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ABSTRACT: This paper presents a solution for energy storage system capacity configuration and renewable energy
integration in smart grids using a multi-disciplinary optimization method. The solution involves a hybrid prediction
framework based on an improved grey regression neural network (IGRNN), which combines grey prediction, an
improved BP neural network, and multiple linear regression with a dynamic weight allocation mechanism to enhance
prediction accuracy. Additionally, an improved cuckoo search (ICS) algorithm is designed to empower the neural
network model, incorporating a gamma distribution disturbance factor and adaptive inertia weight to balance global
exploration and local exploitation, achieving a 40% faster convergence rate. A multi-objective snake optimization
algorithm is also developed to optimize economic cost, grid stability, and energy utilization efficiency using energy
storage capacity as the decision variable. The experimental results, based on a 937-day load dataset from a chemical
park in Jiangsu Province, show that the IGRNN model has better prediction accuracy than traditional models, with
an RMSE of 11.1361, an MAE of 8.264, and an R2 of 96.90%. The optimized energy storage system stabilizes the daily
load curve at 800 kW, reduces the peak-valley difference by 62%, and decreases grid regulation pressure by 58.3%. This
research provides theoretical and practical support for energy storage planning in high renewable energy proportion
grids. Future work will focus on integrating weather data and dynamic optimization strategies under policy constraints
to improve system applicability in real-world scenarios.
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1 Introduction
The rapid development of science and technology, coupled with societal progress, has led to a significant

increase in global electricity demand. However, traditional thermal power generation remains a dominant
yet environmentally detrimental energy source. Meanwhile, challenges such as the COVID-19 pandemic
in 2019, evolving international political-economic dynamics, and domestic requirements for economic
transformation toward high-quality development further complicate energy planning. During China’s 14th
Five-Year Plan period, electricity consumption is projected to grow steadily despite these complexities [1].
In addition, electric cars have become increasingly popular in recent years. The grid connection of electric
vehicles increases the pressure on the power grid [2]. As can be seen, the growing burden on the power
system’s electrical output has led to a widening gap between supply and demand [3].

The energy storage system can be used for power peaking, avoiding the cost of waste caused by installing
generator sets to meet the peak load. The energy storage system can fully utilize the power at the trough of
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the bag to provide a short-time power supply in the face of unexpected situations, reducing the pressure of
grid operation [4]. Therefore, the excellent configuration of the capacity of the energy storage system is a
current issue that needs to be studied urgently.

The literature [5] proposed a multi-scenario cost optimization modeling approach to address energy
storage configuration challenges in Indonesia’s national grid for achieving the 100% renewable energy target.
By developing an integrated optimization framework encompassing power supply-demand dynamics, trans-
mission networks, renewable energy sources, and multi-configuration energy storage systems, it resolves
critical issues in balancing temporal variability and spatial distribution of renewable generation at scale. The
literature [6] proposed a two-stage optimization method that considers the application of demand response
and energy storage, and the combination of these two methods effectively reduces the impact of source
load bias. The study also achieves optimal scheduling by optimizing the purchase and sale price of energy.
The literature [7] proposed an optimal allocation method for energy storage systems based on economic
optimality. The method calculates the energy storage capacity configuration to maximize net present value
by analyzing the operation status of photovoltaic power plants and wind farms and using the time-by-time
data of solar and wind energy resources, the unit cost of the energy storage system, charging and discharging
efficiency, operation cost, electricity selling price and the number of years of operation of the energy storage
system as the boundary conditions, but if the electricity price subsidy is given with the wind farm supporting
the construction of energy storage system or with the participation of energy storage system in frequency
regulation. If issued following the feed-in tariff accounting of the energy storage system, it will be able to
improve the economics of the energy storage system. The literature [8] considered the depletion of global
fossil-fuel-based energy resources and the impending energy crisis, proposing energy management strategies
to optimize power production and consumption methods and solutions to enhance the reliability of electrical
power systems, addressing the limitations of previous approaches. At this stage, domestic and foreign
research on power load forecasting technology has been relatively mature, classical predicting methods have
the advantages of simple calculation and high reliability, but the predicting accuracy and the use of predicting
range are always limited [9]. As the power industry continues to develop, the demand for predicting accuracy
is increasing, which requires the improvement or use of entirely new predicting methods that significantly
improve predicting accuracy and extend the range of predicting applications with an appropriate increase in
computational effort [10].

