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ABSTRACT: The accurate estimation of lithium battery state of health (SOH) plays an important role in the health
management of battery systems. In order to improve the prediction accuracy of SOH, this paper proposes a stochastic
configuration network based on a multi-converged black-winged kite search algorithm, called SBKA-CLSCN. Firstly,
the indirect health index (HI) of the battery is extracted by combining it with Person correlation coefficients in
the battery charging and discharging cycle point data. Secondly, to address the problem that the black-winged kite
optimization algorithm (BKA) falls into the local optimum problem and improve the convergence speed, the Sine
chaotic black-winged kite search algorithm (SBKA) is designed, which mainly utilizes the Sine mapping and the golden-
sine strategy to enhance the algorithm’s global optimality search ability; secondly, the Cauchy distribution and Laplace
regularization techniques are used in the SCN model, which is referred to as CLSCN, thereby improving the model’s
overall search capability and generalization ability. Finally, the performance of SBKA and SBKA-CLSCN is evaluated
using eight benchmark functions and the CALCE battery dataset, respectively, and compared in comparison with the
Long Short-Term Memory (LSTM) model and the Gated Recurrent Unit (GRU) model, and the experimental results
demonstrate the feasibility and effectiveness of the SBKA-CLSCN algorithm.

KEYWORDS: Random configuration networks; black-winged kite algorithm; sine chaotic mapping; laplace transform

1 Introduction
With the rapid development of renewable energy and electric vehicles, Li-ion batteries, as key energy

storage devices, are widely used in various electronic products and electric vehicles. The State of Health
(SOH) of Li-ion batteries not only directly affects their performance and lifetime [1], but also directly affects
the safety and economic efficiency of electric vehicles. Therefore, the development of an efficient and reliable
SOH estimation method is of great theoretical and practical significance.

Model-based estimation and data-driven estimation are currently the two major approaches utilized
to calculate Li-ion batteries’ SOH. Model-based approaches often use physical models of the battery, but
because of the intricacy of battery properties and the operating environment, these models’ accuracy is
frequently constrained [2]. Data-driven approaches, such as machine learning and deep learning techniques,
on the other hand, are able to extract features from historical data, providing more flexible estimation
capabilities [3]. Deep learning can be applied for both prediction and classification tasks [4]. The method
extracts parameters such as current, voltage, and capacity as health factors (HF) in charging and discharging
historical data and is used as inputs to the SOH estimation model [5]. Liu et al. [6] utilized an artificial bee
colony (ABC) algorithm and long short-term memory (LSTM) network combined with a dropout technique
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to estimate the Li-ion battery. Wang et al. [7] used Cheetah optimization (CO) and Extreme learning machine
(ELM) to predict the remaining life of Li-ion batteries. Li et al. [8] used (the Grey Wolf Optimizer Algorithm
Grey Wolf Optimizer, GWO) and Gated Recurrent Unit (GRU) to estimate the battery’s remaining life
and obtained good results. While the optimization algorithm’s ability to find the optimal solution and the
model’s learning style and generalization ability are important factors in SOH estimation, the combination
of algorithm and model effectively increases the accuracy of SOH estimation. The optimization algorithm’s
ability to find the optimum and the model’s learning style and generalization ability play a key role in the
estimation of SOH [9]. However, there are some limitations in practical applications, among which the
LSTM neural network is more sensitive to the setting of model parameters, ELM neural network has limited
generalization ability and is sensitive to noise which may lead to the degradation of model performance, and
the GRU model has a longer training time and more complex parameter tuning.

In 2017, Wang and Li [10] proposed a stochastic configuration network (SCN) for the first time.
Compared with LSTM and GRU models, SCN adopted an incremental learning approach and introduced a
supervisory mechanism to adjust the network structure and weights during the learning process to achieve
adaptive modeling of the data, and this flexibility makes it more advantageous when dealing with complex
and nonlinear data of lithium batteries. Zhang and Ding [11] combined the Sparrow Search Algorithm
(SSA) with the Stochastic Configuration Network (SCN) and proved the feasibility and effectiveness of their
proposed method. Guo et al. [12] proposed an SOH estimation method combining the parameter-optimized
multivariate variational mode decomposition (MVMD) and stochastic configuration network (SCN) and
achieved good measurement accuracy.

