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ABSTRACT: This paper addresses the complexity of wake control in large-scale wind farms by proposing a partitioning
control algorithm utilizing the FLORIDyn (FLOW Redirection and Induction Dynamics) dynamic wake model. First,
the impact of wakes on turbine effective wind speed is analyzed, leading to a quantitative method for assessing wake
interactions. Based on these interactions, a partitioning method divides the wind farm into smaller, computationally
manageable zones. Subsequently, a heuristic control algorithm is developed for yaw optimization within each partition,
reducing the overall computational burden associated with multi-turbine optimization. The algorithm’s effectiveness
is evaluated through case studies on 11-turbine and 28-turbine wind farms, demonstrating power generation increases
of 9.78% and 1.78%, respectively, compared to baseline operation. The primary innovation lies in coupling the higher-
fidelity dynamic FLORIDyn wake model with a graph-based partitioning strategy and a computationally efficient
heuristic optimization, enabling scalable and accurate yaw control for large wind farms, overcoming limitations
associated with simplified models or centralized optimization approaches.
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1 Introduction

Approximately 3% of global energy consumption is supplied by wind energy, and it is predicted that
wind energy will supply up to 34% of total electricity demand by 2050 [1,2]. However, wake effects present
considerable challenges to the performance and lifespan of wind turbines within wind farms [3,4]. These
effects typically cause a 10%-20% reduction in annual energy production and can significantly increase
turbine fatigue loads [5,6]. When wind passes through an upstream turbine, it creates a wake characterized
by reduced wind speed and increased turbulence intensity downstream. The reduced wind speed lowers
the power output of downstream turbines, and increased turbulence subjects turbine blades to complex
aerodynamic forces, increasing structural loads and accelerating fatigue [7]. Therefore, effective wake control
is critical for optimizing energy capture and ensuring the structural integrity of turbines throughout the wind
farm’s operational life.

Wake models are essential for managing wake effects. While Computational Fluid Dynamics (CFD)
models offer high accuracy, their computational cost makes them unsuitable for real-time optimization
control [8]. Analytical models are thus preferred for control applications. The Jensen model [9], the first
analytical wake model, is based on mass conservation. It assumes that the axial wind speed in the wake
increases with downstream distance, while the radial wind speed remains uniform. Despite its simplicity
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and foundational importance, the Jensen model’s uniform velocity deficit assumption is inconsistent with
observed wake profiles [10].

The Gaussian wake model [11] addresses these limitations by using a Gaussian distribution for radial
wind speed, better representing actual wake patterns. Building on these steady-state analytical models,
dynamic wake models have emerged to capture the transient behavior of wakes, which is important for
control design under changing wind conditions [12]. The FLORIS model [13] and the dynamic FLORIDyn
model [14] (FLOw Redirection and Induction Dynamics) integrate wake models with yaw turbine deflection
models based on high-fidelity CFD simulations. FLORIS [15] and FLORIDyn [16] offer improved wake
modeling capabilities. FLORIDyn provides dynamic representations of wind farm wake development and
distribution, enabling more accurate simulations.

As wind farms become larger and control strategies more advanced, optimization challenges increase.
Recent research explores sophisticated techniques like coordinated pitch and yaw control using deep
reinforcement learning [17] and yaw optimization strategies considering fatigue load constraints [18]. While
these advanced methods show promise, their computational demands can be significant, especially for large
farms. Combined yaw and pitch control strategies [19,20] also add complexity. To mitigate complexity,
a wind farm partitioning approach allows for independent optimization of smaller sections. Existing
partitioning methods often rely on simplified wake models, which may not accurately capture the complex
wake interactions in large wind farms, leading to suboptimal control strategies [21-24]. For example, some
methods [21] use the simplified Park wake model, a 2D model that cannot account for non-uniform
velocity distribution, turbulence intensity, or vertical height differences. Others [22,23] use the Jensen model,
neglecting turbulence intensity effects. While the Gaussian model is used [24], significant simplifications
to the velocity decay formula are introduced, overlooking vertical height effects. These simplifications can
result in inaccurate assessments of wake interactions and limit the effectiveness of the partitioning and
control strategies.

