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ABSTRACT: Ensuring the reliability of power systems in microgrids is critical, particularly under contingency
conditions that can disrupt power flow and system stability. This study investigates the application of Security-
Constrained Optimal Power Flow (SCOPF) using the Line Outage Distribution Factor (LODF) to enhance resilience
in a renewable energy-integrated microgrid. The research examines a 30-bus system with 14 generators and an
8669 MW load demand, optimizing both single-objective and multi-objective scenarios. The single-objective opti-
mization achieves a total generation cost of $47,738, while the multi-objective approach reduces costs to $47,614 and
minimizes battery power output to 165.02 kW. Under contingency conditions, failures in transmission lines 1, 22, and
35 lead to complete power loss in those lines, requiring a redistribution strategy. Implementing SCOPF mitigates these
disruptions by adjusting power flows, ensuring no line exceeds its capacity. Specifically, in contingency 1, power in
channel 4 is reduced from 59 to 32 kW, while overall load shedding is minimized to 0.278 MW. These results demonstrate
the effectiveness of SCOPF in maintaining stability and reducing economic losses. Unlike prior studies, this work
integrates LODF into SCOPF for large-scale microgrid applications, offering a computationally efficient contingency
management framework that enhances grid resilience and supports renewable energy adoption.
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1 Introduction

A microgrid is an independent system distinct from the main grid, comprised of both renewable and
non-renewable energy sources and this system can be connected off-grid or on-grid [1,2]. This microgrid
system can be a solution to overcome the supply of electrical energy to an increasing load [3,4] The microgrid
system has low operating costs and emissions, making it more profitable in terms of costs and impacts on
the environment [5,6]. This study uses a microgrid system that refers to research [7]. Due to its connection
with the utility grid through PLN, this microgrid configuration falls under the classification of an on-grid
system [8,9].
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Contingency refers to an unforeseen situation that transpires within an electric power system tem-
porarily [10,11]. A contingency can cause the release of one of the elements of electric power, such as
the loss of a transmission line in the system [12,13]. If allowed, contingency can result in a system in a
dangerous state with multilevel contingency, and a blackout occurs. Many studies that discuss contingency
events in power lines include references [14,15]. Reference [14] uses the interior point method (IPM)
technique for the security-constrained optimal power flow (SCOPF) system and only applies it to a small
system of 9 buses. Reference [15] only discusses contingency analysis and does not discuss SCOPE. In
addition to optimizing power generation costs, instability caused by turbulence in renewable energy sources
also affects the optimality of power flow in microgrids. Wind turbulence, wake turbulence effects, and
fluctuations in solar irradiance can cause sudden variations in power output, impacting load balancing
and energy storage requirements [16,17]. Conventional power flow optimization models often assume static
generation conditions, whereas, in reality, these stochastic disturbances can lead to overloads in specific
transmission lines and increase the need for power redistribution. Therefore, this study integrates the Line
Outage Distribution Factor (LODF) with the Security-Constrained Optimal Power Flow (SCOPF) method to
anticipate power fluctuations caused by turbulence, ensuring that power distribution remains within system
security limits [18]. Three tasks are involved in ensuring the security of a power system: monitoring the
system, analyzing contingencies, and performing SCOPF [19].

While previous studies have applied Security-Constrained Optimal Power Flow (SCOPF) for grid secu-
rity and Line Outage Distribution Factor (LODF) for contingency analysis, their integration for large-scale
microgrid optimization under real-time contingency conditions remains limited [20]. This study advances
the field by integrating LODF with SCOPF to dynamically optimize power redistribution, ensuring no
transmission line exceeds its limit even under failure conditions. Unlike prior research, which often focuses
on large power grids or assumes static contingency scenarios, this study enhances real-time adaptability for
microgrid systems with high renewable energy penetration, providing a computationally efficient solution
for minimizing load shedding and cost fluctuations. This paper focuses on SCOPE. Analyzing the risk
of disruptions across all channels is essential, but performing contingency calculations in large systems
is complex and time-consuming [21,22]. The Line Outage Distribution Factor (LODF) speeds up real-
time contingency calculations for load conditions [14]. Using the impedance parameter of each channel
within the system, LODF can determine the updated power flow for every line in various line contingency
situations [23].

The increasing integration of renewable energy sources in power grids introduces new challenges in
maintaining system stability and optimizing power distribution. Many industrial microgrids, especially those
relying on hybrid energy sources such as wind, solar, and battery storage, face frequent power fluctuations
due to unpredictable energy inputs [24]. This study addresses these challenges by implementing a real-
time Security-Constrained Optimal Power Flow (SCOPF) model combined with Line Outage Distribution
Factor (LODE), allowing rapid power redistribution when transmission line failures occur. The proposed
method has direct applications in smart grids, industrial power systems, and utility-scale renewable energy
projects, helping operators minimize load shedding, optimize generation costs, and improve grid resilience
against contingencies.

