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ABSTRACT: With the increasing integration of large-scale distributed energy resources into the grid, traditional
distribution network optimization and dispatch methods struggle to address the challenges posed by both generation
and load. Accounting for these issues, this paper proposes a multi-timescale coordinated optimization dispatch method
for distribution networks. First, the probability box theory was employed to determine the uncertainty intervals of
generation and load forecasts, based on which, the requirements for flexibility dispatch and capacity constraints of
the grid were calculated and analyzed. Subsequently, a multi-timescale optimization framework was constructed,
incorporating the generation and load forecast uncertainties. This framework included optimization models for day-
ahead scheduling, intra-day optimization, and real-time adjustments, aiming to meet flexibility needs across different
timescales and improve the economic efficiency of the grid. Furthermore, an improved soft actor-critic algorithm
was introduced to enhance the uncertainty exploration capability. Utilizing a centralized training and decentralized
execution framework, a multi-agent SAC network model was developed to improve the decision-making efficiency of
the agents. Finally, the effectiveness and superiority of the proposed method were validated using a modified IEEE-33
bus test system.

KEYWORDS: Renewable energy; distribution networks; source-load uncertainty interval; flexible scheduling; soft
actor-critic algorithm; optimization model

1 Introduction
Distribution networks (DNs), as a key component of power systems, play a strategic role in energy

transition and sustainable development [1]. Renewable energy-dominated power systems have evolved
rapidly under the “dual carbon” goals of China, leading to increased penetration of renewable energy
resources, flexible regulations, and increased diversity in power demand characteristics [2]. However,
large-scale integration of renewable energy and flexible resources introduces significant uncertainties from
generation and load perspectives, posing substantial challenges to the economic operation of power grids [3].
With the ongoing market-oriented reforms, dispatch strategy optimization, renewable energy utilization,
and cost optimization have become critical issues for grid operators [4].

In renewable energy-based DN optimization studies, nonlinear programming can introduce compli-
cations, owing to large-scale decision variables, non-convex objective functions, and nonlinear constraints.
These issues have been addressed by employing convex relaxation techniques, such as mixed-integer linear
programming [5] and second-order cone programming [6], which reduce problem complexity through
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transformation but may compromise on the accuracy and global optimality of the solution. In recent
years, distributed optimization algorithms have garnered increasing attention due to their flexibility and
scalability. The alternating direction method of multipliers [7] enhances computational efficiency and ensures
result accuracy through problem decomposition and node-level collaboration mechanisms, while consensus
optimization [8] and Lagrangian dual relaxation [9] algorithms further improve overall performance and
convergence speed by optimizing the iterative process. However, these approaches remain sub-optimal for
upscaling due to their inability to lower computational costs and increase convergence rates, which are critical
for real-time optimization.

Data-driven reinforcement learning (RL) techniques can identify complex dynamics by employing
neural networks to capture multivariable and nonlinear relationships within a power system [10], thereby
reducing the reliance on traditional power system models. Moreover, RL techniques can significantly
enhance the computational efficiency and accuracy of power systems, providing a comprehensive solution
for optimizing distributed renewable energy in modern DNs [11]. Researchers have employed various single-
agent RL frameworks for optimizing DNs. For instance, the deep Q-network has been used for controlling
grid voltage [12], the proximal policy optimization (PPO) algorithm has been used for scheduling time-
coupled equipment (e.g., microturbines (MTs)) [13], and the deep deterministic policy gradient (DDPG)
algorithm has been used for mitigating voltage limit violations caused by system uncertainties [14]. However,
the limited scalability of these single-agent RL frameworks has prompted researchers to explore multi-
agent (MA)-deep RL (DRL) frameworks, particularly those based on centralized training with decentralized
execution (CTDE), which grants independent decision-making abilities to regulation equipment [15]. Li
et al. [16] proposed a CTDE-based multi-agent DDPG (MADDPG) algorithm, which efficiently coordinates
multiple distributed devices and addresses partial observability constraints, enhancing the flexibility and
reliability of distribution systems; however, this algorithm shows limited adaptability under highly uncertain
and dynamic environments. To address this limitation, Reference [17] introduced a multi-agent soft actor-
critic (MASAC) algorithm, which enhances the ability of agents to cope with source-load uncertainty
and complex power grids, thus significantly improving exploration capabilities, adaptability, and decision-
making efficiency of distribution systems under complex environments. However, existing studies have not
adequately addressed the impact of high uncertainty on the agent’s exploration capabilities and efficiency.
These situations may expose agents to more unknown factors during the exploration process, affecting
their learning speed and decision-making ability, and further restricting their ability to adapt and optimize
performance in dynamic environments.

It is crucial to establish effective modeling and processing methods, such as scenario-based, chance-
constrained programming, robust optimization, and interval optimization methods, to address the
uncertainties in renewable energy-based DNs, particularly those arising from environmental and climate
variations. Stochastic optimization methods generate multiple scenarios to simulate the impact of uncertain
factors and provide their probability distribution in energy generation [18]. However, these methods struggle
to balance computational efficiency with accuracy [19]. Robust optimization methods generate worst-case
scenarios, based on the possible variations in uncertain factors, to ensure the feasibility of optimization
strategies within the range of parameter perturbations [20]. However, these traditional methods primarily
rely on boundary information (minimum and maximum values) of uncertain quantities, often leading to
overly conservative optimization results [21]. Although studies have reduced the conservativeness of robust
optimization through spatiotemporal correlation [22] and probability distribution [23], these improvements
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increase the complexity of the optimization model, limiting its application in large-scale systems. Inter-
val optimization methods describe uncertain values as interval numbers and use interval arithmetic to
determine the optimal interval [24]. Compared to stochastic optimization, interval optimization makes
DNs efficient and less conservative. However, the effectiveness of interval optimization is closely associated
with selecting the appropriate range of interval variables, which is crucial for achieving optimal results. In
particular, obtaining reasonable interval variables is critical in scenarios with high source-load uncertainty.

Despite improving the economic efficiency and safety of power grid operations under source-load
bilateral uncertainty, the existing DN optimization methods exhibit two significant limitations. First, the
high uncertainty environment severely restricts the exploration efficiency and learning speed of optimization
algorithms, leading to increased computational complexity and prolonged training cycles. Second, the
existing methods fail to adequately consider the dynamic characteristics of source-load prediction errors
across different timescales, resulting in overly conservative uncertainty intervals that reduce scheduling
accuracy and efficiency.

In this study, we propose a multi-timescale optimal scheduling method that aims to enhance scheduling
flexibility, accuracy, and computational efficiency by addressing the uncertainties in source-load prediction.
The main contributions of this study are summarized as follows:

(1) The novel multi-timescale optimization scheduling method incorporates source-load forecast uncer-
tainty intervals by analyzing the flexibility requirements at multiple timescales (day-ahead, intra-day,
and real-time) to optimize grid operations, thereby ensuring economic efficiency.

(2) The improved SAC algorithm dynamically adjusts the weight of entropy in policy optimization through
a self-regulating temperature coefficient and improves the agents by reducing unnecessary explo-
rations.

(3) The CTDE-based MASAC framework effectively reduces the decision-making time in the optimization
process, ensures real-time scheduling, and significantly improves the overall system efficiency.

2 Optimal Dispatch Strategy Based on the Uncertainty Intervals of Source-Load Forecast

2.1 Analysis of Source-Load Uncertainty and Grid Flexibility
The forecasting timescale plays a crucial role in determining the accuracy of source-load predictions

while addressing uncertainty in DNs. The extent of uncertainty errors varied across different forecasting
timescales, significantly affecting source-load predictions [25] (Fig. 1). Generally, day-ahead forecasting
utilizes a 1-h timescale, which is influenced by various uncertainty factors, like long-term weather vari-
ations, equipment degradation or potential malfunctions, and consumer electricity demand variations,
resulting in increased forecasting errors. Conversely, intra-day forecasting adopts <1-h timescales, which
are influenced by short-term factors, such as transient weather changes, temporary equipment failures, and
short-term demand fluctuations, resulting in enhanced accuracy and reduced uncertainty intervals. Real-
time forecasting employs even shorter timescales (~5 min) to achieve superior precision and predictive
confidence intervals.
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Figure 1: Comparison of predicted data across different timescales

2.1.1 Characterization of Uncertainty Intervals in Source-Load Forecasting
The variability range of uncertain variables significantly influences the optimization performance of

power grid systems. In this study, we utilized the probability box (p-box) theory to accurately delineate the
appropriate uncertainty intervals for source-load forecasting [26].