The literature [11] proposed an improved sparrow search algorithm optimized BP neural network for
the short-term load predicting model, improved the foraging behavior of the finder in the sparrow search
algorithm from jumping to moving, optimized the initial weights and thresholds of the BP neural network,
and verified the accuracy of the predicting model with the electricity load data of a particular place, compared
with the standard sparrow search algorithm optimized BP neural network, the improved sparrow algorithm
optimized BP. The average error of the prediction model of the enhanced sparrow algorithm optimized BP
neural network was reduced by 4.80% compared with the standard sparrow search algorithm optimized
BP neural network. However, prediction accuracy is difficult to guarantee by using a single prediction
method, and there is still much room for improvement in prediction accuracy and stability. The literature [12]
proposed a stacking integration algorithm of CNN, BiLSTM, Attention Mechanism, and XGBoost to address
the limitations of traditional short-term load forecasting methods in capturing long-term dependencies and
deep-seated features in unknown datasets, thereby improving their generalization ability. The literature [13]
uses a combination of the traditional grey GM(1,1) model and a time series approach, first fitting the
non-linear growth trend of the electrical load with a grey model, then characterizing the seasonality and
periodicity in the load change with a time series model, the two algorithms combining to compensate for the
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shortcomings of the individual algorithms, and finally correcting the predict results using Markov chains.
The method requires only a small amount of data to predict electrical loads, but the accuracy is not high.

Although current electricity load prediction is relatively mature, various methods have drawbacks.
A combined predicting model that combines different models is needed to accurately predict complex
electricity load data.

In this paper, the application of power load forecasting technology to the capacity allocation of energy
storage power stations is discussed. We combine grey model forecasting, optimal BP neural network
forecasting, and multiple linear regression forecasting to establish a reliable and reasonable grey regression
neural network power load forecasting model. To further enhance the prediction accuracy, we introduce the
Informer model, which integrates with the grey regression neural network model using a stacking strategy,
forming a new combined prediction model. By obtaining load prediction curves, we are able to identify
electricity consumption peaks and valleys. The objective of this study is to reduce the difference between peak
and valley loads, alleviate pressure on the power grid, and enhance economic returns. The overall research
framework is illustrated in Fig. 1.

2 Methods

2.1 Electricity Load Predicting the Technology
This paper uses the grey predicting model, optimized BP neural network predicting model, and multiple

linear Regression predicting models to obtain optimal results by taking the strengths and weaknesses of
various predicting models and determining the weights of each single predicting model using the inverse
variance method.

2.1.1 Grey Prediction Model
The grey prediction model is simple, fast, and efficient. It does not require the sample data to satisfy the

normal distribution and independence assumptions, nor does it require a large amount of data and a linear
relationship between variables, suitable for various types of data. The modeling mechanism of grey models is
one of the leading research elements of grey systems theory [14]. The grey prediction model was constructed
in the following steps: firstly, the original data were generated cumulatively to weaken the randomness of
the data; secondly, a first-order differential equation model was established for the cumulatively generated
series; finally, the relevant parameters in the first-order differential equation model were estimated using the
least squares method to obtain the specific formula for the GM(1,1) prediction model.

The grey prediction model obtained by simplification is as follows:

xa (k + 1) = [xa (1) − û
â
] e−âk + û

â
(1)

In addition, to improve the prediction accuracy of the grey model, this paper transforms the original
series before cumulative generation. It changes the original series into a steadily growing series in an
exponential form whenever possible. The original series is assumed to be X = {x1 , x2, . . . , xn} and is then
modified by adding policy factors to the original series. The expression of the conversion sequence is Xz =
{x1z , x2z , . . . , xnz}, as shown in the equation:

xiz =
1

n − i + 1
(xi + xi+1 + . . . + xn) (2)
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2.1.2 ICS-BP Neural Network Prediction Model
Back Propagation (BP) Neural network is a machine learning method, which trains sample data sets to

build a model, enabling it to learn and adapt to data rules, can deal with complex problems with nonlinear
relationships and adapt to multiple data types.