Black winged kite algorithm (BKA) [13] is a novel meta-heuristic algorithm proposed in 2024. Com-
pared with learning algorithms such as Particle Swarm Optimization (PSO) [14], Grey Wolf Optimizer
(GWO) [15], Ant Colony Optimization (ACO) [16], BKA shows stronger optimization ability and higher
efficiency on benchmark functions. However, an analysis of the process of BKA reveals that there are defects
in the global search phase, including cases of falling into local optimal solutions. While the main feature of
chaos is that it does not repeat the previous behavior [17]. Therefore, the SBKA algorithm is proposed by
incorporating chaotic mapping to improve the initialization of the population phase.

In conclusion, this study suggests the SBKA-CLSCN model as a solution to the issues of determining
the ideal hyperparameters and enhancing the model’s capacity for generalization. The black-winged kite
population is initialized using Sine chaotic mapping to increase the algorithm’s convergence speed, and the
global searching capability is enhanced using the golden sine strategy [18]. The Cauchy distribution approach
is also applied to optimize the model’s weights and biases, and the regularization technique is employed
to enhance the model’s capacity for generalization. Tests show that SBKA-CLSCN produces satisfactory
regression results. The main contributions of this paper are: (1) HI sequences are extracted from the constant-
current charging stage of the battery; (2) the global search capability of the BKA algorithm is enhanced
and the SBKA algorithm is proposed; (3) the generalization capability of the SCN model is enhanced
and the CLSCN model is proposed; and (4) the SBKA-CLSCN prediction model has been developed and
experimentally compared.

2 Data Processing

2.1 Battery Data Set
Four battery samples (No. CS2_35, CS2_36, CS2_37, and CS2_38) were chosen as experimental data for

this research from CALCE’s battery dataset. The precise procedure for charging and discharging the batteries
is as follows:
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(1) Charging: 1.1 Ah battery with a rated capacity, charged first at 0.5 C constant current, switched to
constant voltage charging when terminal voltage reached 4.2 V, and then cut to constant voltage
charging until charging current was less than 0.05 A.

(2) Discharge: Continue to discharge at a steady 0.5 C current until the terminal voltage falls to 2.7 V,
marking the conclusion of the single charge/discharge cycle.

(3) The aging experiment was terminated when the batteries reached the cut-off life after repeated charging
and discharging operations. The CALCE failure threshold in this study is set at 80% of the rated capacity
or when the capacity meets the 0.85 Ah failure threshold. Fig. 1 displays the four batteries’ full-cycle
capacity decline trends.

Figure 1: Battery capacity decay curve

2.2 Battery HI Extraction
The resistance of CS2 is depicted in Fig. 2a,b, along with the variation of the curves of constant current

charging time (CCCT) and constant voltage charging time (CVCT), respectively. As the number of charging
and discharging cycles increases, the internal resistance of the batteries rises, and the charging time for
constant voltage gradually rises while the charging time for constant current gradually decreases. These
changes indicate that the batteries’ performance is deteriorating. Thus, HF1 and HF2 are chosen to symbolize
the charging times with constant voltage and current, respectively.
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Figure 2: Constant current voltage charging time

2.3 Correlation Analysis
In this paper, the HI of the battery is evaluated using the Pearson correlation coefficient [19], which is

calculated as follows:

Person =

n
∑
i=1

(xi − x) (yi − y)
√

n
∑
i=1

(xi − x)2
√

n
∑
i=1

(yi − y)2
, (1)

the formula uses xi and yi to represent the data’s ith value and x and y to represent the variables’ mean value.
The correlation coefficient indicates the relationship between the two data sets; the closer the Pearson is to
1, the stronger the correlation. The correlation coefficients of HF1 and HF2 in CALCE’s CS2 dataset with
capacity, respectively, are shown in Table 1.

Table 1: Capacity and HI correlation coefficients

Batteries HF1 HF2
#35 0.9834 0.9931
#36 0.9962 0.9730
#37 0.9915 0.9827
#38 0.9954 0.9905

Table 1 shows that the extracted health variables and the capacity have a good link, and they can be
chosen as the capacity’s health factors because all of the Pearson coefficients fall between 0.9 and 1.0.

3 Research on Related Technologies

3.1 Randomized Network Configuration
SCN is a randomized weight neural network, similar to a feed-forward neural network; both contain

input, hidden, and output layers [20]. The supervisory method is used to randomly set the input weights and
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bias of the nodes in the hidden layer so that the model can be completed, progressively increase the number
of nodes in the hidden layer, and determine the output weights using the least squares approach [21]. The
topology of the SCN network structure is shown in Fig. 3.