(1) Gaussian distribution assumption

The source-load prediction error is often represented as a normal distribution, owing to the central limit
theorem, which states that when errors arise from numerous independent random factors, their probability
distribution tends to be normal. This assumption has been widely validated in load forecasting studies. The
relative prediction error data for Liaoyang, China (2022) conformed to a normal distribution (Fig. 2a). The
statistical histogram aligned well with the probability density and cumulative probability functions of the
fitted normal distribution, indicating that load prediction errors can be represented as a normal distribution,
laying the foundation for subsequent statistical analysis and model optimization. Additionally, when the
sample size is sufficiently large, the prediction errors of wind or photovoltaic (PV) power outputs tend to
conform to a normal distribution, despite the influence of various factors [27]. Although the prediction errors
of wind power can exhibit various distribution types, like beta, Cauchy, or Laplace distributions, their overall
concentration trend can be successfully captured by a normal distribution (Fig. 2b). Similarly, the prediction
errors of PV power, influenced by the stochastic and independent variations in solar radiation intensity,
can be conventionally represented by a normal distribution [28] (Fig. 2c). Based on the aforementioned
theoretical and empirical analyses, this study utilizes a normal distribution model to characterize source-load
prediction errors.
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Figure 2: Distribution of source-load prediction errors
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(2) P-box-based interval extraction

The p-box theory represents uncertainty as interval-based probability distributions, yielding precise
and conservative estimates. Particularly in cases with limited data availability or expert input, the p-box
theory provides a validated uncertainty range for extracting source-load intervals. It accurately characterizes
uncertainty, manages nonlinear and complex system dynamics, and offers a reliable foundation for informed
decision-making.

The interval characterization was performed as follows: For a given scheduling day, wind turbine
(WT) and PV output, as well as flexible load (FL) demand was predicted using predictive algorithms. The
resulting values, denoted as P̃N ,t , form the deterministic component of the random variable, τ, within the
p-box theory framework. The uncertainty of the random variable was represented as the forecast error,
eN ,t . The p-box parameters, based on historical data analysis, can be used to define the upper (

⌢

F N ,t(τ))
and lower (F̆N ,t(τ)) limits for the cumulative probability distribution function as interval boundaries.
Source load-related forecast errors can be represented by a normal distribution. Consequently, the mean
(μN ,t) and standard deviation (σN ,t) vary within a specified range, denoted by μN ,t ∈ (μ̆N ,t ,

⌢
μN ,t) and σN ,t ∈

(σ̆N ,t ,
⌢
σ N ,t), respectively. The boundaries of the cumulative probability distribution function, corresponding

to the probability distribution parameters of the forecast error, can then be defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

FN1 ,t(τ) ∼ N(μ̆N ,t(
⌢
σ N ,t)2)

FN2 ,t(τ) ∼ N(μ̆N ,t(σ̆N ,t)2)
FN3 ,t(τ) ∼ N(

⌢
μN ,t(σ̆N ,t)2)

FN4 ,t(τ) ∼ N(
⌢
μN ,t(

⌢
σ N ,t)2)

(1)

with a confidence level of β = 0.9, and the upper and lower boundary quantiles set at 95% and 5%, respec-
tively, implying that FN1 ,t(ĕN ,t) = 0.05 and FN4 ,t(>eN ,t) = 0.95. This configuration facilitates the calculation
of the predictive interval,

[P̆N ,t ,
>PN ,t] = [P̃N ,t + ĕN ,t , P̃N ,t +>eN ,t] (2)

After acquiring the forecasted values for PV, WT, and Load, the uncertainty intervals were assessed using
the p-box theory. As indicated in [26], the net load (NL) was computed as follows: PN L ,t = PL ,t − (PW T ,t +
PPV ,t). The NL forecasting error, eN L ,t , could then be deduced from the forecast errors of PV, WT, and Load.
The uncertainty interval for the NL was then defined as

[P̆N L ,t ,
>PN L ,t] = [P̃N L ,t + ĕN L ,t , P̃N L ,t +>eN L ,t] (3)

2.1.2 Incorporating Flexibility Requirements for Scheduling Intervals
Flexibility demand highlights the need for an adaptable grid dispatch to address the uncertainties in

the source and load forecasts of power systems. Conversely, flexibility supply represents the capacity and
availability of resources within a power system to ensure adaptability. Adequate flexibility supply enables
the maintenance of flexibility balance across various temporal, spatial, and scale dimensions, ensuring
that flexibility always exceeds demand. In multi-timescale optimal dispatch, especially under forecast
uncertainties, it is essential to anticipate and meet future flexibility demands during the preceding scheduling
stage. By securing sufficient dispatch supply capacity or flexible reserve capacity at an earlier stage, the power
system can maintain a flexibility balance and sustain supply-demand equilibrium, even amid significant
fluctuations in source-load forecasts in subsequent phases.
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The range of uncertain demand capacity in a power system can be evaluated by calculating the uncer-
tainty intervals in source-load forecasting along with the predicted NL values. This aids in defining the extent
of flexibility supply capacity. Meanwhile, the flexibility demand capacity can be evaluated by examining the
changes in NL forecasts between preceding and current time points, along with their associated prediction
intervals. The variation in the predicted NL was calculated using the following equation:

ΔPN L ,t = PN L ,t − PN L ,t−1 (4)

where PN L ,t and PN L ,t−1 represent the NL power at the current and preceding time points, respectively and
ΔPN L ,t indicates the change in NL and serves as a measure of the flexibility demand. Flexibility equilibrium
is achieved when the flexibility supply capacity, ΔPR ,[t−1,t] ≥ ΔPN L ,t , without considering the prediction
uncertainty intervals.

Since NL forecasts are inherently directional, the flexibility of the power system also follows a directional
trend (Fig. 3), involving two key scenarios: PN L ,t ≥ PN L ,t−1 and PN L ,t < PN L ,t−1. With the incorporation of
uncertainty intervals into the NL forecasts, it is essential to determine the flexibility demand capacity range
along with the overall flexibility demand, as follows:

[ΔP̆N L ,t , Δ>PN L ,t] = [P̆N L ,t −
>PN L ,t−1 ,

>PN L ,t − P̆N L ,t−1] (5)

(a) (b)

uncertainty intervals

Net load Net load

uncertainty intervals

Figure 3: Flexibility demand diagram

The constraints on flexibility supply capacity can then be determined using Eq. (5) as

Δ>PR ,t ≥ Δ>PN L ,t (6)
ΔP̆R ,t ≤ ΔP̆N L ,t (7)

where a positive value indicates the potential to increase discharge capacity, while a negative value indicates
the ability to reduce discharge and charge capacity.

When PN L ,t > PN L ,t−1, the upward flexibility supply capacity (∣Δ>PR ,t ∣) is notably larger (Fig. 3). Con-
versely, when PN L ,t < PN L ,t−1, the downward flexibility reserve capacity requirement (∣ΔP̆R ,t ∣) is significantly
larger. In scenarios, where PN L ,t = PN L ,t−1, it follows that PN L ,t = PN L ,t−1, equivalent to the NL forecast error
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eN L ,t . The constraints on the flexibility reserve capacity range can be determined through the flexibility
demand interval and the flexibility supply capacity.

2.2 Multi-Agent RL Algorithm Based on Uncertainty Intervals in Supply and Load
RL comprises three key components: the agent, environment, and reward. The agent interacts with its

environment through trial and error, aiming to maximize the cumulative reward. RL tasks can be modeled
using a Markov decision process, which is characterized by four elements: state space (S), action space (A),
state transition probability (P), and reward space (R) [29].

