycles for regular maintenance activities to minimize downtime caused
by component failures and reduce unnecessary economic losses. Reference [6] established a preventive
maintenance model for photovoltaic power generation systems based on reliability, and used the Zebra
optimization algorithm to determine the maintenance threshold. Reference [7] proposed a refined fault
detection method based on current signal analysis as a key support for improving PM accuracy, aiding in
triggering PM at early fault stages to extend component lifespan and enhance system availability. Refer-
ence [8] proposed a preventive maintenance and replacement strategy for photovoltaic power generation
systems based on reliability constraints. It constructed a non-periodic incomplete maintenance model
and determined the optimal maintenance and replacement cycle by combining the inverter case study.
Reference [9] proposed a PM strategy driven by structural correlation for PV systems, aiming to reduce
high costs due to unreasonable maintenance timing and grouping. Reference [10] constructed a reliability
model and a maintenance cost model for the wind-solar hybrid power system. By combining preventive
maintenance and energy complementation strategies, it established a maintenance optimization model and
verified its effectiveness through a case study.

The PdM strategy for PV systems is condition-based maintenance, involving periodic or continuous
condition monitoring and fault diagnosis of key components during system operation, with maintenance
performed when necessary [11]. Reference [12] focused on the three core tasks of condition monitoring,
fault diagnosis, and lifespan prediction, summarizing common signal types, fault modes, and degradation
features, and analyzing the application scenarios and adaptability of deep learning models in PdAM. Refer-
ence [13] proposed a PAM optimization method for distributed PV plants by constructing a multi-constraint
scheduling model and introducing genetic algorithms to achieve dynamic allocation of maintenance tasks
guided by fault levels, equipment capacity, and remaining waiting time. Reference [14] addressed the
challenge of predicting PV component degradation under dynamic environmental conditions, proposing
a semi-parametric PAM framework that explicitly incorporates environmental condition information into
Remaining Useful Life (RUL) prediction models, demonstrating effective support for PAM decisions in
various PV technologies for health management and fault prevention. Reference [15] constructed a method
for predicting the lifespan of photovoltaic modules and optimizing maintenance based on a two-stage Wiener
degradation model. It proposed a predictive maintenance strategy to determine the optimal maintenance
threshold and timing. Reference [16] proposed a data-driven process based on machine learning and
time series methods for the performance modeling, fault detection, and trend prediction of photovoltaic
systems, thereby achieving predictive maintenance alerts. Reference [17] provides a comprehensive review of
predictive maintenance and fault diagnosis methods based on artificial intelligence in photovoltaic systems,
and proposes a framework that combines fault mode analysis and severity assessment to enhance system
reliability and operational efficiency.

In summary, the CM strategy of PV power generation system mainly takes whether the system is
intact or whether it can continue to be used as the basis of maintenance, and restores the equipment to the
initial state through repair or replacement actions after failure, which is a typical unplanned maintenance
strategy, which will definitely lead to problems such as long downtime, large losses, and poor safety, and
is not applicable to systems with high safety and reliability requirements; the PM strategy performs better
in cost optimization compared to CM strategy, but in most cases, the optimal maintenance interval needs
to be found, which poses a challenge to the actual operation. Building on the foregoing analysis, this study
introduces a PAM framework for PV power systems that leverages RUL information. First, a Transformer
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network forecasts the system’s RUL. Second, the predicted RUL values are coupled with an operation-
and-maintenance (O&M) cost formulation, and an opposition-based-learning Harris Hawks Optimization
(OHHO) algorithm simultaneously adjusts the maintenance threshold L and restoration factor r. Thereby
deriving an optimal maintenance schedule. Finally, through simulation, it was verified that this model can
utilize the degraded data of the photovoltaic power generation system to predict its RUL, and this strategy
can effectively reduce the total maintenance cost and enhance the forward-looking nature of maintenance
decisions, thereby effectively extending the remaining useful life of the system.

2 RUL Prediction Model for Photovoltaic Power Generation Systems
2.1 Transformer Model

The Transformer architecture leverages a self-attention mechanism for sequence modelling. It comprises
an encoder and a decoder built by stacking identical layers; each layer contains a multi-head attention block
and a position-wise feed-forward network, supplemented with residual connections and layer normalization
modules [18]. The overall structure of the Transformer is shown schematically in Fig. 1.
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Figure 1: Schematic diagram of the overall structure of Transformer

In the illustration, the encoder is placed on the left and the decoder on the right; within both, multi-head
attention blocks and position-wise feed-forward networks are linked through residual paths and followed
by layer-normalization. The zoomed-in image in the upper left of the figure demonstrates the computation
of multi-head attention: the inputs are linearly transformed to produce queries (Q), keys (K), and values
(V), which are spliced through multiple parallel sets of scaled dot-product attentions and linearly mapped
to obtain the final output.