These limitations highlight a critical need for wake interaction algorithms that accurately capture the
impacts of turbulence intensity and vertical height, which are crucial for accurate wake interaction modeling
and optimizing wind farm partitioning and control.

To address these challenges, this paper proposes a partitioned yaw control optimization algorithm based
on the 3D dynamic FLORIDyn model. By incorporating turbulence intensity and vertical height effects,
the FLORIDyn model enhances the accuracy of wake interaction calculations and improves overall wind
farm power generation. The main contributions of this study are as follows: (1) The dynamic simulation
process of the FLORIDyn wake model is refined, detailing the calculation of effective wind speed and
the quantitative assessment of wake influence relationships among turbines. (2) A wind farm partitioning
method is proposed, dividing the farm into decoupled partitions to simplify control problem complexity. (3)
A heuristic control algorithm tailored to the FLORIDyn model is developed and demonstrated to enhance
total wind farm power generation.

The remainder of this paper is structured as follows: Section 2 analyzes the FLORIDyn wake model,
detailing the calculation of effective wind speed and the quantitative assessment of wake influence
relationships among turbines. Section 3 presents a wind farm partitioning algorithm based on these relation-
ships. Section 4 designs a heuristic control algorithm for partitioned yaw optimization. Section 5 evaluates
the algorithm’s effectiveness through simulations. Finally, Section 6 concludes the paper, summarizing key
findings and outlining directions for future research.
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2 FLORIDyn Wake Model

The FLORIDyn wake model [16] is a three-dimensional dynamic simulation framework used to calcu-
late wind turbine power output considering wake evolution and propagation (see Fig. | for a visualization).
It extends steady-state engineering models like FLORIS by incorporating dynamic effects such as the time
delay for wake advection and dynamic wake meandering. This study utilizes the core components of
the FLORIDyn framework, including the Gaussian wake model for velocity deficits, the Jimenez model
for yaw-induced wake deflection, and the sum-of-squares method for combining multiple wake effects.
FLORIDyn simulates 3D wake characteristics, accounting for turbulence intensity and vertical wind shear
(via the power law, Eq. (1)), which is crucial for the accurate assessment of wake interactions needed
for the partitioning algorithm proposed herein. The model operates by dynamically evolving the state of
wake structures downstream from each turbine. While suitable for transient simulations, this study uses
the FLORIDyn framework to compute the quasi-steady-state wake interactions corresponding to specific
inflow conditions and yaw settings, which then inform the partitioning and optimization. The FLORIDyn
framework has been validated against high-fidelity CFD simulations and field measurements, demonstrating
good agreement in predicting wake behavior under various operating conditions. The specific parameters
configuring the atmospheric conditions and turbine characteristics for the simulations in this paper (e.g.,
turbulence intensity, shear exponent) are detailed in the Case Study (Section 5). For the fundamental model
equations and implementation details, readers are referred to the original FLORIDyn literature 16.
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Figure 1: FLORIDyn model

The FLORIDyn model builds upon the Gaussian wake model [11] and dynamically generates Obser-
vation Points (OPs) on the wind turbine’s surface during each simulation step. These OPs characterize the
local Gaussian FLORIS wake properties at their respective positions. Each observation point inherits state
parameters from its associated wind turbine, such as yaw angle, turbulence intensity, and thrust coefficient.
These parameters are then used to calculate the wind speed deficit and deflection within the FLORIDyn
framework’s wake calculation routines.
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The effective wind speed at an observation point is calculated using the following Eq. (1):
zop \* o
Ueff,OP = Ufree,OP (Z_) (1 - rown) H (1 - ri) ey
0 i=1

where

o Ufree,0p i the free-stream wind speed at the observation point [m/s]. A typical value would be the
measured or estimated wind speed at the turbine location without considering wake effects.

o zop isthe height of the observation point above the ground [m], and is the roughness length of the terrain
[m], which accounts for surface irregularities. The roughness length typically ranges from 0.0001 m (for
smooth surfaces like ice) to 0.1 m or higher (for rough terrain with vegetation or obstacles).

o a is the wind shear exponent, describing the variation of wind speed with height (dimensionless). It
usually ranges from 0.1 to 0.3, depending on atmospheric stability.

o Town denotes the reduction in wind speed at the observation point caused by the wake generated
by the turbine itself (dimensionless). This value depends on the turbine’s thrust coefficient and the
wake’s characteristics.

o nr is the number of turbines, and represents the wake influence of the i-th upstream turbine
(dimensionless).