In this study, we employed a CTDE framework to optimize the dispatch of DNs handling large datasets.
This approach extends single-agent DRL algorithms to multi-agent environments, allowing multiple agents
to optimize the active DNs, while improving computational efficiency [30].

2.2.1 Enhanced SAC Algorithm
The SAC algorithm was used to develop a control model for active DNs and establish a system operation

control strategy. During training, the SAC algorithm designs policies by balancing expected returns with
information entropy, thereby preventing the emergence of suboptimal global solutions [29]. This framework
enables agents to comprehensively understand source-load uncertainties, enhancing the system’s ability to
optimize globally and adapt to these uncertainties. Furthermore, this algorithm incorporates agents’ action
entropy into the value function, thereby encouraging exploration and improving stability. The action entropy
of the agents can be defined as

H (πφ (●∣st)) = Ea∼πφ(●∣st) [− log πφ (at ∣st)] (8)

where φ represents the network parameters of the policy π. Action entropy measures the uncertainty in
action selection, allowing the policy to produce a diverse range of actions during iterative training. This
ensures that the agent can explore a broader spectrum of potential actions, minimizing the likelihood of
neglecting potentially beneficial decisions. The discounted cumulative reward function (J) of the SAC and
the optimal policy (π∗) were defined as follows:

J =
T
∑
t=0

E(st ,at)∼ρπ [r (st , at) + αH (πφ (●∣st))] (9)

π∗ = arg max
πφ

T
∑
t=0

E(st ,at)∼ρπ [r (st , at) + αH (πφ (●∣st))] (10)

where π represents the agent’s action policy (probability distribution of action selection); st denotes the
current environmental state encountered by the agent; at represents the action derived from the policy;
r(st,at) indicates the reward value provided by the environment to the agent; (st , at) ∼ ρπ represents the
action trajectory of the policy; and α represents the temperature coefficient of the action entropy, which
determines the impact of action entropy on the reward.

(1) Enhanced temperature coefficient update

The temperature coefficient adjusts with changes in environmental uncertainty, and its size significantly
impacts the model’s capability to explore uncertainties, influencing exploration behavior and optimization
efficiency during training. In this study, we proposed an automatic temperature coefficient adjustment
method to refine uncertainty learning and minimize redundant exploration. This approach dynamically
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adjusts the agent’s temperature coefficient based on the level of environmental uncertainty. The update
calculation for each step of the optimization process can be expressed as

⎧⎪⎪⎨⎪⎪⎩

αt = α + ηt(eN ,t/P̃N ,t)
αt = αt − λαE(st ,at)∼ρπ[−α log(π(at ∣st)− at H0]

(11)

The kt ∈ [0, 1] coefficient assesses the level of scheduling uncertainty in an environment at a given
time and is primarily influenced by the predicted power output and the magnitude of forecast errors. The
ηt parameter quantifies uncertainty and is determined by historical prediction error data and the system’s
environmental sensitivity. This approach ensures that the influence of action entropy on the reward function
modifies according to the degree of environmental uncertainty.

(2) SAC network

SAC employs an actor network to model the action policy (πφ) and a critic network to evaluate the
derived policy using a value function. In this study, the parameters of both the actor and critic networks
were updated through gradient-based backpropagation to optimize the operating policy and the Q-value
function. The state value functions in SAC were defined as

Vθ i (st+1) = Eat∼π [Qθ i (st+1 , at+1) − α ln πφ (at ∣st )] (12)

where Est+1∼ρπ [V (st+1)] represents the sum of expected values across all the states (st+1) along the ρπ
trajectory. The θi parameter was updated by minimizing the soft Bellman residual as

JQ (θi) = E(st ,at)∼D
1
2
(Qθ i (st , at) − (r(st , at) + γEst+1 τπ(st ,at)[Vθ i

(st+1)]))2] (13)

where D represents the replay buffer used to update the sample set, which generally stores tuples of four
elements (st , at , rt and a′t). The term Vθ (st+1)denotes the updated state value function of the critic network,
while θ represents the parameters of the target soft Q-function.

The policy parameters, φ, were updated using the Kullback–Leibler (KL) divergence as

Jπ (φ) = Est∼D

⎡⎢⎢⎢⎢⎢⎢⎣

DKL

⎡⎢⎢⎢⎢⎢⎢⎣

[πφ (●∣st)]
�����������

ex p( 1
α

Qθ (st●))

Zθ (st)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

(14)

where Zθ (st) denotes the distribution function used for normalization, while DKL [∣∣] represents the KL
divergence, which quantifies the distance between two distributions. The policy parameters, φ, can be learned
by minimizing this equation. Reparameterization was applied to the policy outputs to reduce variance in the
estimates, as follows:

Jπ(φ) = Est∼D , t∼N [α log (πφ ( fφ (εt , st) ∣ st)) − Qθ (st , fφ (εt , st))] (15)

where fφ (εt , st) represents a sample from the probability distribution of the agent’s action (at) and εt ∼
N(0, I) represents a noise term.

To ensure stable operation of the SAC algorithm after every critic network parameter adjustment, the
target critic network was subjected to a soft update, as follows:

θ i = δθi + (1 − δ)θ i (16)
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where δ denotes the hyperparameter for the soft update of the target network in the control system. The
specific algorithmic framework is illustrated in Fig. 4.
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Figure 4: An optimized scheduling framework based on an improved SAC algorithm

2.2.2 Design of CTDE-Based MASAC Network Model
The multi-agent training framework utilizes the CTDE framework to enhance efficacy. To ensure that

each agent remains stable during the training process, the critic network incorporates additional data from
the observations and actions of other agents. However, during execution, the actor network makes decisions
based solely on the agent’s private observations. The CTDE framework is illustrated in Fig. 5.

During the training process, the actions, states, and rewards of each agent are stored in a replay
buffer (D), which is utilized by the critic network to access observations and actions from other agents,
enabling neural network updates. Consequently, the experience tuples are expanded to encompass the
elements of all the agents: (St , Ar , Rt , S

′

t), where St = (s1,t , s2,t , ⋅ ⋅ ⋅ , sn ,t), An = (a1,t , a2,t , ⋅ ⋅ ⋅ , an ,t), Rt =
(r1,t , r2,t , ⋅ ⋅ ⋅ , rn ,t), and S

′

t = (s
′

1,t , s
′

2,t , ⋅ ⋅ ⋅ , s
′

n ,t).
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Figure 5: Training diagram for multi-agent RL

Within an environment, each agent, m (m ∈ [1, 2, ⋅ ⋅ ⋅ , n]), possesses an actor network πm ∈
{π1 , ⋅ ⋅ ⋅ , πn}, with its corresponding parameters denoted as φm ∈ {φ1 , ⋅ ⋅ ⋅ , φn}. The actor network param-
eters (φ) for agent m were determined according to the CTDE framework and SAC algorithm, as follows:

Jπm(φm) = Esm , t∼D ,m∼N [α log (πφm ( fφm (εt , sm ,t) ∣ sm ,t)) − Qθm (St , At)] (17)

Each agent has an independent actor-critic network, generating distinct actions (at) based on its unique
observed state (st). Unlike the actor network, the critic network is capable of accessing the states (St) and
actions (At) of all the agents from a shared experience replay buffer (D). This approach enables each agent
to adapt effectively to a multi-agent collaborative environment. The parameter update for the critic network,
denoted as θm , is formulated as

JQm (θm) = E(st ,at)∼D
1
2
(Qθm (St , At) − (rm(st , at) + γESt+1 τπ(St ,St)[Vθ(St+1)]))2] (18)

V (St+1) = Eat∼π [Qθ (St+1 , At+1) − α ln πφ (am ,t+1 ∣sm ,t+1 )] (19)

In the experience replay buffer (D), random sampling was used to obtain a fixed batch of sample pairs,
JQm (θm), for approximate calculation. For agent m, the observed value of the next state (sm ,t+1) was fed into
the target actor network (πφ), and the action probability distribution was sampled to determine the agent’s
next action (am ,t+1). This process ensures a more stable and consistent learning trajectory by utilizing both
the primary and target networks to decouple the action selection and value evaluation phases.