Figure 3: SCN network structure topology diagram

The process of constructing the SCN network model is as follows:
Given the dataset, X = {x1 , x2, ⋅ ⋅ ⋅ , xN} denotes feature data, xi = {xi ,1 , xi ,2 , ⋅ ⋅ ⋅ , xi ,d} ∈ Rd ; Y =

{y1 , y2, ⋅ ⋅ ⋅ , yN} denotes labeled data, yi = {yi ,1 , yi ,2 , ⋅ ⋅ ⋅ yi ,m} ∈ Rm ; i = 1, 2, ⋅ ⋅ ⋅ , N .
Step 1: Given the objective function f ∶Rd → R

m , assuming that L − 1 nodes of the SCN implicit layer
have been generated, the current network output is calculated by the formula as in Eq. (2):

fL−1 (X) = ∑L−1
j=1 β j g j (wT

j X + b j) , L = 1, 2, . . . Lmax, f0 = 0, (2)

where β j denotes the output weight of the node j in the implicit layer, g (⋅) denotes the activation function,
w j and b j denotes the input weight and bias of the jth node in the implicit layer, respectively, j = 1, 2, ⋅ ⋅ ⋅ Lmax.
Since the value of the sigmoid function between 0 and 1 conforms to the probability distribution, is
conductible everywhere, and changes rapidly near 0, the sigmoid function of Eq. (3) is chosen as the
activation function.

g (x) = 1
1 + exp (−x) . (3)

Step 2: Calculate the current network residual vector formula as in Eq. (4):

eL−1 = f − fL−1 (X) = [eL−1,1 (X) , eL−1,2 (X) , . . . , eL−1,m (X)]T ∈ RN×m . (4)

Step 3: If ∥eL−1∥2 does not reach the preset error ε or does not reach the maximum number of
nodes Lmax, then increase the L implicit layer node, and according to the formula supervision mechanism
determine the input weight and bias as in Eq. (5); at this time the SCN output model is:

fL = fL−1 + βL gL , (5)

ξL ,q =
(eT

L−1,q ⋅ hL)
2

hT
L hL

− (1 − r − μL) ∥eL−1,q∥
2 , q = 1, 2 ⋅ ⋅ ⋅ , m, (6)
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ξL =
m
∑
q=1

ξL ,q ≥ 0, (7)

hL = [gL (wT
L x1 + bL), gL (wT

L x2 + bL), . . . gL (wT
L xN + bL)]

T ∈ RN . (8)

Step 4: Determine the implicit layer node output weights as in Eq. (9):

β = arg min
β

∥Hβ − Y∥2 = H+Y , (9)

where H+ denotes the generalized inverse of H and H = [h1 , h2, ⋅ ⋅ ⋅ , hL].
Step 5: Calculate the model output f as in Eq. (10).

f = Hβ. (10)

3.2 BKA Optimization Algorithm
The main principle behind heuristic algorithms, which are search and optimization techniques used to

solve complicated problems, is to identify the best answer by searching the solution space within a given
time frame. Because of its exceptional adaptability to changes in the target location and environment, the
black-winged kite algorithm combines the two mutation strategies of Cauchy and Leader, improving the
algorithm’s searching ability and speed of convergence. The attack and migration patterns of black-winged
kites served as the model for this optimization algorithm.

Step 1: Initialize the population

BK =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

BK1,1 BK1,2 ⋅ ⋅ ⋅ BK1,dim
BK2,1 BK2,2 ⋅ ⋅ ⋅ BK2,dim
⋮ ⋮ ⋮ ⋮

BKpo p ,1 BKpo p ,2 ⋅ ⋅ ⋅ BKpo p ,dim

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

initialize the random solution and the above matrix represents the position of each black-winged kite. pop
is representing the number of solutions, dim is the size of the dimension of the given problem, and BKi , j
refers to the ith black-winged kite and the jth dimension, which is needed to distribute the position of each
black-winged kite equally.