The CS algorithm has the advantage of improving the local and global search of the algorithm, etc. To
enhance the dependence of the BP neural network on the initial weights and thresholds [15]. By applying
the CS algorithm to BP neural networks, the initial network weights and points are searched for before the
network is trained, and the optimal solution is then assigned to the web for training, which can effectively
avoid the problem of BP neural networks falling into local minima due to the initial weights and thresholds,
and improve the convergence speed of BP neural networks [16].

In order to improve the performance of the CS algorithm, this paper improves the CS algorithm and
proposes an improved cuckoo ICS optimization algorithm. In this paper, the fixed-value Pa in the algorithm
is improved by using a random discovery probability instead of a fixed discovery probability so that smaller
random probabilities and larger random probabilities occur randomly, thus balancing the algorithm’s ability
of global search and local development, improving the convergence speed of the algorithm, and increasing
the population diversity.

The improved formulae are shown as follows:

Pr = Pmin
a + (Pmax

a − Pmin
a ) × rand × τ (1, 2) × k (3)

Pr ∈ [0.15, 0.55] (4)

where Pr is the random probability, Pmin
a and Pmax

a are the maximum and minimum values of Pa respect,
rand is a random number in the range (0, 1), τ (1, 2) is a gamma-distributed random number obeying a
shape parameter of 1 and a scale parameter of 2, and k is used to control the degree of deviation between the
inertia weights and the expected value.

Adding inertia weights to the path and position update formula of cuckoo nest finding to balance
the relationship between global search and local search can make the algorithm have strong global search
capability in the early stage while having strong local exploitation capability in the later stage, improving the
convergence speed and merit finding accuracy of the algorithm:

Xi (t + 1) = ω (t)Xi (t) + a ⊕ Lev y (λ) , i = 1, 2, . . . , n (5)
ω (t) = rmax − η × (rmax − rmin) × logt

Tmax
−φ × β (6)

where t is the current number of iterations; Tmax is the maximum number of iterations; rmin and rmax are
the minimum and maximum values of the inertia weights, respectively; η is the log deviation factor; φ is the
inertia adjustment factor, and β is the random number of asymmetric distributions between (0, 1) generated
by the beta distribution.

2.1.3 Multiple Linear Regression Predicting
Multiple linear Regression predicting is a popular and intuitive among many predicting methods. The

key to using multiple linear regression predicting is to determine the multiple linear regression equation [17].
When the prediction object y is influenced by more than one factor x1 , x2, . . . , xm , if the correlation between
each influencing factor x j ( j = 1, 2, . . . , m) and y can be approximated linearly, then the prediction can be
analyzed by establishing a multiple linear regression model, the general form of the multiple linear regression
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model is shown in the following equation:

y0 = b0 + b1x1i + b2x2i + . . . + bm xmi + εi (i = 1, 2, . . . , n) (7)
εi = yi − ŷi (i = 1, 2, . . . , n) (8)

where b j ( j = 1, 2, . . . , m) denotes the model regression coefficient; εi denotes the random variable generated
by yi in addition to the effect of the independent variable x j ( j = 1, 2, . . . , m), called the random error.

2.1.4 Grey Regression Neural Network Prediction (GRNN)
This paper combines grey predicting with neural networks, making reasonable use of the ability of

artificial neural networks to approximate arbitrary functions and the ability of grey predicting methods
to predict the overall trend of electricity load changes. Regression predicting combines time series and
Regression predicting to enhance predicting accuracy. A combination of multiple load-predicting models
was used to obtain a prediction result with the lowest root mean square error.

This paper uses the inverse of the variance method to assign greater weights to the more accurate
prediction values. The weighted average value is the final value to improve the prediction results. Take the
three predicting methods selected in this paper as an example. The expressions for calculating the weight wi
are derived as follows:

wi =
e−1

i

∑m
i=1 e−1

i
(9)

f1, f2, f3 do the three predicting methods obtain the predicted values, respectively, w1, w2 and w3 are the
weighting coefficients, and w1 +w2 +w3 = 1. fc is the weighted average, e1, e2, e3 and ec denote the squared
prediction error corresponding to f1, f2, f3 and fc. The specific expression is shown in the following equation:

fc = w1 f1 +w2 f2 +w3 f3 (10)
ec = w1e1 +w2e2 +w3e3 (11)

ei = (y − ŷi)2 (12)

The grey regression neural network prediction process used in this paper is shown in Fig. 2.