2.3 Multi-Timescale Scheduling Framework Based on Source-Load Uncertainty Intervals
In this study, we employed a multi-time-scale optimization strategy for DNs to manage the fluctuations

in source-load forecasting uncertainties across multiple timescales: day-ahead, intra-day, and real-time
stages. An enhanced MASAC algorithm was employed to centrally train agents across different timescales,
facilitating the development of an efficient DN optimization and control strategy. The training dataset
was constructed based on the historical data, incorporating renewable energy and load data into the
environmental model. The DN operational data served as the state input for the agents. The actions generated
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by the agents were transformed into control commands, and the rewards were calculated according to a
predefined reward function. A comprehensive overview of the scheduling framework is depicted in Fig. 6.

Multi-Agent Centralized Optimization

the Objective of Economic Optimization

The Electricity Market and Incentive Policies

24-Hour Scheduling Strategy for Distributed Micro Gas Turbines

24-Hour Distributed Energy Storage Output Data

24-Hour Flexible Load Dispatch Strategy

Distributed Wind and 

Solar Day-Ahead 

Forecast

Day-Ahead Load 

Forecasting Data
Characterization of Data 

within the Uncertainty 

Range of Daily Net Load

Day-Ahead Source-Load Dispatch Model

Day-Ahead Dispatch Strategy

Flexibility Capacity Constraints

Multi-Agent Distributed Optimization

Minimization of Regulation Costs

Intraday power output 

forecasting data for 

regional distributed wind 

and solar energy sources

Intraday Regional Load 

Forecasting Data Intraday Source-Load Dispatch Model

Intraday Flexibility Constraints

Updated 1-Hour Regional Distributed Micro Gas Turbine Dispatch Strategy

Updated 1-Hour Regional Distributed Energy Storage Output Data

Multi-Agent Distributed Optimization

Interconnection Power Fluctuation SmoothingGrid Power Fluctuation Data

Real-Time Source-Load Dispatch Model

 Intraday Regulation Strategy

 15-Minute Energy Storage Correction Strategy

Characterization of 

Intraday Regional Net 

Load Uncertainty 

Interval Data

Day-Ahead Economic Optimization Dispatch

Intraday Rolling Optimal Dispatch

 Real-Time Optimal Dispatch

 

Figure 6: Multi-timescale optimal scheduling framework

In the day-ahead stage, uncertainties primarily stem from deviations in medium- to long-term weather
forecasts and random load variations. Based on historical prediction error data, the p-box theory can
determine the potential ranges and probability distributions of prediction errors for PV power, wind power,
and load. Since day-ahead forecasts are generally updated once per day, their error ranges remain relatively
stable, encompassing uncertainties over an extended period. Consequently, day-ahead optimization can
provide 24-h generation schedules and reserve capacities; however, its inability to capture short-term
variations may lead to conservative and economically inefficient outcomes. Day-ahead optimization provides
the basis for intra-day and real-time optimizations, ensuring the reliability and economic efficiency of the
system over an extended period. The agent operates at a 1-h timescale, employing centralized optimization
to maximize economic efficiency in daily power system operations. The uncertainty intervals of source-
load forecasts are incorporated at this stage to generate 24-h dispatch strategies, including scheduling of
distributed MTs, optimizing energy storage systems (ESSs), regulating flexible loads, and maintaining a
degree of robustness.

In the intra-day stage, uncertainties primarily stem from short-term meteorological changes, such
as cloud movement and wind speed fluctuations, as well as random load variations. As forecasts are
updated every 15 min to 1 h at this stage, the p-box effectively captures short-term fluctuations to generate
more accurate error intervals and probability distributions, enhancing uncertainty descriptions for rolling
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optimization. This ensures that generation schedules and reserve capacities are dynamically modified to
optimize the output of controllable resources, like ESSs and MTs, based on uncertainties. Compared to
the day-ahead stage, the intra-day stage has higher data update frequency and more flexible optimization
strategies, which enhance the trade-off between economic efficiency and system reliability. Operating on
a 15-min timescale, this approach employs offline centralized training and online decentralized execution
for decision-making. It primarily revises day-ahead decisions based on intra-day power generation and
load variations, generating 1-h dispatch strategies for MTs and ESSs and ensuring regional robustness and
economic efficiency.

3 Multi-Timescale Optimal Control Model Based on the Uncertainty Intervals of Source-Load
Forecasting

The multi-timescale optimization and control model, incorporating the uncertainty intervals of source-
load forecasting, aims to reduce grid generation costs, enhance local renewable energy integration, and
mitigate source-load power fluctuations. Additionally, the model integrates flexibility requirements arising
from source-load forecasting uncertainties at each timescale to ensure an adequate capacity for flexibility.

3.1 Day-Ahead Economic Optimal Control Model
In the day-ahead stage, a centralized optimization strategy is utilized to achieve optimal DN scheduling

and maximize economic efficiency for the grid’s 24-h operation. This method ensures the grid’s safety and
economic efficiency by regulating MTs, distributed ESSs, and FLs on an hourly basis.

3.1.1 Objective Function of Day-Ahead Optimization
The latest economic optimization scheduling aims to reduce the daily DN operation costs by assuming

the complete integration of WT and PV power generation. The optimization objective is defined as

C1 =
T
∑
t=1

⎡⎢⎢⎢⎣
Cgrid(t) + Closs(t) + CESS(t) + CFL(t) + ∑

X∈ΩX

CX
punish(t)

⎤⎥⎥⎥⎦
(20)

where T represents the number of control periods within a regulation cycle and the terms Cgrid(t), Closs(t),
CESS(t), CFL(t), and CX

punish(t) represent DN generation cost, DN active power loss cost, ESS regulation
cost, FL regulation cost, and penalty cost associated with Project X constraints (ΩX), respectively, at time t.
The constraints (ΩX) for optimal power system scheduling include state of charge (SOC) constraints for
ESSs, power line constraints, and day-ahead flexibility capacity constraints for MTs and ESSs. The specific
formulas for each cost variable in Eq. (20) are as follows:

Cgrid(t) = λgrid ∣Pgrid(t)∣ + λMT ∣PMT(t)∣ (21)
Closs(t) = λlossPloss⋅grid(t) (22)

CESS(t) = λESS [ηchaPcha
ESS(t) + Pdis

ESS(t)
ηdis

] (23)

CFL(t) =
nFL

∑
i=1

λFL ∣Pori
FL, i(t) − PFL, i(t)∣ (24)

CX
punish (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωX
1 [Xmin − X (t)]

0
ωX

2 [X (t) − Xmax]

X (t) < Xmin
Xmin ≤ X (t) ≤ Xmax

X (t) > Xmax

(25)
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3.1.2 Constraints
The constraints for the optimization of power system scheduling intervals are DN branch power

flow constraints, power grid voltage magnitude constraints, MT output constraints, FL constraint, line
transmission power constraint, and flexibility capacity constraint.

(1) Branch power flow constraints in DNs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈M(i)

Pi j ,t − ∑
k∈N(i)

(Pki ,t − I2
ki ,t Rki) = Pinj

i ,t

∑
j∈M(i)

Qi j ,t − ∑
k∈N(i)

(Qki ,t − I2
ki ,t Xki) = Q inj

i ,t

V 2
j ,t = V 2

i ,t − 2 (Pi j ,t Ri j + Qi j ,t Xi j) + I2
i j ,t (R2

i j + X2
i j)

I2
i j ,tV 2

i ,t = P2
i j ,t + Q2

i j ,t

Pinj
i ,t = PPVi ,t + PW Ti ,t + PMTi ,t + Pcha

ESSi
(t) + Pd is

ESSi
(t) − PFL , i(t) − PLoad

i ,t

Q inj
i ,t = QPVi ,t + QW Ti ,t − QFL , i(t) − QLoad

i ,t

(26)

where Pi j ,t and Qi j ,t represent the active and reactive power at the injection node i, respectively.

(2) Voltage magnitude constraints in a power grid

V j ≤ Vj ,t ≤ V j , (27)

where V j and V j denote the upper and lower limits of the voltage magnitude at node j, respectively.