Xi = BKl b + rand (BKub − BKl b), (12)

the lower and upper limits are represented by the lb and ub, while the rands are randomly selected values
between zero and one. The i stands for the integers between 1 and 0. At initiation, the most adapted individual
should be chosen because the Leader XL in the population is regarded as the best position among them.

fbest = min ( f (Xi)), (13)
Xi = X ( f ind ( fbest == f (Xi))) . (14)

Step 2: Offensive behavior
The black-winged kite uses a technique that may be used for global search. The mathematical model of

its attack behavior can be represented as follows: it monitors its prey, changes the angle of its wings and tail
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in flight based on the speed of the wind, and then swiftly swoops to attack.

yi , j
t+1 = { yi , j

t + n (1 + sin (r)) × yi , j
t p < r

yi , j
t + n × (2r − 1) × yi , j

t el se
, (15)

n = 0.05 × e−2×( t
T )

2
, (16)

in the jth and (t + 1) iteration steps, respectively, yi , j
t and yi , j

t+1 indicate the location of the ith black-winged
kite. p is a constant of 0.9, while r is a random number between 0 and 1. T is the number of iterations that
have been finished thus far, and T is the total number of iterations.

Step 3: Migratory behavior
In order to adjust to seasonal variations, birds create migratory movements, which are often guided by

a leader. Assuming that the current fitness is less than the stochastic fitness, the leader ceases leading and
joins the migrating population, indicating that it is unfit to lead. This is the Leader policy that is incorporated
into the BKA algorithm. The leader is in charge of the population’s migration if the present fitness is higher
than the stochastic fitness. This tactic actively chooses capable leaders to guarantee the migration’s success,
and the attack behavior’s mathematical model can be written as follows:

yi , j
t+1 =

⎧⎪⎪⎨⎪⎪⎩

yi , j
t + C (0, 1) × (yi , j

t − L j
t) Fi < Fr i

yi , j
t + C (0, 1) × (L j

t − m × yi , j
t ) el se

, (17)

m = 2 × sin (r + π/2), (18)

where yi , j
t represents the top scorer of the black-winged kite of dimension j in the tth iteration thus far. Any

black-winged kite’s jth dimensional current position in the tth iteration is indicated by the Fi , represents the
fitness value of each black-winged kite in the tth iteration’s jth dimensional random point. The following is
the formula for the Cauchy distribution’s probability density function:

f (x , δ, μ) = 1
π

δ
δ2+(x−μ)2 , −∞ < x < ∞ , (19)

when δ = 1 and μ = 0, the standard form of the probability density function is as follows:

f (x , δ, μ) = 1
π

1
x2+1 , −∞ < x < ∞ . (20)

4 SBKA-CLSCN

4.1 Improvement Strategies for the Black-Winged Kite Optimization Algorithm
The BKA method randomly creates the starting population, resulting in an uneven distribution and a

lack of diversity in the solution space. This, in turn, reduces the accuracy and speed of convergence. This is
the first of two primary improvement efforts. The second issue is the imbalance between global search and
local development. The BKA algorithm improves its ability to find the optimal solution by combining the
Cauchy mutation and the Leader strategy. However, this imbalance still exists and can lead to local optimal
solution problems.
1. Sine Chaos Mapping Initialization Population

This paper uses Sine chaotic mapping to initialize the population in order to address the issue of
randomly generating the initial population, which leads to uneven distribution and a lack of diversity in the
solution space. This method has good coverage ability and avoids the problem of concentrating in a particular
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region, increasing search diversity and maintaining a large variable range during the search process, which
aids in finding a more optimal solution to complex problems.

Sine chaotic mapping is defined as follows:

Yi+1 = r sin (πYi), (21)

Xi ,d = Ld + (1 + Yi ,d
Ud − Ld

2
), (22)

where Yi ∈ [−1, 1] is the chaotic sequence, r is the control parameter, and Ud and Ld represent the upper and
lower limits of the d-dimensional search range.

Sine mapping is extremely chaotic and is controlled by r, Fig. 4 which shows the bifurcation diagram
of sine mapping. From the figure, it can be seen that the chaotic performance is in the optimal state when
the control parameter r is constantly approaching −1 and 1, which enables Yi to be uniformly distributed
between them, and therefore in the subsequent experiments r = −1.

Figure 4: Sine chaotic mapping bifurcation map

2. Gold Sine Strategy
In order to achieve a balanced state of global search and local exploitation, GSA uses the sinusoidal

function, which is a mathematical function with a strong global search capability, for iterative optimization.
At the same time, it introduces the golden section in the iterative update of the position information, allowing
the algorithm to search the local area fully.