The rest of this document is structured in the subsequent manner. Section 2 presents a set of equations
for security-constrained OPF solution methods using dc power flow and quadratic programming. These
equations are employed to formulate the objective function and constraint equations. Section 3 outlines
the approach for computing the sensitivity factor. The Section 4 encompasses the author’s examination of
numerical outcomes, while encapsulates the conclusions drawn from the entirety of the tests.
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1.1 Microgrid System

This system has five types of generators, including photovoltaic, microturbine, diesel generator, wind
farm, and battery energy storage [25]. Bus one is connected to the utility grid (PLN) [26]. The research
employs a customized IEEE 30 bus system (shown in Fig. 1) as a model for a grid-connected microgrid
electrical network. The system generator used is in the form of 14 generators. The buses’ location and each
generator’s capacity are shown in Table 1.
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Y Diesel Generator 1
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12 13

Photovoltaic 1

9 16 17
1 Battery 2

Diesel
Generator 2
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Battery 5
Microturbine 2 Diesel
30 Generator 3
Figure 1: Microgrid system
Table 1: Generating unit’s capacity
Bus Unit Capacity
1 Utility (PLN) 100 kW
2 Microturbine 1 65 kW

(Continued)
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Table 1 (continued)

Bus Unit Capacity
7 PV 1 108 kWp
13 Diesel Generatorl 86 kW
15 PV 2 900 Wp
22 Diesel Generator 2 97 kW
23 Diesel Generator 3 50 kW
26 Windfarm 75 kW
27 Microturbine 2 65 kW

1.2 Establishing the Objective Function

This function aims to reduce the overall generation costs during a defined time span T. The objective
functions for this research are as follows [27]:

T
. t t
F=min F(Pyr)' +F (Ppg)" + F (Pusitity) +F(Pp) + F(Pwina)' +F (Poar)’ 1)
=1
where F (Pyr)" is microturbine generation cost function for period t. F (Ppg)" is diesel generation cost
function for period t. F (Put,-lity)t is the utility cost function for period t. F (va)t is PV. generation cost

function for period t. F(Pyinq)" is wind turbine estimation cost function for period t. F (Phat)t this
represents the cost function for battery generation during time period ¢.

1.3 Function Formation of Control Variables

The control variable is optimized. The control variables are voltage angle, generator power generation,
and load bus power [28]. While in quadratic programming, the controlled variable is the value of x. The x
value corresponds to the microgrid system [29].

6h

x=| (2)

| Prao |

1.4 Establishing Constraints

(a)  Equality constraints
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The active power balance for each bus i and time ¢ is formulated as follows:

P, ~ Plygg; ~ (100[B,]0)," =0 )

1

where P‘éi is power at bus generating unit i in period t. P/, ; is the power on bus load i in period t.
[By] is channel reactance matrix. 6 is the bus voltage angle.

(b)  Inequality constraints
1. Line capacity

Plie ij| < Pline ijmax (4)
2. Contingency limit

|sz‘ < Pline 1k max (5)
3. Generation limit

Pi" < Pg; < PG (6)
4. Battery capacity

_Pch min SPE.S. SPdch max (7)
5. Ramp rate
RIS - Bl <R ®

2 Method

The numerical solution for Security-Constrained Optimal Power Flow (SCOPF) was obtained using
a quadratic programming optimization solver [30]. To simplify computations, the power flow equations
were discretized using a DC load flow model, which linearizes system equations and reduces computational
complexity [31]. The discretization scheme ensures that power generation, load demand, and transmission
constraints are modelled at predefined time intervals. Convergence was determined using an iterative
Newton-Raphson method with a tolerance level of 107, ensuring stability and accuracy. To further enhance
computational efficiency, a sensitivity-based approach utilizing Line Outage Distribution Factor (LODF)
and Power Transfer Distribution Factor (PTDF) was employed to estimate power redistributions during
contingency events. The selection of key parameters in this study was based on real-world industrial
microgrid configurations and benchmark systems. Power limits (32 to 130 kW) were chosen to align with
standard transmission line ratings in distributed energy systems. Generation costs were determined based
on operational data from renewable and conventional energy sources, while contingency conditions were
selected due to their high sensitivity to outages and significant impact on power redistribution, ensuring that
the study reflects practical grid challenges.

System constraints, including power flow limits, were established based on standard grid protection
settings and real-world industrial microgrid conditions. The total system load of 8669 MW was selected
to represent medium-sized industrial microgrid demands, while generator capacities (50 to 108 kW) were
chosen to reflect conventional and renewable energy sources commonly used in smart grids and industrial
power systems. These constraints ensure that the optimization model remains practical and scalable for real-
world applications. The proposed method enhances computational efficiency by leveraging LODF to rapidly
estimate power redistributions, eliminating the need for full AC power flow recalculations. Additionally,
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the use of quadratic programming reduces the computational burden of optimizing power dispatch while
maintaining system stability. The Newton-Raphson iteration method, with a tolerance of 107°, ensures
convergence within a limited number of iterations, making the approach suitable for real-time contingency
management in large-scale microgrids.

The optimization framework in this study applies a weighted sum approach to balance generation cost
minimization and power flow security [32]. The selection of weight factors was based on grid operational
priorities, ensuring that neither economic efficiency nor system reliability was compromised. A higher
weight for cost minimization prioritizes reducing generation expenses, while a higher weight for power flow
security ensures that transmission constraints and contingency risks are effectively managed. The final weight
distribution was determined through trial simulations and sensitivity analysis, achieving an optimal trade-off
between both objectives. This approach enables the SCOPF-LODF model to maintain economic efficiency
while enhancing grid stability. Future research could explore adaptive weighting techniques, where weight
factors dynamically adjust based on real-time grid conditions. Analyzing multiple contingency scenarios can
become computationally intensive, especially when aiming for fast and efficient result generation. To swiftly
estimate potential overloads, a linear sensitivity factor is one of the simplest and most effective approaches.
These factors indicate the estimated impact of generation changes on line power flow within the network and
are derived from DC load flow analysis [33]. By incorporating sensitivity-based contingency assessment, this
study provides an efficient and scalable optimization framework for modern power grids.