2.1.5 Informer-Grey Regression Neural Network Prediction (IGRNN)
To further improve the prediction accuracy, this paper also introduces the Informer model, which

adopts a stacking strategy and fuses it with the grey regression neural network model to form a new
combined prediction model. The Informer model is a sequence prediction model based on the self-attention
mechanism [18]. It is mainly used in time series prediction and natural language processing tasks. The model
is an extension and improvement of the Transformer model, allowing it to capture long-distance dependency
information in the time series through the multi-layer self-attention mechanism and improve the prediction
accuracy [19].

The key feature of the Informer model is the introduction of a new attention mechanism called the
Globally Attentive Temporal Mechanism (GATM), which uses the Globally Attentive Temporal LSTM [20].
Unlike the traditional self-attention mechanism, the Globally Attentive Temporal LSTM computes the
attention of the entire historical sequence at each time step, thus capturing the global dependencies in the



Energy Eng. 2025;122(5) 2083

sequence more effectively [21]. Additionally, the Informer model incorporates a structure of Long Short-
Term Memories (LSTMs) to extract long-term and short-term patterns in the sequence data. By utilizing
both global attention and LSTMs in the model, the Informer model effectively models the multi-scale and
multi-granularity features of time series data [22].
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Figure 2: Flow chart of the technical route for electricity load predicting

The stacking strategy utilizes a meta-machine learning model to combine different base learning models,
aiming to enhance the overall accuracy of generalization [23]. The strategy involves combining multiple basic
predictive models and learning their respective predictions to generate a final prediction. This is achieved
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by using a meta-model, often a simple linear model, to integrate these predictions [24]. By combining the
strengths of different models, the stacking strategy enhances prediction accuracy, overcomes the limitations
of individual models, and improves the generalization ability of the overall model [25].

2.2 Research on the Capacity Allocation of Photovoltaic Energy Storage Plants
In this paper, we find the peak and trough periods of electricity consumption through the prediction

results, cut the mountains and fill the tracks through the power load curve of the PV storage power plant,
and construct a capacity allocation model according to the effect of peak and trough cutting, the cost of the
storage power plant and the failure rate of the storage battery, and use the multi-objective snake optimization
algorithm to solve the model to get the optimal capacity allocation method, the capacity allocation method
of the storage power plant is shown in Fig. 3.
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Figure 3: Capacity allocation method diagram for energy storage plants

2.2.1 Modelling the Cost of Energy Storage Plants
The investment in energy storage plants and the extended operating period require consideration of

the necessary costs for operation and maintenance, end-of-life recycling, etc., throughout the plant’s life
cycle [26]. They established a cost model for energy storage plants and optimized the allocation of storage
plants to maximize annual net returns.

(1) Energy storage investment costs: the cost of energy storage is mainly used to purchase batteries and
other equipment at the beginning of the project and requires a one-time investment in start-up capital,
mainly for the purchase of battery capacity and battery power equipment required for energy storage
power plants [27]. The formula for calculating the average annual investment cost of energy storage
can be expressed as:

C1 = α (r, Y) (CP × Pe + Ce × Ee) (13)

α (r, Y) = r (1 + r)Y

(1 + r)Y − 1
(14)

where CP and Ce are the cost per unit of power and capacity of the energy storage plant, respectively,
Pe and Ee are the power and ability of the energy storage plant, respectively, Y is the operational life
of the energy storage, and r is the base discount rate. α (r, Y) It is the equal annual value of the capital
regression coefficient and n is the entire life cycle of the investment project.
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(2) Operation and maintenance costs, in the whole life planning years of the investment of energy storage
power plant, operation, and maintenance costs, are the costs invested in maintaining the safe and
stable operation of the energy storage power plant during the life years, which generally include the
costs of overhaul, maintenance, installation, labor, wear and tear and maintenance of energy storage
equipment, etc. The specific costs are related to the power size and capacity of the energy storage power
plant. The calculation formula is as follows:

C2 = Ck × Pe + Cv × Ee (15)

where Ck and Cv are the unit price of operation and maintenance per unit of power and capacity of
the energy storage plant, respectively, Pe and Ee are the power size and breadth of the energy storage
plant, respectively.