The improved position update formula is as follows:

yi , j
t+1 =

⎧⎪⎪⎨⎪⎪⎩

yi , j
t ∗ ∣sin (r1)∣ + ∣sin (r2)∣ ∗ n ∗ (1 + sin (r)) ∗ ∣x1 ∗ Lt

j − x2 ∗ yi , j
t ∣ p < r

yi , j
t ∗ ∣sin (r1)∣ + ∣sin (r2)∣ ∗ n ∗ (2r − 1) ∗ ∣x1 ∗ Lt

j − x2 ∗ yi , j
t ∣ el se

, (23)

where r1 is the random number between [0, 2π], r2 is the random number between [0, π], r1 represents the
distance of moving, r2 represents the direction of moving; Lt

j denotes the black-winged kite’s ideal attack
position in the t iteration’s jth dimension; x1 and x2 are the coefficients obtained by the introduction of the
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golden section, τ is the golden section coefficient (
√

5 − 1) /2, and the computational formulas are shown as
follows:

x1 = −π + (1 − π) ∗ 2π, (24)
x2 = −π + τ ∗ 2π. (25)

4.2 Improvement of SCN
In the original SCN, the input weights w and biases b of the hidden layer nodes are randomly generated

from a predefined uniform distribution. However, experimental results show that different input weights and
biases lead to varying degrees of reduction in network residuals, which in turn affects the convergence speed
and structural compactness of the model. To address this issue, this paper proposes an improved stochastic
configuration network, called the Cauchy and Laplace Stochastic Configuration Network (CLSCN).
1. Kersey distribution

It is important to discuss the optimal randomization of the weights and biases in SCN algorithms
because, for the original SCN model, where the weights w and biases b are randomly generated from a
uniform distribution, randomly generating different weights and biases affects the variation of the network
residuals. A neural network architecture that randomly assigns the weights well can greatly outperform a
more flawed architecture that finely tunes the weights.

The Cauchy distribution is used in this study for bias and weight selection at random. The Cauchy
distribution approach is used for optimization, where the following is the conventional Cauchy distribution
probability density function:

F (x) = 1
π

arctan(2 (x − μc)
σ

) + 1
2

, (26)

where μc is the position parameter and σ is the scale parameter.
2. Laplace regularization

To further improve the robustness of SCN, Laplace regularized SCN is used in this paper.

β∗ = arg min
β

∥HL β − Y∥2
F +

α
2

Tr ((Hβ)T LHβ) , (27)

where L denotes the Laplace matrix and α denotes the Laplace regularization factor. Taking the derivatives
of both sides of the equation of Eq. (27) simultaneously gives:

β = (HT H + αHT LH)−1
HT Y . (28)

Furthermore, the Laplace matrix can be computed as:

L = D−
1
2 ⋅ (D − S) ⋅ D−

1
2 . (29)

The similarity matrix S is built with a Gaussian radial basis function:

Si j = exp (−0.5 ∗ ∥xi − x j∥
2) . (30)
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D is the diagonal matrix:

Di i =
N
∑
j=1

Si j . (31)

The flowchart of the CLSCN algorithm is shown in Fig. 5:

Figure 5: The flowchart of CLSCN algorithm

4.3 Implementation of SBKA-CLSCN
The performance of the stochastic configuration network is directly impacted by the hyperparameter

settings in the SCN model; however, the parameters r and λ are constrained by the predefined range. This
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study optimizes the regularization parameters r and the scale factor λ in the stochastic configuration network
model, known as SBKA-CLSCN, using an enhanced black-winged kite optimization algorithm to increase
the accuracy and efficiency of SCN. In the meantime, Fig. 6 proposes the SBKA-CLSCN associated flowchart.

Figure 6: The flowchart of SBKA-CLSCN algorithm

The steps to achieve this are as follows:
Step 1: Initialize SBKA-CLSCN parameters
Initialize the population size (pop), the number of dimensions (D), the upper bound (ub) and lower

bound (lb) of r and λ, the control parameter (μ), the maximum number of hidden nodes (Lmax), the
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maximum number of candidate nodes (Tmax), the maximum number of iterations (T), the tolerance error
(ε), and the Laplace regularization factor α.

Step 2: Build and train SCN models
Individuals of the randomly initialized population are used as initialization parameters r and λ, and the

CLSCN model is constructed and trained according to the above equation.
Step 3: Update regularization parameters and scale factors
The regularization parameters and scale factors are updated according to the formula.
Step 4: Calculate the fitness value
The root mean square error (RMSE) is selected as the fitness function to evaluate the SBKA-CLSCN as

in Eq. (32):

f fi tness =

*
,,- N

∑
n=1

(ym − ŷm)2 /N , (32)

where N represents the number of samples, ym represents the sample true value and ŷm represents the sample
output value.