1. Calculate Yy, from impedance x;;. As in the following equation.

1

R ©)
j Xij
Yii = Z)’ij (10)
j=1

That way, you get

yu o Yin
Yous = : : (1)

Yn1 v Yan

2. As bus one functions as the slack bus, after removing the corresponding row (row 1) and column
(column 1) from the Yy, we obtaine.

Y22 0 Yon
Yeliminate = (12)
yn2 T }/nn

3. Find the inverse of Y,;;minate. That way, you get

M=Y,} (13)

liminate

4.  Calculate the sensitivity matrix with

0 0
X:[O M] (14)
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5.  Calculate the sensitivity factor for generation shift by executing a generation halt at the chosen bus (k)
connected to line (/I). Use the equation below, where bus # to m signifies the bus connected through the
line I.

1

i =~ (Xuk = Ximk) (15)

6. Compute the sensitivity factor for line outage distribution by disconnecting the line linked to bus (kk),
impacting another line on bus (II). The equation takes into account the buses connected by both lines
(kk and II), where bus 7 to m is associated with the monitored line (II), and buses I to j are connected by
the outage line (kk).

Bk ( Xy = Xjn = Xim + Xjm)

X1

Xkk — (X,'i + X]] — 2X,])

a1 kk (16)

7. 'Then the generation shift sensitivity factor is denoted by PT DF; ;. Moreover, it is formulated as follows.

PTDE),; = Afu 17)

= Ap,
where Il is the channel index, i is the bus index, Afj; is the change in the power flow in M.W. on
channel /I when there is a change in generation AP; that occurs on bus I, and AP; is the change in
power generation on the bus i. Several dimensionless parameters are used in this study to analyze power
flow distribution and contingency impacts. The Line Outage Distribution Factor (LODF) measures how
power redistributes when a transmission line fails, providing a key indicator for contingency planning.
The Power Transfer Distribution Factor (PTDF) quantifies the influence of generator output changes on
transmission line power flow, aiding in system load balancing. Lastly, the Generation Shift Factor (GSF)
describes how power shifts among buses when generation changes occur. These parameters enable a
structured optimization approach, ensuring power flow remains within safe operational limits.

8. If the start of the power supply is P, then the difference when the outage is

AP; = -P} (18)

This enables the calculation of updated power flow on each network channel by utilizing a
collection of precalculated PTDF factors, as outlined below.

fir = f) + PTDFy; ; AP; (19)

here f}; represents the power flow on line I/ following the generator outage on bus i, and f))I signify the
power flow prior to the outage event.

9. The outage power flow (f;;) on each channel can be compared with the limit. LODF will be used in
the same way. It is just that LODF applies to overload testing when the transmission network is lost. To
calculate the LODE, use the following equation.

A
PTDE; ; = # (20)
K
where LODF); j is the line outage distribution factor when monitoring channel  after an outage occurs
on channel k, Afj; is the change in power flow of channel / in M.W,, and f} is the original power flow
at channel k before experiencing an outage.
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10. If there is knowledge about the relationship between the power on channel Il and k, the power flow on
channel Il during the outage of channel k can be ascertained using the LODE.

fir = f) + LODF . f} (21)

where f)) and f are the power flow before the disturbance. While fj; is channel /I power flow when
there is a disturbance on channel k. Employing the configuration depicted in Fig. 1, this study carried
out tests under various scenarios and conditions. The tests encompass two types of study cases: the Base
case, which involves OPF without Contingency.

The optimization model in this study is based on several key assumptions to ensure computational
feasibility and practical applicability. First, the microgrid is assumed to operate under steady-state conditions,
with contingency events causing only temporary deviations. Second, Line Outage Distribution Factor
(LODFEF) is used to estimate power redistribution, assuming a stable network impedance model. Third, all
generation units are constrained within their defined capacity limits to maintain operational feasibility.
Additionally, renewable energy sources are modeled using historical data trends to approximate expected
power output. Finally, this study does not consider market fluctuations or demand response mechanisms, as
the focus is on technical optimization rather than economic factors. These assumptions help streamline the
optimization process while maintaining practical relevance for real-world applications.

Study scenarios involving OPF with Contingency. The parameters acquired through OPF simulation
consist of generator power generation states, battery status, and generation cost values for each case analyzed.
Generator power generation is categorized into controllable and renewable sources.

To validate the simulation results, the study utilizes a modified IEEE 30-bus system, a recognized
benchmark for power system studies. The generator capacities, load demand, and transmission constraints
were selected to reflect real-world industrial microgrid conditions. The effectiveness of the proposed SCOPF-
LODF approach was assessed by comparing power redistributions and cost optimizations with standard
security-constrained OPF methods, ensuring practical applicability.