(3) MT output constraints

⎧⎪⎪⎨⎪⎪⎩

PMT ≤ PMTi ,t = PMTi ,t−1 + ΔPMTi ,t ≤ PMT

ΔPMT ≤ ΔPMTi ,t ≤ ΔPMT
(28)

Q MT ≤ QMTi ,t ≤ Q MT (29)

where ΔPMTi ,t and QMTi ,t denote the active power variation and reactive power output of MT i, respectively,
during the time period t.

(4) ESS charging/discharging power and capacity constraints

Pcha
ESS(t) ⋅ Pdis

ESS(t) = 0 (30)

⎧⎪⎪⎨⎪⎪⎩

Pcha
ESS(t) ≤ Pcha. max

ESS

Pdis
ESS(t) ≤ Pdis. max

ESS

(31)

At any time, the ESS can be in a charging or discharging state at a specified maximum power
capacity [31].

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SOC(t) = SOC(t − 1) + ηchaPcha
ESS(t)

SESS
+ Pdis

ESS(t)
ηdisSESS

SOCmaxmin

(32)
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(5) FL constraint

The user side consists of various types of FLs, including interruptible loads and transferable loads.
Interruptible loads can function as virtual power sources and can adopt control strategies similar to
those used for distributed energy resources. Contrastingly, shiftable loads represent a specialized form of
transferable loads, characterized by their ability to alter the timing of energy usage through price adjustments
or incentive measures without reducing the total demand load. In this study, we examined shiftable loads
to analyze FL regulation strategies in DNs. For this, we considered the invariance of the total load over the
control cycle as the principal constraint, expressed as

T
∑
t=0

PFL, i(t) =
T
∑
t=0

Pori
FL, i(t) (33)

Additionally, during each control period, the adjustable capacity of transferable loads was subject to
certain constraints, defined by upper and lower power limits.

Pmin
FL , i(t) ≤ PFL , i(t) ≤ Pmax

FL , i (t) (34)

(6) Line transmission power constraint

P2
i j ,t + Q2

i j ,t ≤ S2
i j (35)

(7) Flexibility capacity constraint

In the day-ahead stage, the scheduling strategy is adjusted using distributed MTs and ESSs. Therefore,
the reserve capacity during this phase is derived from the reserve capacities of MTs and ESSs, expressed as

Δ>PESSi ,R ,t = Pcha. max
ESS − PESSi (t) , (36)

Δ>PMTi ,R ,t = ΔPMT − ΔPMTi ,t (37)
Δ>PESSi ,R ,t + Δ>PMTi ,R ,t ≥ Δ>Pi ,R ,[t−1,t] (38)

where Δ>PESSi ,R ,t and Δ>PMTi ,R ,t represent the upward flexibility capacity of ESSs and MTs, respectively, in
region i during the time period t. Their sum must be equal to or greater than the required upward reserve
capacity.

Δ>PESSi ,R ,t = Pcha. max
ESS − PESSi(t) (39)

Δ>PMTi ,R ,t = ΔPMT − ΔPMTi ,t (40)
Δ>PESSi ,R ,t + Δ>PMTi ,R ,t ≥ Δ>PR ,[t−1,t] (41)

where ΔP̆ESSi ,R ,t and ΔP̆MTi ,R ,t denote the downward reserve capacity constraints for ESSs and MTs,
respectively, in region i during the time period t. The sum of these constraints must be less than or equal to
the downward reserve capacity.

3.1.3 Day-Ahead Scheduling Model
(1) State space

The state space (S) for the k-th agent within region k was constructed by selecting the active power
output of k MT units (PMT ,t ,k), forecasted PV output (PPV ,t ,k), forecasted WT output (PW T ,t ,k), forecasted



Energy Eng. 2025;122(6) 2431

load (Pl oad ,t), SOC at t − 1 (SOCk(t − 1)), and electricity purchase price from the distribution grid λgr id(t)
as the state variables, expressed as

S = {PMT ,t ,k , PPV ,t ,k , PW T ,t ,k , Pl oad ,t , λgr id(t), SOCk(t − 1)} (42)

(2) Action space

Since day-ahead regulation targets the ESSs, distributed generators, FLs, and PV and WT power system
inverters, its action space (A) is defined as follows:

Ahour = {PESS(t)∣t∈[1,T−1], PMT(t)∣t∈[1,T−1], PFL, i(t)∣i∈[1,nFL],t∈[1,T]} (43)

(3) Reward function

The SAC policy network aims to derive strategies that maximize the reward. Therefore, to minimize
the objective function, the reward values (R) were set as the negative of the original objective function, as
follows:

R1 = −C1 (44)

3.2 Intra-Day Optimization and Control Model
Active DNs are divided into several autonomous regions based on geographical conditions and regional

consumption patterns. Each autonomous region is equipped with a regional agent that issues dispatch
instructions to the controllable devices within its area. These agents utilize ultra-short-term forecasts of
renewable energy generation, FL, and device status within the region to optimize their operations [32].

The regional agents employ CTDE-based neural networks, wherein the network parameters for each
agent are obtained through centralized training, following which the trained agents are deployed for
distributed control. In the t-th scheduling interval, regional agent (k) employs a policy network to determine
a dispatch decision (ak ,t) based on the regional state (Sk ,t) and receive a regional reward (Rk ,t). Since intra-
day optimization involves adjustments based on day-ahead optimization, its scope of control is relatively
limited. During the day-ahead optimization process, a certain control margin is reserved within each
region to adequately address the challenges and fluctuations arising from intra-day variations in source-load
forecast data.

3.2.1 Objective Function of Intra-Day Optimization
The intra-day optimization strategy refines the day-ahead grid plan to mitigate challenges associated

with energy supply and renewable energy deficits, which arise from forecasting errors. By adjusting MTs
and ESSs, this strategy maintains the grid’s supply-demand equilibrium, enhances local renewable energy
integration, upholds the grid’s economic efficiency, and ensures sufficient real-time reserve capacity. Intra-
day optimization focuses on the economic adjustment target and flexibility capacity constraints during
intra-day operations.

The intra-day economic adjustment target primarily comprises the adjustment costs associated with
MTs and ESSs to ensure the long-term economic efficiency of grid operations.

C2(t) = ΔPMT(t) + ΔPESS(t) (45)

ΔPMT(t) = αMT(PMT(t) − Pd i f f
MT (t)) (46)

ΔPESS(t) = αESS(PESS(t) − Pd i f f
ESS (t)) (47)
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The intra-day flexibility capacity constraints primarily pertain to the reserve capacity of ESSs and ensure
that ESSs can flexibly mitigate fluctuations in WT and PV power during real-time optimization.

C3 (t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φX
1 [Xmin − X (t)]

0
φX

2 [X (t) − Xmax]

X (t) < Xmin
Xmin ≤ X (t) ≤ Xmax

X (t) > Xmax

(48)

3.2.2 Intra-Day Reserve Capacity Constraint
It is essential to regulate ESS devices during real-time optimization. The reserve capacity constraint of

ESS is solely dependent on its upper and lower capacity limits as

Δ>PESSR ,t ≥ Δ>PR ,[t−1,t] (49)
ΔP̆ESSR ,t ≤ ΔP̆R ,[t−1,t] (50)

3.2.3 Intra-Day Scheduling Model
(1) State space

Intra-day economic optimization primarily focuses on internal regional regulation. The state space (S)
for the k-th agent within region k was constructed by selecting the active power output of MTs (PMT ,t ,k),
forecasted PV output (PPV ,t ,k), predicted WT output (PW T ,t ,k), predicted regional FL demand (Pl oad ,t ,k),
and the SOC of ESS from the previous time stage (SOC(t − 1)k) as the state variables, as follows:

Sk ,t = {PMT ,t ,k , PPV ,t ,k , PW T ,t ,k , Pl oad ,t ,k , SOCk(t − 1)} (51)

(2) Action space

Since intra-day regulation targets the ESS and distributed generators, its action space (A) was defined
as follows:

ak ,t = {PESS ,k(t)∣t∈[1,T−1], PMT ,k(t)∣t∈[1,T−1]} (52)

(3) Reward function

The regional reward value serves as the multi-agent reward, with the reward for the k-th agent (R)
defined as

Rk ,t = −[λ2C2(t) + λ3C3(t)] (53)

3.3 Real-Time Optimization Scheduling Model
Real-time optimization aims to mitigate power fluctuations caused by wind and solar-distributed energy

resources and loads. This is achieved by integrating high-precision, ultra-short-term (5-min) forecast data
with source-load forecast errors, enabling effective real-time DN control.