The effective wind speed for a wind turbine is then determined by summing the weighted effective wind
speeds of all observation points on its surface [16]:

Nop

Ueff,T = » , Willeff,OP,i (2)
i=1

where denotes the total number of observation points, and represents the corresponding weight.

While FLORIDyn offers improved accuracy compared to simpler wake models, it also has a higher
computational cost. This trade-off between accuracy and computational efficiency should be considered
when applying FLORIDyn in real-time control scenarios or for very large wind farms. Understanding the
strengths and limitations of FLORIDyn, Section 3 will build upon its accuracy to develop a method for
quantifying the wake influence relationships between turbines, which is critical for effective partitioning.

To provide a clear overview of the proposed approach, Fig. 2 presents a master flowchart illustrating
the entire workflow. This flowchart details the process starting from the input parameters (wind farm layout,
wind conditions), proceeding through wake influence analysis using FLORIDyn, partitioning the farm based
on these influences, performing heuristic yaw optimization within each partition, and finally synthesizing
the optimized yaw angles for the entire wind farm. Subsequent sections will elaborate on each key stage
depicted in the flowchart.
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Figure 2: Overall methodology of the proposed partitioning-based yaw control algorithm

3 Analysis of Wind Turbine Wake Influence Relationship

The wake effect in wind farms creates coupling between the effective wind speeds of different wind
turbines. This coupling results from the influence of the wake generated by an upstream turbine on
downstream turbines. This study quantifies this influence using the FLORIDyn dynamic wake model. Let
denote the FLORIDyn-calculated fractional wind speed reduction that turbine experiences due to the wake
of turbine i. The relationship matrix R, representing the influence among all turbines in the wind farm, can
be expressed as:

m Tnyp
R=| : - 3)

ri’l Tl e rnTnT
where is the number of turbines, indicates that turbine has a non-zero wake influence on turbine j, and

confirms the unidirectional nature of the wake influence, where the upstream turbine affects the downstream
turbine but not vice versa. The calculation of inherently accounts for the relative spatial positions (distances
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and angles) between turbines, as FLORIDyn simulates wake propagation within the 3D farm layout defined
by the input turbine coordinates.

By treating(the transpose of R) as the adjacency matrix of a directed graph Dg, the wind turbines in the
wind farm can be represented as nodes, and the directed edges between nodes represent the wake influence
relationships. To simplify analysis and control, the directed edges in can be converted into undirected edges,
resulting in an undirected graph Gg. The connected components of can then be used to partition the wind
farm into sub-wind farms. Each connected component corresponds to a sub-wind farm where turbines are
mutually influenced by wakes, but no wake influence exists between turbines in different sub-wind farms.
This partitioning facilitates independent optimization and control of each sub-wind farm. Note that turbines
can have an in-degree and out-degree of zero. If a turbine has both zero in-degree and out-degree, it forms
a sub-wind farm by itself, as it neither influences nor is influenced by any other turbines. In other cases,
a grouping of turbines could have a zero in-degree and out-degree. These turbines can also be defined as
micro-wind farms.

From Eq. (1), the effective wind speed u.gf 1 of a turbine can be expressed as:

Noo a nr

Z0P,i

Ueff, T = Z Wilfree,OP,i ( ZP l ) (1 - rown,i) H (1 - rj,OP,i) (4)
i=1 0 j=1

where:

o e, is the effective wind speed of the turbine.

¢ N is the number of observation points (OPs) on the turbine’s surface.

o Ufree,0p,; 1S the free-stream wind speed at the i-th OP.

e zop,; is the height of the i-th OP.

o Town,; accounts for the reduction in wind speed due to the turbine’s own wake.
+ rj0p,; represents the wake influence of the j-th turbine on the i-th OP.