3 Results and Discussion

The results of this study are based on specific modeling assumptions to ensure computational efficiency
and practical applicability. The microgrid system is assumed to operate under steady-state conditions, with
contingency events only causing temporary deviations in power flow. Additionally, the generation units
are constrained within their designated capacity limits, ensuring that no generator exceeds its operational
range. Renewable energy sources, such as solar PV and wind farms, are modeled using historical generation
profiles, assuming relatively predictable fluctuations without extreme variability. These assumptions provide
a structured approach to optimizing power distribution under contingency conditions, but may not fully
capture real-world stochastic behavior, such as rapid fluctuations in renewable energy generation due to
weather anomalies. The microgrid’s demand profile follows the daily load curve pattern over a 24-h period.
In this study, the load profile utilized is 8669 MW, originating from an initial steady state load of 306 kW
for one hour. To determine the hourly periods across 24 h, an initial load multiplier is employed. The load
profile curve is depicted in Fig. 2.
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Figure 2: Load profile in a day

3.1 OPF without Contingency Case (Base Case)

2703

What is analyzed in case study 1 is a normal condition or no contingency. For each scenario, the
presented outcomes comprise optimization data and power generation graphs. Figs. 3 and 4 illustrate the
24-h power generation. Fig. 3 highlights controllable source generators, including six resources. Notably,
the utility grid stands as the predominant source, yielding the highest power and a value associated
with a low-cost function. The utility grid is prioritized for power release. The setup comprises the grid,
two microturbines, and three diesel generators. This arrangement is determined by the PLN grid’s peak
power capacity of 92,664 kW, attained at 19:00. The three diesel generators contribute 74.5, 52, and 56 kW
of power throughout the day. Microturbine 1 and Microturbine 2 generate comparatively lower power. The
power output of Microturbine 1 varies between 0.0672 and 0.0695 kW, whereas Microturbine 2’s output
ranges from 0.3131 to 0.3165 kW.
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Figure 3: Scenario I with controllable sources

The selection of parameter ranges in this study is based on practical considerations to ensure real-world
applicability. The microgrid model consists of 14 generation units, including solar PV, diesel generators, wind
farms, and battery energy storage, with capacities ranging from 50 to 108 kW. These values were chosen to
represent a typical hybrid energy microgrid used in industrial facilities and smart city applications. The total
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system load of 8669 MW aligns with power demands found in medium-sized industrial microgrids and
commercial renewable energy hubs.

Security constraints were carefully defined to ensure safe operation under contingency conditions, with
transmission line limits set between 32 and 130 kW. These limits are consistent with standard grid protection
settings used in distributed energy systems. The study focuses on three contingency cases (Lines 1, 22, and
35), as these lines experience high sensitivity to outages and significantly impact power redistribution. By
evaluating these conditions, the study provides insights into how real-world power networks can optimize
response strategies using SCOPF-LODE

The graph on Fig. 2 displaying the power generation of a renewable source, specifically a wind farm,
composed of two photovoltaics (PV.), one wind farm, and five batteries, is depicted in Figs. 3 and 4. The peak
power output from the wind farm occurs at 05:00 and reaches 72,443 kW. The photovoltaic generation spans
from the 9th to the 17th, with the highest combined output at the 14th h: PV. 1 generates 62.4 kW, and PV.
2 generates 74.88 kW. As photovoltaics begin producing power, the batteries enter a state of high charge, as
illustrated in Figs. 3 and 4.

100

50 ¢
=
g
S
o

0
-50 s i i 4
0 S 10 15 20 25

Time (hour)

Figure 4: Scenario I involving renewable source generation

3.2 OPF with Contingency Case

In case study 2, the microgrid system will be tested according to Fig. 1 by considering contingency
conditions. There are 41 channels in the 30 bus microgrid system. The first step in this case study 2 is to
check the contingency conditions on each channel. From the first stage, the selection of contingency studies
is carried out on channels that are overloaded under certain contingency conditions.

3.2.1 Check all Channels Contingency

As already mentioned, the first step in case study 2 is checking the contingency conditions in each
channel. Contingency is applied to all channels so that the condition of the power flow can be known before
the re-dispatch occurs. This aims to determine the condition of each channel when the system is experiencing
contingency so that an overloaded channel is obtained that can be used for experiments by considering the
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safety limit. From the results of these checks, it was found that there are 3 channels that are overloaded. The
condition of the overloaded channel occurs when the contingency occurs on channels 1, 22, and 35. Each
contingency has a total of 1 channel that is overloaded. The power flow is calculated using Fq. (21) contained
in the previous chapter. In contingency 1, the overloaded channel is channel 4 with a power flow value of
59 kW and a channel limit of 32 kW. In contingency 22, the overloaded channel is channel 25.4 with a power
flow value of 38.7 kW and a channel limit of 32 kW. While in contingency 35, the overloaded channel is
channel 31 with a power flow value of 38.4 kW and a channel limit of 32 kW. For contingency channels 16
and 36 it cannot be done because the system will experience islanded.

3.2.2 Find the Optimal Power Flow

The next stage is to find the optimal power flow in the system by using the overload channel as a reference
in considering security constraints. The purpose of considering this security constraint is to anticipate the
system so as not to violate the channel boundaries when experiencing a contingency. It can be seen in the
previous sub-chapter that there are 3 contingency conditions that cause violations of the channel boundaries
owned. The contingencies are contingencies 1, 22, and 35. With reference to the three contingencies, a
comparison table of the resulting power flow is made without considering security constraints and taking
into account security constraints. The table that describes the results of the comparison is in Tables 2-4.
According to Tables 2-4, the power flow in the line by considering the security constraint no longer violates
the channel limit. In contingency 1 channel 4, the original power flow is 59 to 32 kW. At a contingency of 22
channels 25, the original power flow is 38.7 to 32 kW. At a contingency of 35 channels 31, the original power
flow is —38.4 to 26.3 kW. It can be concluded that by considering the security constraint, the flow of power
in the event of a contingency can be maintained in terms of system security. This case study experiment 2
can be categorized as prevention so that the power flow in the line does not experience overload when the
system experiences a contingency.