Self-attention is the pivotal operation within the Transformer architecture and is realised through scaled
dot-product attention. Let the query, key and value matrices be denoted by Q, K and V, respectively. The
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computation proceeds as follows: (i) calculate the dot-product similarity between each query and every key,
(ii) divide these scores by the square root of the key-vector dimension, (iii) convert the scaled scores into
probability weights via the Softmax function, and (iv) obtain the output as the probability-weighted sum of
the value vectors. The corresponding expression is:

Attention(Q,K,V) = softmax(Q—KT) v 1)
o Vi

In the equation, di represents the dimension of the key vectors. The expression details the self-attention
workflow: for each query, dot-product scores against every key are first calculated, then divided by \/dx
and normalised through the Softmax function, producing a probability distribution over the keys. These
coefficients weight the associated value vectors, whose weighted combination forms the layer’s output.
Through this operation, self-attention fuses contextual cues from all positions in the input, effectively
modelling long-range dependencies. Multi-head attention enhances the mechanism by mapping Q, K and V
into n distinct representation subspaces that are processed in parallel. For the i-th head, let the transformed
query, key, and value be denoted as QW,%, KWK, and VW,”, respectively. Attention is computed separately
in each subspace, and the resulting outputs are concatenated:

head; :Attention(QWiQ,KWiK,VI/ViV) )

Multihead(Q,K,V) = Con(head,, ..., head,) wo 3)

Through multi-head parallelism, the model can focus on sequence features from different perspectives,
enhancing its expressive capability. The Transformer also requires explicit injection of positional information
because self-attention itself cannot distinguish the order of elements in a sequence. A widely used technique
introduces periodic positional signals into the token embeddings by superimposing sine-and cosine-based
vectors. For a token located at position pos and a model dimension index i, the corresponding positional
component is given by:

N pos

PE(pos,2i) = sin (—IOOOOZi/dm ) (4)
, ~ pos

PE(pos,2i +1) = cos (—100002i/dm ) (5)

In the formula, d, is the model dimension, with even indices using the sine function and odd indices
using the cosine function, ensuring that encodings for adjacent positions have different frequencies, which
allows sequences of varying lengths to be distinguished. The positional encoding is added to the input
embeddings and serves as the input to the self-attention module, conveying the positional arrangement of
elements within the token stream. The above derivations ensure that the Transformer model can perform par-
allel computations while effectively representing relationships and positional information between elements
when processing sequence data.

2.2 RUL Prediction Model of PV Power System Based on Transformer Model

Focusing on the degradation characteristics of PV power-system data, a Transformer-based model is
constructed to predict the RUL. Firstly, the power degradation data collected during system operation is
regarded as time series input. In order to be compatible with the input form of Transformer, the original
features need to be mapped to a fixed-dimension vector space through linear layers, and position coding is



Energy Eng. 2026;123(2):21 5

added to reflect the time sequence. The architecture centres on a stack of Transformer encoder layers; every
layer pairs a multi-head self-attention module with a position-wise fully connected network, and employs
residual links together with layer normalization to keep training stable. The top-layer encoder output is
passed through a dense regression layer, which converts it into remaining-lifetime estimates for forecasting
future service life. The input sequence is first transformed through embedding and positional encoding, then
fed into an N-layer Transformer encoder stack—each layer comprising a multi-head self-attention block
and a position-wise feed-forward network—and finally passed through a dense regression head to yield the
system’s remaining-lifetime prediction [19].

During training, the raw degradation data are first segmented and perturbed to emulate fragmentary
input sequences. Parameter updates are driven by minimizing the mean-squared error (MSE). For a dataset
containing N samples, let y; denote the actual lifetime of the i-th instance and y/, its predicted counterpart;
the loss is then given by the MSE formulation:

1 N
Lysg = N Z (yi- )/i)z (6)
in1

By gently penalising prediction deviations—yet assigning greater weight to large errors—the loss
guides the regression task toward robust convergence of its parameter updates. The optimization process
continuously adjusts the model parameters through the gradient descent method to minimize the MSE loss
and thus improve the prediction accuracy.