The degree of wake influence between two turbines can then be determined using:

& zZop,k \©
tij = Z [Wk( : ) (1- Town,k)ri,op,k] (5)

k=1 20

where denotes the number of observation points on turbine j, and captures the wake influence of turbine on
the k-th observation point of turbine j, is the weighting factor for the k-th OP, accounts for the wind shear
effect at the OP’s height, represents the reduction due to turbine ;s own wake at that OP, and is the specific
wake deficit factor (0 to 1) at the k-th OP of turbine caused by the wake from turbine i, as computed by the
FLORIDyn simulation. This computation within FLORIDyn uses the provided turbine locations and wind
direction to determine the interaction strength.

To simplify the turbine influence relationship, a threshold is introduced, where edges with are ignored.
The simulations in Section 5 are used, meaning that wake influences below 1% are considered negligible.
The sensitivity of the results to this parameter is analyzed in Section 5. Figs. 3 and 4 illustrate the influence
relationships between turbines and the resulting wind farm partitioning.

This approach promotes efficient wind farm modeling and control by reducing computational demands
and facilitating modular optimization strategies. Having established a method for analyzing wake influence,
the subsequent section will detail the wind farm partitioning algorithm based on these relationships, enabling
a more structured approach to control optimization.
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Figure 3: The influence relationship between turbines
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Figure 4: Wind farm partitioning diagram

4 Multi-Turbine Wind Farm Partitioning Algorithm

In this paper, a wind turbine that does not produce a wake influence on other turbines in the wind
farm is defined as the most downstream turbine. These turbines play a critical role in the proposed wind
farm partitioning method. The partitioning strategy involves dividing the wind farm based on the most
downstream turbines, ensuring that each sub-wind farm includes at least one downstream turbine. This
ensures that the optimization and control strategies applied to each sub-wind farm can be seamlessly
aggregated to generate an overall yaw strategy for the original wind farm.
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4.1 Partitioning Multi-Turbine Yaw Control Framework

For the most downstream turbines, their optimal yaw strategy follows a greedy control approach, where
the yaw angle is always set to 0°. This ensures that the turbine captures the maximum wind energy without
disrupting upstream turbines, thereby avoiding conflicts when the yaw strategies for all turbines in the
original wind farm are synthesized.

The steps for generating sub-wind farms using this partitioning algorithm are as follows:

1. Identify the Most Downstream Nodes: Using the directed graph Dy, the turbines corresponding to
nodes with an out-degree of zero are identified. These turbines are classified as the most downstream
turbines. If a node has both zero out-degree and in-degree, it forms a sub-wind farm by itself, as it
neither influences nor is influenced by any other turbines. For other nodes with zero out-degree, they
are added to the set Vg, which represents the collection of most downstream turbines.

2. Construct the Undirected Graph: The undirected graph is obtained by converting all directed edges in
into undirected edges. Nodes inand their associated edges are removed from to form a reduced graph
G;Q. The connected components in are then identified using a union-find data structure, which efficiently
determines groups of turbines that are mutually influenced by wake effects.

3. Form Sub-Wind Farms: For each connected component in G%, the turbines within the component are
grouped to form a sub-wind farm. Additionally, any turbines in that are connected to the component
in the original graph are added to the same sub-wind farm. This ensures that all wake influence
relationships are preserved within each sub-wind farm.

4. Output the Sub-Wind Farms: The sub-wind farms obtained in the previous steps 1 and 3 represent the
final partition of the wind farm. Each sub-wind farm can be independently optimized and controlled,
and the yaw strategies of the turbines in all sub-wind farms are combined to generate the overall yaw
strategy for the original wind farm.

The steps for generating sub-wind farms using this partitioning algorithm are detailed in Algorithm 1.

This algorithm simplifies the optimization problem by dividing it into smaller, independent sub-
problems while ensuring that the control strategies for all turbines remain consistent and coherent. The
partitioning method leverages the structural properties of the directed graph and its undirected counter
part to efficiently identify groups of turbines that can be optimized separately. This is particularly beneficial
for large-scale wind farms, where complex wake interactions make direct optimization computationally
infeasible. By introducing the set to account for most downstream turbines and employing graph-based tech-
niques to detect connected components, the proposed method ensures both scalability and accuracy. This
partitioning method provides a foundation for the heuristic control algorithm detailed in the next subsection.