3.3.1 Objective Function of Real-Time Optimization
The effectiveness of power fluctuation mitigation is assessed by evaluating the difference in power

deviation within the region before and after regulation.

C4(t) = λgr id ,t ∣ΔPgr id ,t ,k ∣ (54)
ΔPgr id ,t ,k = ΔPWT,t,k + ΔPPV ,t ,k + ΔPl oad ,t ,k (55)
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where ΔPgr id ,t ,k denotes the post-regulation regional power imbalance, which primarily arises from the
disparity between demand power and generation power. This imbalance is chiefly caused by fluctuations in
generation output and load demand.

3.3.2 Real-Time Scheduling Model
(1) State space

Real-time economic optimization primarily focuses on regional internal regulation. The state space (S)
for the k-th agent within region k was constructed by selecting PV output (PPV ,t ,k), WT output (PW T ,t ,k),
regional FL demand (Pneed ,t ,k), and the SOC of ESS from the preceding time interval (SOCk(t − 1)) as the
state variables, as follows:

Sk ,t = {PPV ,t ,k , PW T ,t ,k , Pneed ,t ,k , SOCk(t − 1)} (56)

(2) Action space

Since real-time regulation targets the ESS, its action space (A) is defined as follows:

ak ,t = {PES(t)∣t∈[1,T−1]} (57)

(3) Reward function

The multi-agent reward is based on the regional reward value, with the reward (R) for the k-th agent
defined as

Rk ,t = −C4(t) (58)

4 Experimental Analyses

4.1 Experimental Setup
In this study, we utilized MATLAB/SIMULINK to simulate a multi-timescale coordinated optimization

dispatch model for power systems, accounting for the uncertainty intervals in source-load forecasts. The
simulations were performed on a system equipped with an Intel(R) Core(TM) i7-10510U CPU. An improved
IEEE 33-bus expanded system (Fig. 7) was used to validate the model for active DNs set at 12.66 kV
reference voltage.
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Figure 7: Network topology of the improved IEEE 33-node simulation system
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The test system was divided into three autonomous regions, as depicted in Fig. 6. The PV units, WT
units, MTs, ESSs, and FLs were positioned at nodes {17, 32}, {19, 30}, {10, 24, 28}, {10, 24, 28}, and
{33}, respectively. Fig. 8 illustrates the 24-h source-load forecast data and Table 1 provides the operational
parameters of the equipment.
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Figure 8: 24-h source-load forecasting data

Table 1: Equipment operating parameters

Equipment Parameters Values

MT

PMT 300 kW
PMT 100 kW

ΔPMTi ,t 20 kW/h
λk 0.396 $/kW

BESS

Pcha
ES 15 kW

Pdis
ES −15 kW

ηself
dis /h−1 0.0005

SOCmax
ES 1.0

SOCmin
ES 0.2

ρ 0.322 $/kW⋅h
ηcha 1
ηdis 1

PV Total capacity 200 kW
WT Total capacity 100 kW
FL Total capacity 400 kW

The performance of DRL algorithms is dependent on network architecture and hyperparameters.
Network architecture influences the model’s representational capacity and policy approximation accuracy,
while hyperparameters significantly influence the model’s learning efficiency and convergence behavior.
Furthermore, key parameters like learning rate and discount factor play a crucial role in determining the
algorithm’s outcome. Table 2 provides detailed configurations of network architecture and hyperparameters.
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Table 2: Network architecture and hyperparameters of intelligent agents

Parameters Day-ahead Intra-day/Real-time

Actor Critic Critic Actor
Learning rate 0.001 0.002 0.001 0.002

Number of fully connected layers 3 3 3 3
Number of neurons per layer 512 512 32 64

Discount factor 0.99 0.99
Spatial discount factor 0.01 0.01

Replay buffer size 200,000 200,000
Temperature coefficient 0.005 0.005

Number of training episodes/iterations 3000 1000
Mini-batch size 128 256

4.2 Comparison of Algorithm Convergence and Decision-Making Time
The SAC algorithm is a highly effective DRL method that efficiently balances the exploration-

exploitation trade-off by maximizing both the expected reward and entropy of a policy, thus enhancing
learning efficiency and performance. In this study, we introduced an improved adaptive temperature
coefficient mechanism within the SAC framework, allowing dynamic temperature coefficient adjustments.
This modification allows the algorithm to better accommodate environmental uncertainties and task-specific
demands, leading to faster convergence and increased stability. We subsequently conducted a comparative
analysis of the standard and modified SAC algorithms under identical environmental conditions and
determined the rewards accumulated by the agent during the training process (Fig. 9).

0 200 400 600 800 1000

−400

−350

−300

−250

−200

−150

−100

−50

R
ew

ar
d

 V
a
lu

e

Epochs

improved SAC

SAC

Figure 9: Convergence analysis of the SAC algorithm
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The agents were trained for a total of 1000 episodes. As illustrated in Fig. 4, the modified SAC algorithm
achieved significantly high rewards within 100 episodes, while the standard SAC algorithm reached a similar
performance level after approximately 400 episodes. These results demonstrate the superior convergence and
learning speed of the modified SAC algorithm compared to the standard SAC algorithm. To further evaluate
the decision-making speed of the MASAC algorithm, we integrated the SAC, MASAC, and Particle Swarm
Optimization (PSO) algorithms into an intra-day optimization model. The results revealed that the MASAC
algorithm exhibited a faster decision-making time than the SAC algorithm and significantly outperformed
the PSO algorithm (Table 3).

Table 3: Comparative analysis of the decision-making times of scheduling algorithms

Algorithms Decision-making time (s)
SAC 7.45

MASAC 4.28
PSO 126.08

4.3 Analysis of Scheduling Outcomes
(1) Analysis of day-ahead scheduling outcomes

In the day-ahead stage, we optimized source-load-storage coordination based on the forecast data
(Fig. 10), yielding optimal output schedules for various flexibility resources. In this study, we adopted a
centralized scheduling approach for day-ahead dispatch.
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Figure 10: Graph of optimization results in the last 24 h

In the day-ahead scheduling model, full utilization of wind and solar resources was achieved through
the coordinated optimization of source, load, and storage. The proactive interaction of flexible resources
reduced the system’s overall operational costs during the intra-day stage. As seen in Fig. 11, the FLs that were
originally scheduled between 13:00 and 18:00 were redistributed to 8:00 to 13:00 after optimization, achieving
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peak shaving and load leveling. As observed in Fig. 12, the output of MTs and ESSs across different regions
showed minimal power fluctuations between 10:00 and 20:00, during the day-ahead stage. In Region A, the
close proximity to the main bus and heightened sensitivity to electricity prices resulted in a reduction in
power output between 2:00 and 4:00, followed by a subsequent increase from 4:00 to 6:00 (as illustrated
in Fig. 12a). Conversely, in Region B, the significant share of distributed renewable energy contributed to
a comparatively lower total output from MTs and ESSs (shown in Fig. 12b). This discrepancy can likely be
explained by the inherent uncertainties tied to renewable energy generation, which may have impacted the
overall system performance. However, both regions showed a rapid load increase from 4:00 to 6:00, leading
to high load demands, necessitating increased output from the MTs and ESSs (Fig. 12). Subsequently, the
total output decreased in response to increasing load uncertainty to preserve flexible capacity. ESS charging
was predominantly influenced by electricity prices, especially before 5:00 and after 20:00.
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Figure 11: Comparative analysis of load data before and after optimization
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Figure 12: Output profiles of MTs and ESSs across different regions