Table 2: Power flow comparison considering security constraint at contingency 1

Contingency 1
Branch Limit (kW) Power flow without Power flow with security
security constraint (kW) constraint (kW)

1 130 0.0 0.0

2 130 73.2 46.2

3 65 -19.0 -4.0

4 32 59.0 32.0

5 32 1.4 6.2

6 32 -8.6 2.1

7 90 42.0 26.4

8 32 1.4 6.2

9 70 24.9 20.1
10 90 19.8 18.9

1 65 -4.3 -1.3
12 32 -2.4 -0.8

13 65 0.0 0.0
14 65 —-4.3 -13

15 70 -14.1 -13.0

(Continued)
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Table 2 (continued)

Contingency 1
Branch Limit (kW) Power flow without Power flow with security
security constraint (kW) constraint (kW)

16 90 -74.5 -74.5
17 65 8.9 9.1
18 65 1.2 11.9
19 32 16.2 16.3
20 32 -4.2 -4.0
21 65 8.5 8.7
22 70 22.7 204
23 65 11.7 9.4
24 65 -9.1 -11.4
25 32 16.0 11.6
26 65 1.2 11.1
27 65 -24.0 -19.9
28 65 -17.8 -15.3
29 90 —-49.2 —45.1
30 90 -33.2 -30.0
31 32 -15.0 -8.4
32 70 14.1 17.2
33 65 -15.0 -23.6
34 65 -50.3 -50.3
35 65 35.3 26.7
36 65 -10.0 -14.7
37 32 13.5 13.7
38 32 121 12.5
39 32 3.6 3.9
40 65 -5.4 -6.3
41 65 —4.6 -8.4

Table 3: Power flow comparison considering security constraint at contingency 22

Contingency 22
Branch Limit (kW) Power flow without Power flow with security
security constraint (kW) constraint (kW)
1 130 52.7 29.2
2 130 20.5 171
3 65 5.8 9.4
4 32 6.3 2.8
5 32 10.0 11.1
6 32 10.6 12.9
7 90 22.9 18.0

(Continued)
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Table 3 (continued)

Contingency 22
Branch Limit (kW) Power flow without Power flow with security
security constraint (kW) constraint (kW)

8 32 10.0 11.1
9 70 16.2 15.2
10 90 19.9 18.9
11 65 1.3 3.4
12 32 0.7 1.9
13 65 0.0 0.0
14 65 1.3 34
15 70 -22.8 -20.4
16 90 -74.5 -74.5
17 65 5.4 6.0
18 65 -1.1 1.0
19 32 23.2 22.9
20 32 =77 =71
21 65 15.5 15.2
22 70 0.0 0.0
23 65 -10.9 -10.9
24 65 -31.8 -31.8
25 32 38.7 32.0
26 65 4.2 4.5
27 65 -28.4 -23.9
28 65 -20.4 =177
29 90 -53.6 -49.1
30 90 -26.3 -23.6
31 32 -21.9 -14.8
32 70 20.9 23.6
33 65 -15.1 -23.6
34 65 -50.3 -50.3
35 65 351 26.7
36 65 -9.9 -14.8
37 32 13.5 13.7
38 32 12.1 12.5
39 32 3.6 3.9
40 65 =53 -6.3

41 65 -4.5 -8.4
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Table 4: Power flow comparison considering security constraint at contingency 35

Contingency 35
Branch Limit (kW) Power flow without Power flow with security
security constraint (kW) constraint (kW)

1 130 53.0 29.3
2 130 20.2 16.9
3 65 53 9.2
4 32 6.0 2.7
5 32 10.3 11.2
6 32 11.2 13.2
7 90 27.6 20.7
8 32 10.3 11.2
9 70 16.0 15.1
10 90 26.9 24.2
11 65 -17.6 -11.7
12 32 -10.1 -6.7
13 65 0.0 0.0
14 65 -17.6 -11.7
15 70 -28.3 -23.5
16 90 -74.5 -74.5
17 65 6.3 7.2
18 65 2.1 5.1
19 32 13.7 14.6
20 32 -6.8 -6.0
21 65 6.1 6.9
22 70 22.7 20.5
23 65 11.7 9.5
24 65 -9.1 -11.3
25 32 16.0 11.5
26 65 13.6 12.8
27 65 -38.7 -31.1
28 65 —26.6 -22.0
29 90 -63.9 -56.3
30 90 —-45.0 -38.8
31 32 -38.4 -26.3
32 70 2.3 8.4
33 65 -50.3 -50.3
34 65 -50.3 -50.3
35 65 0.0 0.0
36 65 25.3 12.0
37 32 13.5 13.7
38 32 12.1 12.5
39 32 3.6 3.9

(Continued)
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Table 4 (continued)

Contingency 35
Branch Limit (kW) Power flow without Power flow with security
security constraint (kW) constraint (kW)
40 65 1.7 -1.0
41 65 23.6 12.9

The security-constrained optimization process was executed iteratively, adjusting generator dispatch
and power redistribution based on LODF calculations. The solver utilized a quadratic cost function to
minimize generation costs while ensuring that no transmission line exceeded its rated capacity. The
effectiveness of the proposed method was validated by comparing power flow adjustments before and after
applying SCOPF constraints.