3 Predictive Maintenance Model for PV Power System Based on RUL Information

For a photovoltaic power generation system structured as shown in Fig. 2, perform maintenance on its
associated system.
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Figure 2: Structure diagram of PV power generation system

3.1 CM Strategy Model and PM Strategy Model

Under the CM strategy, the system operates continuously until a failure occurs, at which point
maintenance is performed. The cost per renewal cycle is the failure repair cost, Cc, and the renewal cycle is
the system lifespan T [20]. Therefore, the expected cost and expected cycle are as follows:

E(C)=Cc (7)

E(T):foooR(t)dt (8)
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In this expression, R (t) denotes the survival function—that is, the likelihood that the system remains
operational up to time t. The cost rate of the CM strategy is then given by:
_E(C) Cc
CE(T) [ R(t)dt

(9)

Ccm

For the PM strategy, assume the maintenance cycle is 7. At the start of each cycle, if a failure occurs
before 7 with probability F (7), maintenance is performed at the time of failure, incurring a cost of C¢, and
the cycle length is the failure time. If the system has not failed by 7, with probability R (7) =1-F (1), a
planned maintenance is performed at 7, incurring a cost of Cp, and the cycle length is 7. According to renewal
theory [21], the expected cost and expected cycle length for periodic maintenance can be expressed as:

E(C) = CpR (1) +Cc[1-R(7)] (10)
E(T):fOTR(t)dt (11)

Therefore, the cost rate of the PM strategy is:

_E(C) CpR(1)+Cc[1-R(7)]
CE(T) [ R(t)dt

Crm (12)
3.2 Predictive Maintenance Model for Photovoltaic Power Generation System Based on RUL Information

The PdM strategy for the photovoltaic power generation system utilizes the real-time assessed Tryp,
setting a maintenance threshold L and a recovery factor r (0 < r < 1). Maintenance is performed when the
predicted remaining useful life Tryy < L. The degree of recovery after maintenance depends on r. If the
original lifespan is T, and T > L, preventive maintenance is performed at t = L, with the time remaining until
failure given by:

A=T-L+rL=T-(1-r)L (13)

The total operating time is L + A = T + rL. Fig. 3 illustrates the complete maintenance workflow.

RUL%

|
|
|
|
|
|
0 <—+—+—.| ...... I Planned ;
L1 L2 L3

Cycle
Figure 3: Schematic diagram of the maintenance process

If a failure occurs before the maintenance threshold—denoted as case T < L—with a probability of
F (L), then the cycle length is T and the cycle cost is Cc. If the maintenance threshold is triggered before
failure—denoted as case T > L—with a probability of 1 — F (L), then the cycle length is T — (1 - r) L and the
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cycle costis C¢ + Cp. Based on these two scenarios, The PAM strategy’s expected cost and cycle duration can
be formulated as:

E(C) = CcF (L) + (Cp + Cc) [1- F(L)] (14)

E(T)=/(;Ltf(t)dt+[Lm[t—(l—r)L]f(t)dt (15)

Accordingly, the cost rate for the PAM strategy is defined as:
E(C) . CcF(L)+(Cp+Cc)[1-F(L)]

E(T)  [lef(tydt+ [ [t-(-r)L]f(t)dt

In the actual solution, if the distribution of T is known, the above integrals can be calculated numerically

directly; if the distribution is unknown or difficult to analyze, Monte Carlo simulation can be used, and then
approximate calculation. It is worth noting that the above cost analysis did not include the monitoring costs

Cpam = (16)

for a specific period of time, and this aspect needs to be given special consideration in practical applications.

3.3 Solving Optimal Maintenance Strategy for PV Power System Based on OHHO
3.3.1 Opposition-Based-Learning Harris Hawks Optimization

Harris Hawks Optimization (HHO) is a swarm-based meta-heuristic that models the cooperative
encirclement tactics observed in Harris’s hawks [22]. HHO balances broad exploration with intensive
exploitation by emulating the encirclement tactics Harris’s hawks use to corner prey within the search space,
and its basic process includes an exploration phase, a transition phase, and an exploitation phase [23].