(3) Battery end-of-life cost refers to the cost of the harmless disposal of lithium iron phosphate batteries
after the loss of lithium iron phosphate batteries to a limited value during the whole life cycle of the
energy storage plant. The calculation formula is shown below:

C3 = β (r, Y)EcPk (16)

β (r, Y) = (1 + r)−Y (17)

where Pk is the cost per unit capacity of lithium battery at end-of-life, β (r, Y) is the capital discount
factor, and Y is the energy storage’s operational life; is the battery capacity size.

(4) Auxiliary equipment costs include the cost of purchasing cables, communication and networking
control equipment, servers and other equipment, as well as the cost of purchasing lithium battery
capacity, power components and inverter equipment for the energy storage plant [28]. The calculation
formula is shown below:

C4 = α (r, Y)Cz Ee (18)

where Cz represents the auxiliary cost per unit of lithium battery capacity.
Total Cost of Ownership Model:

C =
n
∑
i=1

Ci (19)

2.2.2 Modelling the Failure Rate of Energy Storage Unit Batteries
Failure of energy storage can severely affect the capacity allocation of the storage device. If an energy

storage device fails, greater storage capacity may be required to cope with unexpected situations or more
extended periods of power supply. An energy storage failure may result in the energy storage station being
unable to charge and discharge as planned, leading to an unstable energy supply. Additional energy storage
capacity may be required to compensate for this instability to ensure a reliable supply. Energy storage failures
may require higher maintenance and repair costs. If the capacity of the energy storage device is not configured
correctly, it may result in increased time and resources required for maintenance and repair.

Battery failure rate refers to the ratio of failed cells to the total number of individual cells in a lithium
iron phosphate energy storage cell during the evaluation period [29]. The calculation formula is as follows:

FR = ILB
LB

(20)
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where FR is the rate of a cell failure, ILB is the number of cells that failed during the evaluation period, and
LB is the total number of cells in the electric storage unit.

2.2.3 Modelling the Effects of Peak Shaving and Valley Filling
Battery storage power stations are used for peak and valley reduction so that they can be charged at low

load times and discharged at peak load times, which not only effectively reduces the peak-to-valley difference
between day and night, smoothes the load, relieves the peak load on the transmission and distribution line
expansion requirements, but also allows for direct profits from “low storage and high generation” through
the time-sharing tariff system [30]. Therefore, the capacity of energy storage plants can be configured by their
peak-shaving effect on the load curve.

This paper constructs a model of the effect of peak shaving as shown below:

S = λ1
Pmax − Pmin

Pmax
× ω + λ2



��� 1

n

n
∑
i=1
(Pi − P)2 (21)

where S is an evaluation indicator reflecting the effect of peak shaving, Pmax and Pmin are the peak and trough
values of the load, respectively, Pi denotes the load value of the predicted data at the moment i, P denotes
the average value of the predicted load data, ω is the balance parameter, and λ1, λ2 are the weighting factors
satisfying λ1 + λ2 = 1.

2.3 Multi-Objective Optimization Algorithms
The Multi-Objective Snake Optimization (MOSO) algorithm is a multi-objective optimization approach

extended from the single-objective Snake Optimization (SO) method. It draws inspiration from the
behavioral patterns of snakes in natural environments. The algorithm mimics snakes’ responses to
ambient temperature variations and their food-seeking patterns to achieve global optimization in multi-
objective problems.

This paper uses the multi-objective snake optimization algorithm MOSO to solve the capacity allocation
model, incorporating the idea of multi-objective optimization into the snake optimization algorithm [31].

The mathematical expression for the multi-objective optimization algorithm is shown below:

min/max y = f (x) = ( f1 (x) , f2 (x) , ⋅ ⋅ ⋅ , fM (x)) (22)

st.{ x = (x1 , x2, ⋅ ⋅ ⋅ , xD) ∈ X
y = (y1 , y2, ⋅ ⋅ ⋅ , yM) ∈ Y (23)

where x denotes the decision vector, X denotes the decision space, y denotes the target vector, Y denotes the
target space, D denotes the decision variable and M denotes the target quantity.