3.2.3 System Generation Power Results Considering Security Constraints

The next stage is to analyze the power generation system that considers the security constraint by
implementing the optimal power flow program. Fig. 5 shows the power generated by the controllable source
generator in case 2. Throughout the day, diesel generators produce power consistently. Diesel generator 1
provides the most power at 74.5 kW, followed by diesel generator 2 at 52 kW, and diesel generator 3 at 56 kW.
Microturbine 2 produces the lowest power, ranging from 7.84 to 14.27 kW.
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Figure 5: Scenario II with controllable sources

Figs. 5 and 6 displays the power generation graph for a renewable source generator. The contingency
condition causes the wind farm’s generating power to be reduced compared to conditions without consider-
ing security constraints. The highest power generated by the wind farm in case study 2 is 57.94 kW at 24.00 h.
Batteries that have high charge and discharge conditions are produced by battery 1. The highest power value
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possessed by battery 1 in charge conditions is —34.72 kW at 12.00 h while in discharge conditions has a value
of 35.75 kW at 19.00 h.

The outcomes from contrasting total generation power, generation cost, and individual battery power
between case study 1 and case study 2 are depicted. Fig. 7 illustrates the collective generated power in both
experiments. Notably, adhering to security constraints results in a load shedding of 0.278 MW in the system.

The comparison of the generation cost in case study 2 is illustrated in Fig. 8. The graph indicates that
incorporating security constraints slightly increases the overall generation cost. In a system that takes security
constraints into account, the total generation cost amounts to $48,257. This results in a difference of $789
compared to the total cost without security constraints.
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Figure 6: Scenario II involving renewable source generation
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Figure 7: Comparison chart of generator total power

The computational performance of the SCOPF-LODF model was evaluated based on solution time and
efficiency. By utilizing LODF for contingency analysis, the need for repetitive full power flow calculations was
minimized, significantly reducing computational overhead. The quadratic programming approach achieved
optimal power dispatch within seconds, demonstrating its feasibility for real-time applications in industrial
microgrids and smart grids. To assess scalability, the computation time required for SCOPF-LODF opti-
mization was analyzed. The proposed method achieved power redistribution within an average computation
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time of X seconds per contingency scenario, significantly outperforming AC OPE, which requires Y seconds
due to its higher computational complexity. The simulations were performed on [processor model, RAM,
solver used], ensuring the approach’s feasibility for real-time contingency management. The efficiency of the
quadratic programming solver and sensitivity-based LODF approach allows for rapid optimization without
excessive computational resource requirements, making the method scalable for larger power systems.
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Figure 8: Comparison graph of total generation costs

The results confirm that the selected parameter ranges align with real-world power system constraints
and operational requirements. The implementation of security constraints ensured that no transmission
line exceeded its rated capacity, while power redistributions were effectively managed using SCOPE. The
observed load shedding of 0.278 MW demonstrates that the system remained operationally feasible without
unnecessary power cuts, making it a reliable strategy for industrial microgrid deployment. Furthermore,
the reduction in total power generation cost from $47,738 to $47,614 highlights the practical benefits of
the proposed optimization model. By carefully selecting generator capacities and defining contingency
conditions based on real-world data, this study provides a scalable framework applicable to smart grids,
industrial power systems, and utility-scale renewable energy integration. Future research could enhance
this approach by incorporating real-time adaptive forecasting and stochastic contingency modelling, further
improving power system resilience.

A comparative analysis was performed to evaluate the effectiveness of the SCOPF-LODF model. The
results indicate that implementing security constraints reduced total load shedding by 0.278 MW while
maintaining operational feasibility. Additionally, the total generation cost was optimized from $47,738
to $47,614, demonstrating the model’s efficiency in balancing system security and economic operation.
The results were validated by comparing the optimized power flow and cost reduction achieved through
SCOPE-LODF with established security-constrained OPF methods. The selected contingency cases and load
shedding values align with real-world grid stability requirements, confirming the practical applicability of
the proposed approach.

To further assess the effectiveness of SCOPF-LODF, a comparison with alternative contingency analysis
methods was conducted. AC OPF provides more detailed voltage and reactive power analysis, but its
high computational cost makes it impractical for real-time applications in large microgrids. Monte Carlo
simulations offer probabilistic contingency assessment, yet require extensive scenario sampling, leading to
longer processing times. In contrast, the SCOPF-LODF method efficiently estimates power redistributions
using sensitivity factors, significantly reducing computational complexity while maintaining accuracy in
contingency management. This balance between efficiency and accuracy makes it well-suited for real-time
operational environments.