(1) Exploratory stage

This stage consists of two strategies:

X,(t)—rl |Xr—27’2X(t)| qZOS

X(t”):{ AX - 13 (LB + r4AB) g<05 17)

where X (¢ + 1) denotes the eagle’s location in the upcoming iteration, X; represents the current coordinates
of the prey, X (t) denotes the eagle’s present location, X, (¢) corresponds to an eagle chosen at random from
the present swarm, ry, 1, 13, 14, q are all sampled at random within the range (0, 1), which will be updated as
iteration proceeds, AB = UB — LB, UB and LB are the upper and lower bounds of the variables, respectively,
AX = X; (t) = Xn (), and X,, (t) indicates the mean location of all eagles in the present swarm, as defined
below:

M=z

Xm=— 3 Xi (1) (18)

1
N

Il
—

where X; (t) represents the location of an eagle at iteration ¢, and N is the population size.
(2) Transition stage

The escape energy of prey at this stage is modeled as follows:

E=2E, (1 - %) 19)

where E is the escape energy of the prey, T is the maximum number of iterations, ¢ is the current number of
iterations, and E, is the initial energy, which takes the value of a random number within (-1, 1). When |E| > 1,
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the Harris hawk will search different regions to further explore the location of the prey—global exploration;
when |E| < 1, the Harris hawk enters into local exploration.

(3) Development phase

Let the escape probability of the prey be R. According to the values of E and R, the following four
roundup strategies can be set up:

The soft roundup—|E| > 0.5, R > 0.5, is modeled by the following rule:
X(t+1)=AX(t) - E|JX; (t) - X (1) (20)
AX (t) =X; (t) - X (t) (21)

where AX (t) is the difference between the position vector of the prey in the ¢-th iteration and the current
position vector, and the value of ] varies randomly during the iteration, characterizing the fleeing intensity
of the prey.

The results of the hard roundup—|E| < 0.5, R > 0.5, position update are as follows:
X(t+1)=X;(t) - E|AX ()] (22)
Indirect fast dive soft roundups—|E| > 0.5, R < 0.5, are executed by the following maneuvers:
Y=X;(t)-E|JX; (t) - X (t)| (23)
Z=Y+SxLF (D) (24)
where D is the problem dimension, S is a random vector, and LF is the Lévy flight function, defined as follows:

LF (x) = 0.01 x “x2

|ul?
1

I (1+p) xsin (Z) P (25)

where u, y are random values within (0, 1) and f3 is a default constant. Therefore, the position of this phase
is updated as follows:

o =

o {5 ERLEG)
Indirect fast dive hard roundups—|E| < 0.5, R < 0.5, are executed by the following maneuvers:

Y = X, (£) - E|JX: (1) ~ Xy (1) 27)

Z=Y+SxLF(D) (28)

where X,,, is obtained from Eq. (18). Therefore, the position of this stage is updated as follows:

o {1 ERLEG)
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However, HHO may converge slowly and easily fall into local optimum when dealing with complex opti-
mization problems. To enhance algorithmic performance, an opposition-based learning (OBL) mechanism
is incorporated into OHHO, aiming to boost search efficiency and maintain population diversity [24], which
accelerates the current solution by considering both the current solution and its opposites simultaneously
to convergence and extend the search space by considering both the current solution and its opposites.
Specifically, given a range of values for the j-th dimension in the decision variable space [a b j], for a current

solution X (’;pp = (xflp P xfzp L xf};p ), its corresponding inverse solution is defined as:
xffp:aj+bj—xij,j=1,2,...,D (30)

where D is the problem dimension. This reverse mapping makes the reverse solution located at the symmetric
position of the current solution relative to the center of the hypercube, with an exploration direction relative
to the original solution. After generating the reverse individuals, the current population is evaluated for
fitness together with its reverse population, and a reverse selection strategy is used to construct a new
generation of populations optimally. A common practice is to compare the fitness values f (X ' ) and f (X ! p p)
for each individual X". If the reverse solution is superior, X/ pp is substituted for X !, otherwise the original
solution is retained:

xi :{ Xoppr [ (Xopp) < £(X7) 31)

new 7 .
X, otherwise

Through the aforementioned reverse selection mechanism, it can help the algorithm escape from local
extreme points, thereby accurately and efficiently determining the optimal combination of maintenance
threshold and recovery factor required.