Algorithm 1: Wind farm partitioning algorithm

Require: Directed graph Dy = (V, E).

Ensure: A set of sub-wind farms containing turbines with mutual wake influence.
> Identify the Most Downstream Nodes

Define the set of most downstream turbines by V;

for all do

if out-degree(v) = 0 then

if in-degree(v) = 0 then

Create a sub-wind farm containing only turbine v
else

Vs < Vys U {V}

(Continued)
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Algorithm 1 (continued)

9: endif
10: end if
11: end for

12: > Construct the Undirected Graph

13: Create undirected graph from by converting all directed edges to undirected edges.
14: Create reduced graph by removing nodes in and their associated edges from Gg.
15 > Form Sub-wind Farms

16: Identify connected components in using a union-find data structure.

17: for all connected component in do

18: Create a sub-wind farm containing turbines in C.

19: for all such that in the original and do

20: Add turbine to the sub-wind farm.

21: end for

22: end for

23: return The set of sub-wind farms.

4.2 Heuristic Control Algorithm Design

Within the multi-agent system control framework, a heuristic control algorithm is developed to
optimize the yaw strategy of the wind farm. This algorithm reduces the computational complexity of yaw
optimization by decomposing the problem into smaller, manageable sub-problems. The key idea is to
represent the wake influence relationship between turbines as a directed graph and then use depth-first search
(DEFS) to guide the sequential optimization of turbines. The process is as follows:

First, the wind farm or each sub-wind farm (after partitioning) is represented as a directed graph
Dy = (V, E), where the nodes V correspond to turbines, and the directed edges represent wake influence
relationships between turbines. The depth of each node, denoted as Dep,, is initialized to zero for all nodes:

Dep, < 0,VveV (6)

Next, nodes in with an in-degree of zero are identified. These nodes represent turbines that are not
affected by the wake of any other turbines. Their depth is updated to 1:

Dep, < 1,Vin(v) =0 (7)

where denotes the in-degree of node v. Starting from these nodes, a depth-first search (DFS) is performed to
update the depth of other nodes. For a directed edge (1, v) € E, the depth of node is updated to the maximum
of its current depth and the depth of node plus 1:

Dep, < max (Dep, +1, Depv) ,V(u,v) € E (8)

Once the depth of all nodes is determined, the turbines are optimized sequentially in ascending order
of their depth. For turbines at the same depth, the optimization order is determined randomly. During the
optimization process, the yaw angles of turbines that have not yet been optimized are initialized to 0°, and
the yaw angles of turbines already optimized are kept unchanged.

The optimization objective for each turbine is designed to align with the overall goal of the wind farm.
If the overall goal is to maximize the power output of the wind farm, the objective for each turbine is to
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maximize the combined power of itself and the turbines affected by its wake:

max (Put Y umyer ) ©
where represents the power output of turbine u, and accounts for the power outputs of downstream turbines
affected by the wake of turbine u. If the overall optimization goal differs, the objective for each turbine agent
can be modified accordingly.

The choice of Depth-First Search (DFS) for determining the optimization order is motivated by its
simplicity and efficiency in traversing directed graphs. DFS allows for a straightforward identification of the
topological order of turbines based on wake influence, ensuring that upstream turbines are optimized before
downstream turbines.

A tailored heuristic approach, rather than a standard meta heuristic like Genetic Algorithms (GA) or
Particle Swarm Optimization (PSO), is employed for the yaw optimization step within each partition. This
decision is primarily driven by the need for extreme computational efficiency and seamless integration with
the partitioning framework. Standard meta heuristics, while powerful, typically involve iterative population
updates and numerous objective function evaluations (requiring repeated FLORIDyn simulations), which
can still be computationally demanding, even within partitions. The proposed heuristic, detailed below,
leverages the calculated depths directly, optimizing each turbine sequentially in a single pass. It is specifically
designed for speed and simplicity, directly utilizing the graph structure derived from the wake analysis.
While heuristics do not guarantee global optimality, this approach provides a practical trade-off between
computational cost and solution quality, aiming for significant power improvements with minimal overhead,
making it suitable for potential real-time or frequent optimization cycles. Empirical results in Section 5
demonstrate its effectiveness. Although other optimization techniques could be adapted, the proposed
method prioritizes scalability and efficient integration within the partitioning context.