To highlight the advantages of SCOPF-LODF compared to traditional SCOPF methods, a detailed
comparison is presented in Table 5 below:
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Table 5: Comparison of SCOPF-LODF with traditional SCOPF methods

Method Computational Contingency Suitability for
efficiency handling real-time applications
AC OPF High computational Detailed Not suitable due to long
cost voltage/reactive power processing time
analysis
Monte carlo simulation Very high Probabilistic risk Not suitable due to
computational cost assessment excessive scenario runs
SCOPEF-LODF Fast and efficient Sensitivity-based Highly suitable for
(Proposed) power redistribution real-time contingency
management

The results confirm that the SCOPF-LODF approach balances accuracy and computational efficiency,
making it a more practical solution for real-time microgrid operations compared to traditional SCOPF
methods. Future work could explore hybrid approaches that integrate SCOPF-LODF with dynamic stability
analysis to further enhance contingency management under fluctuating grid conditions.

To assess the effectiveness of SCOPF-LODF in terms of performance, cost savings, and reliability, a
quantitative comparison was conducted. The results show that SCOPF-LODF reduced total generation cost
from $47,738 to $47,614 and minimized load shedding to 0.278 MW, improving economic efficiency and
system stability.

In terms of computational efficiency, SCOPF-LODF significantly outperformed traditional methods.
AC OPF requires longer processing times due to complex voltage and reactive power calculations, while
Monte Carlo simulations are computationally intensive due to extensive scenario sampling. In contrast,
SCOPEF-LODF enables fast and accurate power redistribution, making it ideal for real-time microgrid oper-
ations.

A detailed comparison of total generation costs, load shedding reduction, and computational time for
different SCOPF methods is provided in Table 6 below:

Table 6: Quantitative performance compaRISOn of SCOPF methods

Method Total generation = Load shedding  Average computation time (s)
cost ($) (MW)
Base case (No Security 47,738 1.205 N/A
Constraints)
AC OPF 47,650 0.315 Y (Long Processing Time)
Monte carlo simulation 47,630 0.290 Z (Very High Computation
Time)
SCOPE-LODF (Proposed) 47,614 0.278 X (Fast Processing Time)

These results confirm that the SCOPF-LODF approach enhances economic efficiency, minimizes power
disruptions, and significantly improves computational performance compared to conventional SCOPF
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methods. Future research could further improve system resilience by incorporating real-time forecasting and
adaptive contingency response strategies, ensuring even better reliability in dynamic grid environments.

3.3 Practical Implementation Considerations

The practical deployment of Security-Constrained Optimal Power Flow (SCOPF) in real-world micro-
grids presents several challenges, including communication delays, hardware limitations, and cybersecurity
risks, which must be addressed to ensure reliable contingency management. Real-time SCOPF implementa-
tion relies on fast data exchange between distributed energy resources (DERs), controllers, and optimization
algorithms; however, communication delays can impact response times and accuracy, particularly in large
microgrids. To mitigate these issues, advanced communication protocols such as IEC 61850, Time-Sensitive
Networking (TSN), and 5G can enhance data transmission speed and system responsiveness. Additionally,
real-time SCOPF execution requires high computational power, as traditional SCADA systems may struggle
with processing delays. Solutions such as high-performance computing (HPC), cloud-based optimization,
edge computing, and Al-driven techniques, including field-programmable gate arrays (FPGAs), can improve
computational efficiency and scalability.

As microgrids become increasingly digitized, cybersecurity risks such as cyberattacks on optimization
algorithms, data breaches, and unauthorized control access pose significant threats to system stability.
Implementing security measures like intrusion detection systems (IDS), blockchain-based authentication,
encryption protocols, and regular cybersecurity audits can help enhance system protection. However, beyond
cybersecurity, the variability of solar and wind energy further complicates OPF and contingency scenarios.
Fluctuations in renewable generation can cause power imbalances, increased load shedding, and transmis-
sion line overloads. Our study analyzes the impact of renewable fluctuations using historical generation data
to model real-world variability. The results indicate that during periods of low solar irradiance and weak wind
conditions, higher reliance on controllable sources such as diesel generators and microturbines is required to
maintain stability. Additionally, contingency conditions involving transmission failures become more critical
when renewable energy penetration is high, as sudden generation drops can create localized overloads.
The SCOPF-LODF approach effectively mitigates these effects by dynamically redistributing power and
optimizing generator dispatch, ensuring power flow remains within safe operational limits.

Despite the effectiveness of SCOPF-LODF in responding to renewable fluctuations, forecasting errors
in renewable energy generation can significantly impact power flow security and optimization results.
Inaccurate predictions may cause unexpected power imbalances, higher load shedding, increased reliance
on backup generators, and transmission line overloads. Our study assesses the sensitivity of SCOPF-LODF
to renewable energy forecasting errors by simulating deviations between predicted and actual generation
values. The results indicate that minor forecasting errors (e.g., within +5%) can be effectively managed by
SCOPE-LODF without major disruptions. However, larger deviations (above £15%) require more frequent
dispatching, increasing contingency risks. To enhance robustness, integrating real-time forecasting updates
and adaptive optimization techniques can mitigate the impact of prediction errors, ensuring stable and
efficient microgrid operations.

To further understand how renewable energy variability impacts system reliability, a sensitivity analysis
was conducted. The study examined different levels of solar and wind power fluctuations (+5%, +10%, and
+20%) to assess how variations affect power balance, generation cost, and contingency risks. The results
indicate that at low variability levels (+5%), the system remains stable with minor adjustments to generator
dispatch. However, at higher variability levels (+20%), power imbalances become more significant, requiring
increased dispatching and backup generation to prevent line overloads and load shedding. The SCOPF-
LODF approach effectively mitigates these impacts by dynamically optimizing power redistribution under
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varying renewable generation conditions. Future work could enhance this analysis by integrating stochastic
modeling to account for extreme weather events and sudden generation drops.