3.3.2 Model Solving

The model solving process is shown in Fig. 4, and the main steps are as follows:

Step 1: Parameter initialization. Set the algorithm parameters—the population size N, the maximum
number of iterations T, and the periodic reverse operation interval K. Randomly generate N candidate
solutions, each individual containing the parameter vector X’ = (L;, ;), and compute their corresponding
reverse solutions X' pp> Tespectively:

L(i)pp = Lmin + Lmax - Li (32)

r:)pp =Tmin t "max — 7i (33)

where L is the repair threshold and r is the recovery factor. The fitness is evaluated for all original and
reversed individuals, and each (L, r) is substituted into the system predictive maintenance model to calculate
the corresponding objective function value. The 2N candidate solutions are ranked according to the fitness
values, and the top N solutions are optimally retained to form the initial population, providing a better
starting point for the iterative process.

Step 2: Global iteration update. Let the current iteration number ¢ = 1. In each iteration, first calculate
the prey’s escape energy En and escape probability R, and then determine whether it is currently in the
exploration phase or exploitation phase. For each eagle group individual X! = (L;, r;), update its position
according to the following: in the exploration phase, update the individual according to HHO’s stochastic
exploration formula; in the exploitation phase, execute different roundup strategies according to the escape
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probability R. Execute soft roundup when R > 0.5, otherwise execute hard roundup, and compute d against

different formulas X},,. Calculate the fitness for all the new individuals again after the update, and write

down the current optimal solution Xj,;;.

t=t+1

Model initialization and prey initial
energy calculation

Updating the eagle group
position from Eq. (17)

R=0.5 and
IEI>0.5 ?

Updating the eagle group
position from Eq. (20)

R>0.5 and
|EI<0.57

Updating the eagle group
position from Eq. (22)

R<0.5 and
IEI>0.5 ?

Updating the eagle group
position from Eq. (26)

R<0.5 and
|EI<1?

Updating the eagle group
position from Eq. (29)

Update the eagle population according to the
OBL cycle and compute the optimal solution

Output optimal solution |

End

Figure 4: Model solution process

Step 3: Periodic reverse operation. If the current number of iterations satisfies the conditions of reverse

operation, perform reverse learning again for the whole population updated in step 2, generate a reverse

solution for each individual, and evaluate its fitness. The current population is merged with the reverse

population and sorted by fitness, and the top N individuals are optimally selected as the new population.
This step allows the algorithm to periodically introduce symmetric exploration nodes in the search space,

which helps to update the population diversity and accelerate global convergence.

Step 4: Termination judgment. For the iteration number ¢, if ¢ < T, then return to step 2 to continue the

iteration; otherwise, the iteration is terminated and the currently recorded optimal solution X,, is output
as the optimal configuration of the predictive maintenance parameters L and r. The maintenance strategy
corresponding to this optimal solution is the optimal combination of maintenance parameters for the system
under the given fault and degradation conditions.
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3.4 The Overall Framework of the Model

Based on the above analysis, Fig. 5 presents the flowchart of the maintenance decision-making process
described in this paper, covering the entire process from RUL prediction to the formulation of system
maintenance decisions based on RUL information. In the RUL prediction stage, the proposed model’s
prediction model can learn the degradation pattern of the equipment and use the fragment data to predict
the system’s RUL. During the stage of formulating the equipment maintenance strategy, the proposed PAM
strategy monitors the RUL information of the photovoltaic power generation system in real time and finds
the lowest annual cost rate through OHHO. Moreover, the convergence performance of this algorithm is

superior to that of HHO.
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Figure 5: Flowchart of the model process

4 Case Analysis

The PdM strategy for the PV power system analyzes the power degradation process of a 5.28 kW system
based on 22 PV modules over a period of 12.5 a, as shown in Fig. 6. This system consists of 2 sets of PV strings
connected in parallel, while each string consists of 11 PV modules connected in series [25].

4.1 RUL Analysis of PV Power Systems with Fragmented Data

According to the overall process of this study, firstly, the overall degraded data is stratified. Based on the
expected service life of the system in the case where no maintenance decisions are made, it is divided into
three stages as shown in Table 1.
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Figure 6: Power degradation process of photovoltaic system

Table 1: Results of time-stratified analysis of the original data

Stage Time/a Degradation rate

1 0-3.6 Slow
2 3.6-7.2 Medium
3 7.2-10.8 Fast

Next, in order to simulate the output power degradation rate of the system under different working
environments, data augmentation was carried out based on the initial power degradation curve. 200 different
degradation curves were generated for each segment. By adding random weak perturbations to each segment,
the power degradation rate fluctuated within the range 0f 10% above and below the initial value. This achieved
the enhancement of the original data. The results of data augmentation are shown in Fig. 7. The introduced

weak perturbations can bolster the prediction model’s resistance to observed disturbances without altering
the system’s overall degradation trajectory.