This heuristic control algorithm can be summarized as follows:

(1)  Graph Construction: Represent the wind farm as a directed graph based on the wake influence
relationships between turbines. Initialize the depth of all nodes in the graph to zero.

(2) Depth Calculation: Identify nodes with zero in-degree and set their depth to 1. Perform a DES to
calculate the depth of remaining nodes, ensuring that the depth of each node reflects the longest path
from a zero in-degree node.

(3) Yaw Angle Optimization: Optimize turbines sequentially in ascending order of their depth. For
turbines at the same depth, determine the optimization order randomly. Design the optimization
objective for each turbine to align with the overall goal of the wind farm.

The algorithm flow diagram is presented in Fig. 5, which outlines the steps involved in determining the
optimal yaw angle for each turbine. This diagram illustrates how environmental wind conditions, upstream
turbine yaw angles, and downstream turbine power outputs are integrated into the decision-making process.

This approach reduces the computational complexity of yaw optimization by dividing the problem into
smaller sub-problems. In each sub-problem, only turbines with wake influence relationships are considered,
simplifying the computation. The solutions to these sub-problems are then aggregated to form the yaw
optimization strategy for the entire wind farm. The performance of the algorithm depends on how well the
individual turbine objectives are aligned with the overall wind farm optimization goal and the accuracy
of the wake model in predicting wake interactions. With the partitioning and heuristic control algorithm
established, Section 5 will present a case study to evaluate the effectiveness of this approach in enhancing
overall power output.
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Figure 5: Yaw control algorithm flow diagram

5 Case Study

This section presents an evaluation of the partition control algorithm’s optimization effect on both an
11-turbine and a 28-turbine wind farm. The primary objective is to demonstrate the algorithm’s effectiveness
in enhancing overall power output through yaw angle optimization without iterative processes.

The FLORIDyn model is used to analyze wake effects and calculate individual turbine power outputs
based on specified environmental conditions. This study utilizes specific, representative wind condition
scenarios rather than time-series data to clearly demonstrate the algorithm’s effectiveness under defined
states. For the main case studies, the model is configured with a turbulence intensity (TI) of 0.06 and a wind
shear exponent of 0.2, which are typical values for onshore wind farms. Standard air density is assumed. The
specific wind speeds and directions for each case are detailed in Table 1.

Table 1: Parameter settings for the 11-turbine simulation environment

Wind speed (m/s) Wind direction (°) Turbulence intensity
6 28 0.06

The optimization process involves decision-making at each turbine agent level based on several factors:
the prevailing environmental wind conditions, the yaw angles of upstream turbines whose wakes impact the
current turbine, and the power generated by downstream turbines. The optimal yaw angle for each turbine
is determined in a single step, reducing the computational time required for optimization.

5.1 11-Turbine Wind Farm

Table 1 outlines the specific, constant environmental parameters used for the 11-turbine simulation
scenario, including the inflow wind speed, wind direction, and turbulence intensity. The wind shear exponent
was set to 0.2 (as mentioned above) With these settings, the wake influence relationships among all turbines
are computed, resulting in a matrix representing the degree of interaction between turbines. Edges with
weights less than 0.01 in this matrix are disregarded to simplify the network and focus on significant
interactions. This threshold, rs.; = 0.01, was chosen as a starting point based on initial testing. Values
significantly lower led to complex, highly interconnected networks that were computationally expensive
to solve, while higher values risked neglecting potentially important wake interactions. A more detailed
sensitivity analysis is presented later in this section.
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Subsequently, the depth of each turbine node is calculated following the methodology in Section 3.
Depth refers to the number of intermediate nodes (turbines) between a given turbine and the farthest
downstream turbine it influences. This calculation allows for the partitioning of the turbines into groups,

as summarized in Table 2. Each partition is treated as a subsystem, improving the efficiency of the
optimization process.