Fig. 13 illustrates the daily flexibility supply and demand of the system. As illustrated in Fig. 13, the
flexibility demand consistently exceeded the flexibility supply, with the demand increasing as it approaches
the midpoint, followed closely by supply. This may be attributed to the Gaussian distribution of PV, WT, and
FL forecast data. The central interval exhibited larger forecast fluctuations compared to the outer intervals.
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Additionally, since PV power generation was concentrated between 6:00 and 18:00, power fluctuations were
more pronounced during this period.
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Figure 13: Comparative analysis of flexibility capacity and demand profiles

(2) Analysis of intra-day scheduling outcomes

The intra-day optimization process builds upon the existing day-ahead scheduling strategy by adjusting
the operational plans for MTs and ESSs. This ensures the balance between supply and demand within the grid
while maximizing renewable energy utilization. Fig. 14 illustrates the variations in distributed MT output
between day-ahead and intra-day operations across different regions, highlighting the significant impact of
load fluctuations. The turbine output decreased between 9:00 to 13:00, corresponding with a notable decrease
in load demand relative to the day-ahead predictions. Conversely, during other periods, the load demand
exceeded the day-ahead forecasts, resulting in higher intra-day turbine output. Notably, Region 2, integrating
both PV and WT, exhibited greater output volatility compared to the other regions.
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Figure 14: Convergence analysis of the algorithm
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(3) Analysis of real-time scheduling outcomes

The real-time correction phase involves rapid resource re-optimization, focusing primarily on dis-
tributed ESSs. Real-time scheduling optimization relies on intra-day rolling schedules to minimize
adjustments and accommodate stochastic supply-demand fluctuations. Fig. 15 illustrates the regulation
outcomes of the ESS, showing significant discrepancies between the real-time and day-ahead outcomes,
which may be attributed to substantial variations between day-ahead and intra-day forecast data. The
real-time phase focuses on mitigating the underutilization of renewable energy caused by supply-demand
fluctuations by introducing minor but frequent adjustments to the ESS strategy.
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Figure 15: ESS scheduling strategy across multiple timescales

4.4 Scalability Experiments
To validate the scalability and adaptability of the proposed MASAC network model in larger DN

systems, we constructed a 97-node DN system based on the original 33-node system through topology
extension and parameter adjustment [33]. This expanded system retained the fundamental characteristics
of the original system while tripling its scale, providing a more challenging test environment for evaluating
algorithm performance. During the expansion process, we strictly adhered to the topological connection
rules and electrical parameter constraints of the DNs to ensure that the expanded system has rational
physical significance and engineering feasibility. Like the 33-node system, the expanded system utilized a
partition management strategy and consisted of three interconnected regions, exhibiting similar operational
parameters of distributed energy resources (including PV power, WT power, and MTs) and ESSs. This
design ensured the comparability of experiments, providing an ideal experimental platform for studying
the collaborative control capabilities of multi-agent systems in larger networks. The specific details of the
97-node DN system topology are illustrated in Fig. 16.

(1) Analysis of scheduling outcomes

A centralized optimization approach was employed to achieve optimal output schemes for various flex-
ible resources through coordinated optimization of sources, loads, and storage, maximizing the utilization
of wind and solar resources. Fig. 17a presents the data for each scheduling resource, and Fig. 17b illustrates
the load operation status before and after regulation. The algorithm redistributes some of the FLs, originally
concentrated between 13:00 and 18:00, to the 8:00 to 13:00 timeframe to achieve peak shaving and valley
filling. As seen in Fig. 17c, the system’s flexibility supply and demand fluctuate throughout the day, with the
supply consistently exceeding demand across all time periods. However, flexibility demand increased as it
approached midday, aligning more closely with flexibility supply.
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Figure 16: Schematic diagram of the 97-node DN system
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Figure 17: Day-ahead optimization outcomes

(2) MT output performance

Fig. 18 illustrates the variations in the output of distributed MTs during day-ahead and intra-day
dispatching. Fig. 18a and b, 18c and d, and 18e and f depicts the day-ahead scheduled output and intra-
day actual output curves for MTs in Regions 1, 2, and 3, respectively. Based on the day-ahead scheduling
outcomes, agents dynamically adjust MT output strategies in response to real-time load demands and
fluctuations in WT and PV power generation, ensuring efficient utilization of distributed energy resources.
Additionally, the algorithm demonstrates robust adaptability across regions of varying sizes. The results
indicate that the proposed multi-agent optimization algorithm applies to both small- and large-scale DN
systems, laying a foundation for its future application in more complex DN scenarios.
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Figure 18: MT scheduling outcomes

(3) Energy storage scheduling outcomes

Although real-time scheduling involves comparatively smaller adjustments, its higher regulation fre-
quency allows for rapid responses to system fluctuations and efficient integration of renewable energy
resources (Fig. 19). This regulatory characteristic was validated using the 97-node DN system, which
demonstrated that the proposed multi-agent optimization algorithm possessed excellent scalability and
adaptability. Our experimental results further demonstrate that the framework effectively regulates power
DNs with high renewable energy integration. Altogether our study revealed that the MASAC model displays
remarkable adaptability, robustness, and scalability in multi-agent environments, particularly in complex
power distribution systems with an increasing number of nodes and distributed energy resources. These
findings validate the model’s reliability and stability during scale expansion and provide theoretical support
and practical feasibility for its application in large-scale ESSs.
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Figure 19: Comparison of multi-timescale ESS scheduling strategies

4.5 Additional Experiments
(1) Robustness analysis

To comprehensively evaluate the robustness of the proposed multi-timescale optimization scheduling
framework, we assessed its performance under varying day-ahead and intra-day source-load forecasting
uncertainties. As shown in Tables 4 [34] and 5, this experiment employed identical base data to generate
low, medium, and high uncertainty scenarios, with adjusted forecast fluctuation thresholds for WT and PV
power generation and FL, corresponding to specific probabilistic distribution models. Our findings validate
the effectiveness and reliability of the model for real-world applications.

Table 4: Robustness analysis of prediction error interval width

Parameters Day-ahead Intra-day

Low Medium High Low Medium High
PV 10% 20% 30% 5% 10% 25%
WT 15% 25% 40% 10% 15% 20%
Load 10% 15% 20% 2% 5% 10%

Table 6 provides an overview of dispatch costs, utilization rates, and capacity/demand ratios under
various scenarios. These results reveal that the total system cost was significantly affected by day-ahead and
intra-day purchase costs. The costs decreased significantly with a decrease in uncertainty. Specifically, the
high uncertainty scenario incurred the highest costs, with total and day-ahead costs exceeding those of the
moderate scenario by 3240.2 USD and 3664.8 USD, respectively. Meanwhile, the low uncertainty scenario
offered further reductions of 1869.1 USD and 2427.1 USD in total and day-ahead costs, compared to the
moderate scenario.
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Table 5: Robustness analysis of prediction error interval width

Experiments Day-ahead Intra-day

Load PV WT Load PV WT
Experiment 1 high high high high high high
Experiment 2 medium high high medium medium medium
Experiment 3 low low low low low low

Table 6: Results of robustness analysis

Experiments Day-ahead
cost ($)

Total day-ahead and
intra-day cost ($)

Utilization rate Capacity/demand ratio

Experiment 1 38,234.5 40,232.5 93% 0.9
Experiment 2 34,569.7 36,992.3 100% 1.3
Experiment 3 32,142.6 35,123.2 100% 1.1

The high uncertainty scenario faced various challenges, such as increased external electricity purchases
and scheduling difficulties, which were attributed to insufficient flexibility of ESSs and MTs. This was
reflected in a lower capacity/demand ratio of 0.9, indicating underutilization of resources. In contrast, the
moderate uncertainty scenario achieved a 100% resource utilization rate and a 1.3 capacity/demand ratio,
suggesting a more balanced allocation of resources, resulting in significant cost savings and stability. Lastly,
the low uncertainty scenario showed further optimization of resource utilization and efficiency. However,
as low uncertainty conditions are less common in real-world settings, the moderate uncertainty strategy
was deemed to be more practical and robust for real-world applications. In conclusion, the proposed
multi-timescale optimization dispatch framework exhibited robust performance across varying levels of
uncertainty. While high uncertainty scenarios pose cost and flexibility challenges, moderate uncertainty
scenarios effectively maintain cost, resource utilization, and system stability, demonstrating high adaptability
and efficiency of the framework in managing source-load forecast uncertainties.