20
— Slow )
—Medium y
I5r — Fast

W
T

Power degradation rate/%
S

=]
>

0 2.5 5 7.5 10
Time/a

Figure 7: Result of degraded data enhancement

The results of degradation data augmentation can be used as the original dataset for the system’s RUL
prediction. For the augmented data under different degradation rates, 80% of each set is selected as the

training set and 20% as the test set. The Transformer model is utilized to achieve the training of the training
set data, and the training process is shown in Fig. 8.

Subsequently, the data from the test set was utilized for the prediction of the system RUL, and the
prediction results are shown in Fig. 9.
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Figure 9: The RUL prediction results of the Transformer model

From Fig. 9, it is evident that the scatter describing the relationship between the predicted and actual
RUL values lies almost on the line y = x, demonstrating that the Transformer-driven RUL estimation scheme
can produce more precise system-level remaining-life forecasts. Considering that there is a large amount
of prediction data, Fig. 10 only shows the RUL probability distribution of some samples within the 95%
confidence interval.

As can be seen from Fig. 10, in the samples randomly selected at different stages, the RUL prediction
model proposed in this study was able to predict the remaining useful life of each sample, verifying the
effectiveness of the model. Then, the RUL prediction results of all samples were statistically analyzed and
averaged to obtain the correlation information between the degradation rate of the system’s output power
and the average RUL, as shown in Fig. 11.

Finally, in order to verify the effectiveness of the method proposed in this paper, the prediction results
of the Transformer model and the CNN model were compared. The prediction results of the CNN model are
shown in Fig. 12.

As can be seen from Fig. 12, although the CNN model can also predict the remaining useful life of the
system with relatively high accuracy, the number of points deviating from the ideal prediction curve is greater
than that of the Transformer model. Finally, Table 2 summarizes the error analysis of RUL prediction using
the Transformer model and the CNN model.
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Table 2: Error analysis of different models

Models Mean absolute error/a Root mean square error/a
Transformer 0.143 0.172
CNN 0.151 0.188

4.2 Predictive Maintenance Strategy for PV Power System Based on RUL Information
4.2.1 Relevant Maintenance Information

The simulation parameters for this study are shown in Table 3. Among them, the expected lifespan of
the system when no maintenance decisions were involved was 10.9 years.

Table 3: Simulation parameters settings

Parameter Value

Simulation time 12.5a

CM downtime 7 days

PM and PdM downtime 1 day
PM interval 2a

Maintenance-related fixed costs 500 RMB/day

Suppose that the monitoring activities need to be carried out every day, referring to the literature [25],
the relevant maintenance cost information is obtained as shown in Table 4, where C; denotes the cost of unit
condition monitoring, C, denotes the cost of maintenance preparation, G denotes the average cost of PM
and PdM, and C. denotes the average cost of CM.

Table 4: Relevant maintenance costs

Relevant costs/¥ C; C, G C.
Value 10 1000 3000 3500
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4.2.2 Comparative Analysis of Different Algorithms

This subsection searches for the optimal cost ratio and its corresponding algorithm by comparing and
analyzing the convergence of HHO with OHHO and other improved HHO [26,27]. The convergence curves
of the algorithms as well as the computational time comparisons are shown in Figs. 13 and 14, respectively.

5500 — O‘L“Ifo
€ s480| — SHHO
= — MHHO
S 5460 |
2 5440}

8
8 500} X ‘ .|
<
é 5400 - I
< 5380
0 10 20 30 40 50

Iterations

Figure 13: Convergence curves of each HHO
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Figure 14: Calculation time for each HHO

Combining Figs. 13 and 14, the performance differences between HHO and each improved form of
HHO in maintenance strategy optimization are compared and analyzed. It can be seen that each improved
form of HHO can converge to a more optimal solution in fewer iterations, but the optimal solution of
OHHO is smaller than the optimal solutions of several other improved forms, showing that OHHO has
better convergence performance. And the overall computational time difference among the HHOs is not
significant. In the comprehensive analysis, under the objective of minimizing the annual cost rate, OHHO
combines good performance with the least computation time, making it ideally suited to the performance
demands of a PAM scheme in photovoltaic power systems. The cost analysis of the PAM strategy is given
in Fig. 15.