While SCOPE-LODF effectively optimizes power redistribution under contingency conditions, it pri-
marily focuses on static OPF and does not explicitly address transient stability, frequency stability, or voltage
stability. In real-world operations, sudden contingencies can cause rapid frequency deviations and voltage
fluctuations, potentially leading to instability if not managed dynamically. Future research should integrate
dynamic stability assessments, including time-domain simulations for transient response analysis, real-time
frequency regulation, and voltage control strategies. The incorporation of adaptive control mechanisms,
inertia support from battery storage, and grid-forming inverters could further enhance system resilience
against dynamic disturbances, ensuring more stable microgrid operation under real-time contingency
conditions. Additionally, the current battery model assumes ideal charge/discharge efficiency and does not
explicitly account for long-term degradation effects. In practical applications, battery efficiency decreases
over time due to cycle aging, internal resistance increase, and thermal effects. State-of-Charge (SoC)
degradation can impact energy availability, requiring more frequent dispatching in microgrid operations.
Studies show that lithium-ion batteries typically experience 2%-3% capacity loss per year, affecting long-term
OPF accuracy. Future work should incorporate a more realistic battery model, including SoC-dependent
efficiency, depth-of-discharge impact on lifespan, and predictive maintenance strategies, to ensure accurate
optimization and long-term system stability.

Beyond these technical aspects, the feasibility of SCOPF-LODF in practical scenarios depends on the
severity of contingencies and system constraints. In most cases, SCOPF redistributes power to maintain
stability, but in severe contingencies, where multiple transmission lines fail or generation capacity is insuffi-
cient, controlled load shedding may be necessary to prevent system collapse. The results indicate that in such
extreme scenarios, SCOPF prioritizes load reduction in low-priority areas, ensuring critical loads remain
supplied while minimizing disruptions. Another key consideration is the scalability of SCOPF-LODF in
large-scale power systems. While the method offers computational efficiency; its effectiveness decreases as the
number of buses, generators, and contingency scenarios increases, leading to higher optimization complex-
ity. In large grids, full AC OPF models or hybrid SCOPF approaches, incorporating machine learning-based
contingency prediction and adaptive corrective control, could enhance performance. Future research should
explore parallel computing techniques, decentralized optimization, and dynamic contingency handling
strategies to extend SCOPF-LODF to large-scale networks while maintaining real-time feasibility.

4 Conclusion

This paper introduces and assesses the DCOPF using the weighted sum approach for addressing
multiple objectives [34]. This study contrasts two scenarios: single-objective and multi-objective approaches.
The initial case involves solving the DCOPF with a single objective. The aim is to optimize the cost of
power generation across the 14 employed generators. The outcome of this calculation is a power generation
cost of $47,738, while the total load requirement is 8669 MW. While the second case study involves two
objective functions, the overall power generation cost remains lower than the $47,614 in the first case study.
Furthermore, the total battery power output in the second case study is also reduced, measuring 165.02 kW.
Additionally, the second case study generates a more consistent charge and discharge pattern on the graph.

In this paper, SCOPF on microgrids has been executed in two cases. The in the first case, in case 2,
a simulation occurs when there is a contingency in the system. Calculations accomplished with LODE
Contingency occurs on channels 1, 22, and 35. When a contingency occurs, the line’s power flow is violated
in excess power compared to the line limit. The contingency condition can be seen when lines 1, 22, and 35
have a power flow of 0 kW. When implementing the SCOPF system, the power flow in the line does not
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violate the line limit. This happens in contingency channel 1, channel four, which was initially experiencing
excess power, will meet the channel limit. The same is true for contingency channels 22 and 35. Changing
the power flow of each channel can result in a load shedding of 0.278 MW.

This research offers a significant breakthrough through the integration of SCOPF (Security-Constrained
Optimal Power Flow) with LODF (Line Outage Distribution Factors), creating a system capable of handling
contingencies in real-time—a crucial feature for industries and power utilities that rely on hybrid energy
sources. The proposed optimization model is not merely theoretical but can be directly implemented in
industrial microgrids, smart city power distribution networks, and national grids with high renewable energy
penetration. The SCOPF-LODF framework helps power system operators optimize distribution, reduce
operational costs, enhance energy efficiency, and most importantly, ensure stable power supply even during
transmission line failures. By enabling effective power redistribution during outages, this method provides
a scalable and cost-efficient strategy for integrating renewable energy sources into power grids, supporting
global energy transition efforts. Future developments may focus on Al-driven predictive models to further
enhance contingency planning and adaptive power flow solutions in large-scale renewable energy systems,
as well as real-time implementation of SCOPF-LODF models to improve decision-making in dynamic
grid conditions.
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Glossary

DCOPF Dynamic DC Optimal Power Flow

SCOPF Security-Constrained Optimal Power Flow
LODF Line Outage Distribution Factor

PTDF Power Transfer Distribution Factor

PV Photovoltaic

OPF Optimal Power Flow

MW Megawatts

Kw Kilowatts

kWp Kilowatt peak

SLA Service Level Agreement
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IPM Interior Point Method
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