Table 2: Partitioning table of the 11-turbine wind farm

Zone number Turbine numbers

1 2,9
2 4,5
3 10,11

The methodical approach results in a more efficient algorithm and a clearer understanding of the
dynamics within the wind farm. Each zone, as defined in Table 2, represents a cluster of turbines that share
similar wake interaction characteristics. This segmentation facilitates a focused optimization strategy that
considers the unique operational conditions of each turbine group.

Fig. 6 illustrates the wake influence relationship diagram for the 11-turbine wind farm. This diagram
visualizes the interactions between turbines, particularly in terms of wake effects.
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Figure 6: Wake influence relationships in the 11-turbine wind farm

The search algorithm employed to find the optimal yaw angle for each turbine considers the depth size,
which indicates the number of intermediate turbines between a given turbine and the farthest downstream
turbine it influences. For example, turbines 2, 4, and 5 are optimized to yaw at 40.8°, —=30.6°, and -15.6°,
respectively. These adjustments are made to redirect wakes away from downstream turbines in zones 1 and
2, thereby increasing their effective wind speeds and power output. Consequently, the total power output
of the 11-turbine farm increased from 1033.074 kW under a “direct wind strategy” to 1128.936 kW after yaw
optimization, representing an increase of 9.78%. The “direct wind strategy” refers to a baseline scenario where
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all turbines are aligned with the incoming wind direction (i.e., zero yaw angle), without any active wake
control. This is a common practice baseline for evaluating the performance of wake steering algorithms.

5.2 28-Turbine Wind Farm

Next, the same algorithmic approach is applied to a larger wind farm comprising 28 turbines. The
simulation environment parameters for this larger farm remain consistent with those used for the 11-turbine
farm; however, the wind direction is set at —45°. The wake influence relationships among turbines in the
28-turbine wind farm are calculated as depicted in Fig. 7. Using the method outlined in Section 4, the
distance-weighted relationship matrix is obtained, where edges with weights less than 0.01 are ignored to
simplify the network analysis. Subsequently, the depth of each turbine node is calculated, leading to the
partitioning of turbines as detailed in Table 3.
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Figure 7: Wake influence relationships in the 28-turbine wind farm

Table 3: Partitioning table of the 28-turbine wind farm

Zone number Turbine numbers

1 1,2,3,4,511
6,12
7,13
8,14
915

10, 16, 26

18, 27
20,19

NN U W

The optimal yaw angles that maximize the power output are obtained using the search algorithm
based on the calculated depth sizes. These results are summarized in Table 4, and the corresponding wake
distribution after yaw optimization is shown in Fig. 8.
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Table 4: Wake influence relationships in the 28-turbine wind farm

Turbine number Yaw angle (°) Turbine number Yaw angle (°)

1 3.47 15 0

2 6.43 16 5.62
3 -1.67 17 -1.67
4 0 18 -14.99
5 -8.55 19 0

6 -11.68 20 31.3
7 -8.55 21 0

8 21.74 22 0

9 -1.98 23 0
10 4.27 24 0
11 -0.54 25 0
12 0 26 0
13 -7.60 27 0
14 0 28 0
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Figure 8: Wake distribution after yaw optimization in the 28-turbine wind farm

As a result of these optimizations, the total power output of the 28-turbine farm improved from
46,219.822 kW under a direct wind strategy to 47,044.185 kW post-yaw optimization, marking an increase
of 1.78%. While this percentage increase may seem modest, it is important to consider the already optimized
baseline power output achieved with the direct wind strategy. The yaw adjustments, particularly for turbines
in zones 1, 2, and 4, contribute to this increase by mitigating wake effects on downstream turbines. For
instance, the yaw angle of turbine 20 is significantly adjusted to 31.3 degrees. This adjustment can potentially
redirect its wake away from turbine 19, thereby improving the latter’s power capture. It is important to note
that the 1.78% increase, although seemingly small, could represent a significant absolute power gain for a
large wind farm, translating to substantial economic benefits over time.
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The relatively small power increase in the 28-turbine case compared to the 11-turbine case may be
attributed to the higher turbine density and more complex wake interactions in the larger wind farm. In
denser wind farms, the wake from one turbine can be affected by multiple upstream turbines, creating
a cascading effect that makes it more difficult to optimize individual turbine yaw angles. One potential
reason for the limited improvement in the 28-turbine case is the heuristic nature of the control algorithm.
The algorithm’s performance is also influenced by the choice of r,.¢, which determines the threshold for
considering wake interactions.