Step 5: Output SBKA-CLSCN test results
When the specified tolerance is met, or the maximum number of iterations is reached, then the

adaptation value is optimal, thus obtaining the optimal hyperparameters and outputting the resultant values.
The flowchart of the SBKA-CLSCN algorithm is shown in Fig. 6.

5 Experimental Results and Comparative Analysis

5.1 Error Evaluation Indicators
The optimization algorithm’s performance was examined through experiments using the average (Ave)

and standard deviation (Std). The following formulas were utilized to assess and examine the model
estimation effect utilizing the mean absolute error (MAE) and root mean square error (RMSE) error metrics:

Std =
*
,,- 1

n

n
∑
i=1

(xi − x)2, (33)

RMSE =
*
,,- 1

n

n
∑
i=1

( ŷ − yi)2, (34)

MAE = 1
n

n
∑
i=1

∣ ŷi − yi ∣ , (35)

where n stands for the number of samples, sample value, overall sample mean, sample predicted value, and
sample true value.

5.2 SBKA Performance Testing
SBKA is tested and compared with ten optimization algorithms of BKA, CPO, ALO, CSA, GOA, GWO,

PSO, SS, WOA, and GJO. The nine types of objective functions are displayed in the table. Eight types of
benchmark functions are chosen for this experiment, as indicated in Table 2, of which one is a single-peak
function. The other is a multidimensional function, as indicated in Table 1. The experiment’s rationality is
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ensured by setting the parameters of all the algorithms to the same values and 500 iterations with a population
size of N = 30. Fig. 7 displays the convergence curve for each optimization procedure.

Table 2: 8 benchmark functions

Function D Range Optimal

F1 (x) =
n
∑
i=1

x2
i 30 [−100, 100] 0

F2 (x) =
n
∑
i=1

∣xi ∣ +
n
∏
i=1

∣xi ∣ 30 [−10, 10] 0

F3 (x) =
n
∑
i=1

(
i
∑
j=1

x j)
2

30 [−100, 100] 0

F4 (x) = maxi {∣xi ∣ , 1 ≤ i ≤ n} 30 [−100, 100] 0

F7 (x) =
n
∑
i=1

ix4
i + random [0, 1) 30 [−1.28, 1.28] 0

F9 (x) =
n
∑
i=1

[x2
i − 10 cos (2πxi) + 10] 30 [−5.12, 5.12] 0

F10 (x) = −20 exp(−0.2
√

1
n

n
∑
i=1

x2
i ) − exp( 1

n

n
∑
i=1

cos (2πxi)) + 20 + e 30 [−32, 32] 0

F11 (x) = 1/4000
n
∑
i=1

x2
i −

n
∏
i=1

cos( xi√
i
) + 1 30 [−600, 600] 0

Figure 7: (Continued)
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Figure 7: Convergence curve of optimization algorithm

Under consistent parameters, BKA converges faster than other optimization algorithms, and the
improved SBKA also demonstrates superior convergence speed compared to other algorithms, as shown
in Fig. 7. As shown in Table 3, SBKA achieves the highest testing accuracy across various basis functions
among all optimization algorithms, with the lowest standard deviation, indicating its stability. It typically
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converges to the global optimal solution of each basis function. In contrast, other algorithms all fall into the
local optimal solution, which SBKA avoids by introducing the Sine mapping and the golden sine strategy.
The experimental findings demonstrate SBKA’s high capacity for identifying the best answer.

Table 3: Evaluation metrics

F D E SBKA BKA GJO WOA SS PSO GWO GOA CSA ALO CPO

F1 30 Ave 1.32e−76 1.98e−73 1.49e−54 5.12e−74 2.38e−07 2.92e+00 1.38e−27 2.54e−16 2.07e+01 1.10e−03 6.50e−47
Std 4.95e−76 7.43e−73 3.29e−54 1.91e−73 3.56e−07 1.11e+00 1.64e−27 9.52e−16 1.41e+01 1.32e−03 1.74e−46

F2 30 Ave 1.19e−35 2.48e−46 3.93e−32 2.09e−51 1.72e+00 4.06e+00 1.16e−16 5.17e−12 7.48e+00 3.96e+01 2.75e−23
Std 1.98e−31 7.04e−47 1.97e−32 3.13e−51 2.60e+00 1.11e+00 1.22e−16 2.45e−12 2.64e+00 4.11e+01 2.01e−23