Considering that in practical engineering applications, the threshold L is difficult to be precisely
matched, and the recovery degree is also difficult to be precisely determined, in this case, the concept of
“maintenance cost economic basin” is introduced. Combined with Fig. 15 and the algorithm optimization
results, if the cost rate does not exceed 103% of the optimal cost rate, then this cost rate is within the
“maintenance cost economic basin’, which means that the threshold range is 15%-20%, the recovery factor
range is 0.60-0.72, and the annual cost rate meets the above requirements for all combinations of L and
r. Based on this, when the system RUL is only about 1.9 a left, corresponding levels of maintenance
can be considered. Maintenance actions located within the “maintenance cost economic basin” are called
“actionable actions”, and such actions can approximately achieve the optimal annual cost rate. Therefore, the
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corresponding maintenance actions can be adjusted according to the actual engineering situation, thereby
effectively increasing the RUL of the system.
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Figure 15: Cost analysis of PAM. (a) Cost plan; (b) Threshold-recovery factor-annual cost rate relationship plot

4.2.3 Comparative Analysis of Maintenance Strategies

In order to demonstrate that the PAM strategy of the photovoltaic power generation system has certain
advantages over other maintenance strategies, in this study, the cost rates under the CM, PM, and PdM
strategies were compared and analyzed through simulation. The results are shown in Table 5.

Table 5: Relevant maintenance costs

Maintenance strategies CM PM PdM
Cost rate/RMB 6850 6610 5430

As shown in Table 5, the PAM strategy performs better in minimizing the downtime cost. Compared
with the CM and PM strategies, its annual cost rate can be reduced by approximately 20.7% and 17.9%, respec-
tively. However, since the simulation only considered the ideal situation and assumed that the downtime after
a failure was relatively short, the cost rates of the three strategies during the maintenance period were quite
similar. But in actual engineering, due to many uncontrollable factors such as adverse weather conditions,
spare parts issues, and the efficiency of manual maintenance, longer downtime due to failures may occur,
which in turn leads to changes in the cost rates. At the same time, due to unplanned downtime, additional
costs such as grid penalties and secondary damage to equipment may also be incurred. After comprehensive
consideration, the PAM strategy based on RUL information can minimize the cost losses.

4.2.4 Sensitivity Analysis

In order to determine the degree of influence of maintenance threshold, recovery factor and monitoring
cost per unit time on the cost rate of the PAM strategy for PV power systems, this paper conducts a sensitivity
analysis of the cost parameters of the maintenance model, and analyzes the influence of this parameter on

the cost rate by fixing the rest of the parameters and varying a certain parameter. The results of the analysis
are shown in Fig. 16.
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Figure 16: Sensitivity analysis

As shown in Fig. 16, for the PAM strategy of the photovoltaic power generation system, premature
maintenance will lead to an excessively high cost rate; excessive maintenance or insufficient maintenance
will also increase the maintenance cost; the impact of the recovery factor on the cost rate needs to be
comprehensively evaluated in combination with the maintenance threshold; and as the monitoring cost per
unit time increases, the annual cost rate will also increase accordingly.

5 Conclusion

This study proposes a (PdM) strategy for PV power systems that uses RUL information, and it derives
the following conclusions from simulation analysis:

(1)  Inthestage of RUL prediction, the RUL prediction model based on the Transformer model, by learning
the degradation law of the device, can achieve the purpose of predicting the RUL of the device by using
the fragment data with high accuracy.

(2) During the design stage of the equipment maintenance strategy, the proposed PdM strategy, by
continuously monitoring the RUL information of the photovoltaic power generation system, incor-
porating the maintenance recovery factor, and using OHHO to find the lowest annual cost rate, can
effectively prevent the occurrence of over-maintenance and under-maintenance events, extend the
remaining service life of the photovoltaic power generation system, and increase the photovoltaic
power generation revenue.

(3)  Unlike other maintenance strategies, the PAM strategy for PV power generation system based on RUL
information does not give a specific downtime moment, but utilizes the threshold and recovery factor
information provided by the “maintenance economic basin” to give a maintainable interval, which can
be better applied to the actual project.

In this paper, the RUL prediction stage is modeled only based on the Transformer model, which leads
to a weak ability to extract local degradation information, and the subsequent consideration will be given to
adding relevant modules to improve the accuracy of the model prediction. Meanwhile, the validity of this
framework needs to be verified on a wider range of types, scales and under different climatic conditions for
photovoltaic systems, this aspect will be explored in the next stage of the research.
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