5.3 Sensitivity Analysis

To further validate the algorithm’s effectiveness and assess the impact of the parameter, a sensitivity
analysis and yaw optimizations were conducted across 100 different environmental wind conditions, char-
acterized by wind speeds ranging from 4 to 12 m/s and a fixed wind direction of 180°. For the sensitivity
analysis, three different values, specifically, 0.005, 0.01, and 0.015, were used to evaluate the performance of
the proposed method under different conditions. Under these varied conditions, the average power increase
was 1.12%, 1.27% and 1.18%, respectively, demonstrating the robustness and reliability of the proposed method
in improving wind farm output power. The size of the sub wind farms vary with values, for values of 0.005,
0.01, and 0.015, the average number of turbines in each sub wind farm is 4.2, 3.8 and 3.1, respectively. The
computational time for partitioning and optimization of the 28-turbine wind farm was approximately 15 min
on a standard desktop computer with an Intel Core i7 processor and 16 GB of RAM.

The sensitivity analysis indicates that the algorithm’s performance is relatively stable across different
values. The optimal value appears to be around 0.01, which balances the need to capture significant wake
interactions with the desire to simplify the optimization problem.

5.4 Result

In summary, despite several assumptions made in the development and evaluation phases, the FLORI-
Dyn wake model demonstrated superior accuracy when compared to simpler models. The precision of this
model is closely tied to the quality of input data and the validity of its underlying physical assumptions. For
the simulations, typical values for onshore wind farms were adopted, such as turbulence intensity and wind
shear exponent, ensuring practical relevance.

This study advances previous research by integrating a dynamic wake model and partitioning strategy
within a heuristic optimization framework, specifically focusing on wind farm control. Prior studies have
already highlighted yaw control’s effectiveness in reducing wake effects and boosting power output. The
proposed algorithm takes this a step further by offering a scalable and computationally efficient method for
managing wind farms.

One notable advantage of this approach is its distributed nature, facilitating parallel processing which
minimizes communication overhead—a stark contrast to more centralized control methods. Additionally,
the heuristic yaw control algorithm, chosen for its simplicity and speed over more complex meta heuristics, is
straightforward to implement and demands minimal computational resources, making the overall approach
highly accessible and scalable.

The efficacy of applying the partition control algorithm to both 11-turbine and 28-turbine wind farms
has been confirmed, showing significant improvements in power generation efficiency through strategic
adjustments of yaw angles. This methodology not only enhances power output but also presents a scalable
solution that can adapt to different wind farm sizes and varying environmental conditions, thereby setting a
new benchmark for wind farm optimization strategies.
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6 Conclusion

This study developed and evaluated a wind farm partitioning control algorithm utilizing the FLORIDyn
dynamic wake model. By quantifying wake interactions using FLORIDyn, the algorithm partitions the farm
into computationally manageable zones based on influence relationships exceeding a defined threshold.
A heuristic yaw control optimization, guided by turbine depth within the partitioned structure, is then
applied sequentially.

Testing on 11-turbine and 28-turbine wind farm case studies demonstrated the algorithm’s effectiveness,
yielding power generation increases of 9.78% and 1.78%, respectively, compared to baseline operation without
yaw control. These results highlight the algorithm’s ability to enhance power output while significantly
reducing the computational complexity associated with optimizing large farms. The sensitivity analysis also
indicated robustness across various wind conditions, with an optimal rset value around 0.01 providing a good
balance between capturing relevant interactions and simplifying the problem.

Compared to traditional methods relying on simplified wake models or computationally intensive cen-
tralized control, the proposed approach offers a scalable balance between accuracy (leveraging FLORIDyn)
and efficiency (through partitioning and heuristic optimization). The modular nature of the partitioning
strategy facilitates adaptation to varying wind conditions and farm layouts. While demonstrating promise,
future work should focus on validation with real-world data, comparison with other advanced control
strategies, and extension to offshore applications.
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