F3 30 Ave 2.68e−76 4.27e−86 8.38e−16 4.21e+04 2.57e+03 1.86e+02 2.71e−06 6.12e−03 3.14e+03 4.33e+03 2.41e−40
Std 8.03e−76 1.28e−85 2.45e−15 1.38e+04 1.51e+03 4.11e+01 2.67e−06 1.26e−02 1.71e+03 2.44e+03 7.24e−40

F4 30 Ave 2.54e−44 9.01e−49 2.31e−14 4.99e+01 12.338 2.03e+00 1.06e−06 6.12e−03 1.45e+01 1.77e+01 2.08e−20
Std 7.64e−44 2.06e−48 6.28e−14 3.36e+01 4.96e+00 2.71e−01 1.29e−06 1.23e−02 2.51e−02 6.54e+00 6.24e−20

F7 30 Ave 3.13e−04 3.18e−04 4.17e−04 3.16e−03 1.81e−01 2.34e+01 2.4e−03 2.51e−03 7.79e−01 2.91e−01 1.51e−03
Std 2.31e−04 2.20e−04 2.09e−04 2.21e−03 5.68e−02 1.83e+01 1.7e−03 1.5e−03 2.59e−01 9.73e−02 9.92e−04

F9 30 Ave 0 0 0 0 5.96e+01 1.72e+02 1.87e+00 6.14e+00 3.73e+01 9.88e+01 0
Std 0 0 0 0 1.49e+01 1.42e+01 2.83e+00 1.25e+01 1.71e+01 3.67e+01 0

F10 30 Ave 4.44e−16 4.44e−16 7.19e−15 3.28e−15 2.65e+00 2.55e+00 9.63e−14 1.81e−11 1.99e+01 4.59e+00 7.99e−16
Std 0 0 1.07e−15 2.66e−15 6.44e−01 3.98e−01 1.41e−14 5.41e−11 3.91e−11 1.97e+00 1.07e−15

F11 30 Ave 0 0 0 0 1.57e−02 1.27e−01 4.11e−03 2.24e−03 2.49e+00 5.80e−02 0
Std 0 0 0 0 1.18e−02 3.71e−02 6.13e−03 5.27e−03 4.76e−01 2.50e−02 0

5.3 CL-SCN Performance Test
CALCE is used to evaluate CL-SCN’s performance and compare it to the original SCN to determine its

effectiveness. Comparison trials are carried out in two scenarios with maximum numbers of hidden layer
nodes of 25 and 50, and the results are averaged over 20 experiments. The parameters of both models are
set identically, with a maximum number of candidate nodes L = 100 and an acceptable error r = 0.001. The
average training error convergence curves for SCN and CL-SCN on the CALCE dataset are shown in the
figure. It is evident from Fig. 8 that CL-SCN performs better than SCN due to its quicker rate of convergence.

Figure 8: Average training results of SCN and CL-SCN on CALCE
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5.4 Analysis of Experimental Results
This study compares SBKA-CLSCN with alternative approaches using the CALCE CS series dataset.

Capacity is the model’s output, and the health features HF1 and HF2 are its inputs. The first 400 and 500 CS
data sets are used as training sets, while the remaining data sets are used as test sets. Fig. 9 displays the
capacity estimation curves for several test sets using various techniques. The table displays the estimation
errors. This study uses the CALCE CS series dataset to compare SBKA-CLSCN with other methods. The
model’s inputs are the health characteristics HF1 and HF2, and its output is capacity. The remaining data
sets are utilized as test sets for trials, while the first 400 and 500 CS data sets are used as training sets. The
capacity estimation curves for several test sets and methodologies are shown in Fig. 9. The estimation errors
are shown in the table.

Figure 9: Prediction curves of lithium-ion batteries for five methods (first 400 cycles data as training samples)

The SBKA-CLSCN algorithm’s experimental curve has the best traceability, as shown in Fig. 9
and Table 4, and the table shows that the error is the smallest and tends to be close to 0. This indicates that the
optimization effect of Sine chaotic mapping and the golden sine strategy on the BKA algorithm can effectively
prevent BKA from entering the local optimum during optimization, allowing it to find the global optimum
and produce a better training result. By optimizing SCN parameters, SBKA successfully reduces the issue of
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inadequate model prediction accuracy in the latter stages of the cycle and enhances the model estimation
effect. The more training data available for the CS2 dataset, the higher the estimation accuracy. With the
most precise prediction, all of the optimized RMSEs in the table stay under 0.1%, and they outperform the
unoptimized SCN model by a wide margin. It demonstrates how the SBKA-CLSCN algorithm’s accuracy and
resilience have significantly increased.