(2) Comparison of results

Considering the source-load uncertainty range, the proposed method can better calculate the flexibility
demand capacity, ensuring a stable power supply. To more effectively evaluate the significance of the
proposed method, three sets of multi-time-scale scheduling methods are used as control groups: Method 1
disregards the source-load uncertainty range and uses deterministic optimization; Method 2 employs robust
optimization to account for the worst-case scenario in the day-ahead optimization, while intra-day and real-
time adjustments are made using a rolling optimization approach [34]. Method 3 utilizes the Copula function
in the day-ahead stage to generate scenarios that describe the uncertainty in source-load prediction data,
with intra-day and real-time rolling adjustments [35]. Method 4 is the method proposed in this paper. During
the comparison, we calculated the grid cost, renewable energy absorption, and flexibility capacity for each
method, as shown in Table 7.
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Table 7: Comparison of optimization methods across different timescales

Scheduling
methods

Day-ahead
electricity costs
for the grid ($)

Cost after strategy
adjustments ($)

Renewable
energy

utilization

Capacity/demand ratio

Method 1 2285.49 40,541.2 87% 0.7
Method 2 2521.16 2772.12 100% 1.5
Method 3 250,497 2829.45 100% 1.4
Method 4 2406.97 2689.23 100% 1.3

The results show that Method 4 (that is, the method in this paper) has the best performance on the day
and day combined cost. Compared with Method 1, which has the highest cost, the cost is reduced by $364.89,
or about 11.95%; In terms of the combined cost of daily grid electricity, Method 4 led the way at $2406.97,
a decrease of $114.19 (4.53%) compared to Method 2 and $98 (3.91%) compared to Method 3. In terms of
the absorption of new energy, Methods 2, 3, and 4 all achieve a 100% absorption rate, while Method 1 is
only 87%, which shows that the method in this paper is more effective in using renewable energy. Especially
in terms of capacity requirements, Method 4 requires a smaller flexible demand capacity (1.3), 13.3% lower
than Method 2, while maintaining power system stability. Overall, the experimental results prove that the
proposed method can effectively reduce the comprehensive cost by about 12% under medium uncertainty
conditions, increase the energy absorption rate to 100%, and ensure a stable power supply with a low flexible
capacity of 1.3, showing significant application potential and practical value in multi-timescale scheduling.

5 Conclusions and Future Perspectives
This study proposes a multi-timescale DN optimization scheduling method that considers uncertainty

intervals, which is solved using an improved Soft Actor-Critic algorithm and a Multi-Agent SAC algorithm.
This approach effectively addresses the challenges posed by source-load prediction uncertainties. The main
contributions are as follows:

(1) Uncertainty Interval Optimization Method: By integrating uncertainty intervals of source-load pre-
dictions, this method resolves the flexibility requirements and capacity constraints in power grid
scheduling, significantly enhancing the system’s economic efficiency and renewable energy accommo-
dation capability.

(2) Improved SAC Algorithm: Through adaptive adjustment of the temperature coefficient, the explo-
ration capability of the agent is enhanced, making the training process more stable while reducing
policy fluctuations.

(3) Multi-Agent Real-Time Optimization: The multi-agent model based on the CTDE framework signif-
icantly reduces the computation time for intra-day and real-time strategy generation, ensuring the
real-time performance of scheduling strategies.

When applying the methodology presented in this paper to the optimization scheduling of real-world
DNs, we encounter a range of complex challenges. Firstly, the training of agents is highly dependent on a
substantial amount of authentic DN simulation data, which is often difficult to obtain due to confidentiality
and security requirements. Although our improved SAC algorithm partially mitigates the dependency
on a fixed DN framework, the need for high-quality training data remains a critical issue. To address
these challenges, future advancements must focus on the development of innovative data generation and
simulation techniques, as well as enhancing the algorithm’s adaptability under incomplete data conditions.
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Furthermore, interdisciplinary collaboration and the development of new technological tools will play a
crucial role in facilitating the practical application of these techniques within DN systems. These efforts will
ultimately contribute to improving the operational efficiency of power distribution systems and accelerating
the integration and application of renewable energy sources.
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Abbreviations
DNs Distribution networks
PV Photovoltaic
WT Wind turbine
MT Micro gas turbine
ESS Energy storage system
DRL Deep reinforcement learning
FL Flexible load
NL Net load
SAC Soft actor-critic
SOC State of charge

Indices
k Index of distributed generation units
t Index of dispatch periods
X Index of constraints
T The number of control periods within a regulation cycle

Parameters
γ The reward discount factor
δ The hyperparameter for the soft update of the target network in the control system
λgrid The unit electricity price
λMT Distributed generator electricity price
λloss Loss cost coefficient
λESS ESS regulation cost coefficient
λFL Flexible load regulation cost coefficient
ηcha The charging efficiency of the ESS
ηdis The discharging efficiency of the ESS
ηself

dis The self-discharge rate of the ESS
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SES The total capacity of the ESS
ηFL The total number of FLs
Xmin The lower bounds of the constraints for Project X
Xmax The upper bounds of the constraints for Project X
V j The minimum voltage allowed by the system
V j The maximum voltage allowed by the system
PMT The maximum and minimum thresholds for active power output
PMT The maximum and minimum thresholds for active power output
ΔPMT The maximum upward ramp rates for MT
ΔPMT The maximum downward ramp rates for MT
QMT The maximum reactive power output limits for MT
QMT The minimum reactive power output limits for MT
SOCmax The upper capacity limits of ESS
SOCmin The lower capacity limits of ESS
Pcha. max

ESS The maximum permissible charging and for BESS
Pdis. max

ESS The maximum permissible discharging power for BESS
ωX

i The penalty coefficient for project X
αMT The intraday adjusted output price for MT
αESS The intraday adjusted output price for ESS

Variables
eN ,t The discrepancy between the predicted values and the actual values
τ The random variable of probability box theory
λgrid The unit electricity price of time t
PPV ,t The forecast or actual output of a PV power station
PW T ,t The forecast or actual output of a WT power station
PL ,t The forecast or actual demand power of load
PN L ,t The NF forecast or actual net demand power
F̂N ,t(τ) The upper bound of the cumulative probability distribution function
F̆N ,t(τ) The lower bound of the cumulative probability distribution function
P̂N L ,t The upper boundaries of the flexibility demand range
P̆N L ,t The lower boundaries of the flexibility demand range
Δ>PN L ,t Upper bound of the flexibility demand range under NF
ΔP̆N L ,t Lower bound of the flexibility demand range under NF
Δ>PR ,t Upper bound of the grid flexibility capacity range
ΔP̆R ,t Lower bound of the grid flexibility capacity rang
αt The temperature coefficient at time t
αt The temperature coefficient after updating at time t
φ The parameters of the Actor network
θi The parameters of critic network i
D The replay buffer for updating the sample set
Pgrid(t) The exchange power between the distribution network and the upstream grid
PMT(t) The discharge power of MT
Ploss⋅grid(t) Active power losses in the distribution network
Pcha

ESS(t) Charging power of the energy storage
Pdis

ESS(t) Discharging power of the energy storage
Pinj

i ,t The active power injected into node i at time t
Q inj

i ,t The reactive power injected into node i at time t
Pori

FL, i(t) Original power of the i-th type of FL
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PFL, i(t) The power after regulation of FLs at time t
QMTi ,t The reactive power output of MT
ΔPMTi ,t The variation in MT output
ΔPESS(t) The variation in the ESS
SOC(t) ESS capacity at time t
Pd i f f

MT (t) The micro gas turbine adjusts its output based on the current control actions at time t
Pd i f f

ESS (t) The ESS adjusts its output according to the current control actions at time t
ΔPgr id ,t ,k The post-regulation regional power imbalance
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