Table 4: Prediction results of lithium-ion batteries for the five methods (first 400 cycles of data as training samples)

Model number Training set Estimation methodology MAE RMSE
LSTM 0.0397 0.0564
GRU 0.0323 0.0507

#35 400 SCN 0.0273 0.0145
CL-SCN 0.0126 0.0181

SBKA-CLSCN 0.0104 0.0096
LSTM 0.0381 0.0561
GRU 0.0329 0.0517

#36 400 SCN 0.0262 0.0380
CL-SCN 0.0191 0.0233

SBKA-CLSCN 0.0105 0.0129
LSTM 0.0473 0.0563
GRU 0.0310 0.0321

#37 400 SCN 0.0275 0.0131
CL-SCN 0.0123 0.0183

SBKA-CLSCN 0.0102 0.0097
LSTM 0.0308 0.0378
GRU 0.0263 0.0374

#38 400 SCN 0.0201 0.0226
CL-SCN 0.0153 0.0142

SBKA-CLSCN 0.0101 0.0076

It is evident from Fig. 10 and Table 5 that the more training data there is for the CS2 dataset, the higher
the model estimation accuracy. In general, 500 datasets work better as a training set than 400 datasets.
Compared to LSTM and GRU, SCN has reduced curve fluctuation; however, the error is still greater, and the
estimation accuracy is poor. When comparing predicted images on various datasets using various techniques,
SBKA-CLSCN produces the best estimation effect, the best fit to the real curve, and an RMSE that is 0.0219
and 0.0135 lower than that of the original SCN and CLSCN models.
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Figure 10: Prediction curves of lithium-ion batteries for five methods (first 500 cycles data as training samples)

Table 5: Prediction results of lithium-ion batteries for the five methods (data from the first 500 cycles as training samples)

Model number Training set Estimation methodology MAE RMSE
LSTM 0.0487 0.0580
GRU 0.0304 0.0346

#35 500 SCN 0.0269 0.0339
CL-SCN 0.0160 0.0255

SBKA-CLSCN 0.0092 0.0120
LSTM 0.0490 0.0549
GRU 0.0413 0.0514

#36 500 SCN 0.0309 0.0371
CL-SCN 0.0219 0.0290

SBKA-CLSCN 0.0104 0.0126
LSTM 0.0317 0.0351
GRU 0.0496 0.0496

#37 500 SCN 0.0141 0.0207

(Continued)
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Table 5 (continued)

Model number Training set Estimation methodology MAE RMSE
CL-SCN 0.0109 0.0131

SBKA-CLSCN 0.0065 0.0082
LSTM 0.0290 0.0338
GRU 0.0211 0.0321

#38 500 SCN 0.0142 0.0165
CL-SCN 0.0096 0.0115

SBKA-CLSCN 0.0068 0.0087

6 Conclusion
In this study, an SBKA-CLSCN approach for predicting the residual usable life (RUL) of lithium batteries

is proposed. In the process of charging and discharging lithium batteries, the indirect health factor that
may indicate deterioration in battery performance is extracted and used as input to the RUL estimation
model. The degree of correlation between the health factor and the battery’s state of health is determined
using the Pearson coefficient. With the use of golden sine strategy and sine mapping, the BKA algorithm is
enhanced. The Laplace transform is used to increase the accuracy and resilience of the SCN. When the two
are tuned, an accurate estimation model is created, eventually leading to the precise calculation of RUL for
lithium batteries. The SBKA-CLSCN produces the best estimation effect on various datasets and has superior
estimation accuracy and stability when comparing the estimation results of the suggested technique with
those of other methods on the CALCE dataset.

To extend the battery’s lifespan, it is advisable to avoid charging the battery to 100%. The charging
limit can be set between 80% and 90% to reduce battery stress. Regular charging and discharging cycles
should be conducted to prevent prolonged states of full charge or discharge. Additionally, installing a
Battery Management System (BMS) can help monitor the battery’s status and prevent overcharging, deep
discharging, and overheating.

In future research, the impact of various complex operating conditions on the estimation of the battery’s
State of Health (SOH) will be considered, along with the effects of many complex lithium-ion battery
operating scenarios, to achieve a more accurate and comprehensive estimation of SOH. This will enable
dynamic adjustments to the charging method based on the battery’s condition, thereby extending battery
life. By enhancing battery performance and health management, this approach will promote the widespread
application of electric vehicles and renewable energy storage systems, contributing to the transition to
green energy.
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