The technical route of the capacity configuration of the energy storage power station proposed in this
paper is shown in Fig. 4.
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3 Analysis of Experimental Results
Fig. 5 shows the overall idea of this paper. In this paper, the power load data of a chemical park in the

Jiangsu region for half a year is processed and analyzed. The chemical park has a maximum power load of
more than 860 kW in six months, while the minimum power load is just under 650 kW, which will cause
more significant pressure on the power grid. A suitable power load prediction model is established. The
results of the power load prediction are used as the basis for the capacity configuration of the photovoltaic
energy storage plant. The prediction curve is shaved to fill the valley, and the difference between the peak and
the valley is reduced. The power load of the chemical park is controlled at about 800 kW, which improves
the energy utilization rate and reduces the pressure of power grid operation.
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Figure 5: Block diagram of the overall research idea

3.1 Data Preprocessing
The dataset for this paper is based on daily power load data from an industrial park in Jiangsu Province.

After removing outliers, there are 937 power load data points in total. The dataset is divided into training
and testing sets in a 3:7 ratio. The model’s initial weights are set within the interval [−1, 1], with five hidden
layers. A metaheuristic algorithm is employed for 100 iterations to optimize the model’s hyperparameters.
The error threshold is set to 1 × 10−6, and the learning rate is 0.01.

For visualization, the model is called M1, M2, M3, etc., as shown in Table 1.
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Table 1: Code name of each model

Name Models
M1 LSTM
M2 BiLSTM
M3 CNN
M4 BP
M5 CS-BP
M6 GWO-BP
M7 GA-BP
M8 ICS-BP
M9 GRNN
M10 IGRNN

3.2 Electricity Load Prediction Results
This paper uses root mean square error (RMSE), mean absolute error (MAE), and the coefficient of

determination (R2) to comprehensively evaluate the prediction model’s performance. The formulas are as
follows:

RMSE =


��� 1

n

n
∑
i=1
( ŷi − yi)2 (24)

MAE = 1
n

n
∑
i=1
∣ ŷi − yi ∣ (25)

R2 = 1 − ∑
n
i=1 ( ŷi − yi)2

∑n
i=1 (yi − yi)

2 (26)

where ŷi is the predicted value of the electrical load on day one, yi is the actual value of the electrical load
on day one, yi is the average value of the electrical load, and n is the array amount of the test set.

The time series forecasting models have a standard approach of collecting historical data for predicting
load [32]. In this study, the performance of several models for electricity load forecasting is compared,
including LSTM, BiLSTM, CNN, and BP neural networks. The prediction results are shown in Fig. 6.

Table 2 shows the comparison of the prediction error index of the proposed model and the control
group model, and Fig. 7 shows the visualization of the table. The experimental results indicate that the BP
neural network achieves the best performance with an RMSE of 11.7222, an R2 of 96.56%, and an MAE of
8.8685. Subsequently, the BP neural network is optimized using GA, GWO and CS algorithms. Among these
optimization methods, the CS algorithm stands out and significantly improves the model’s performance,
resulting in an RMSE of 11.5243, an R2 of 96.68%, and an MAE of 8.6829 for the CS-BP model. Further
improvements are made by introducing the ICS algorithm, which enhances the CS algorithm and leads to
an RMSE of 11.5119, an R2 of 96.69%, and an MAE of 8.6951 for the ICS-BP model. Finally, the Informer-
grey regression neural network model is introduced, achieving an RMSE of 11.1361, an R2 of 96.90%, and an
MAE of 8.264, further validating the effectiveness of the proposed model. These results demonstrate that the
proposed model has high accuracy and stability in electricity load forecasting and can provide a reliable basis
for capacity configuration of energy storage systems in smart grids.
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Figure 6: Prediction results of each model. (a) Prediction results of the LSTM model; (b) Prediction results of the
BiLSTM model; (c) Prediction results of the CNN model; (d) Prediction results of the BP model; (e) Prediction
results of the GA-BP model; (f) Prediction results of the GWO-BP model; (g) Prediction results of the CS-BP model;
(h) Prediction results of the ICS-BP model; (i) Prediction results of the GRNN model; (j) Prediction results of the
IGRNN model
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Table 2: Comparison of error indicators for each model

Models RMSE MAE R2

M1 19.7766 17.2282 90.25%
M2 22.1262 16.6239 87.80%
M3 18.7357 13.0902 91.28%
M4 11.7222 8.8685 96.56%
M5 11.5243 8.6829 96.68%
M6 12.3839 9.6624 96.16%
M7 12.2127 9.1693 96.27%
M8 11.5119 8.6951 96.69%
M9 11.3962 8.5730 96.75%
M10 11.1361 8.2640 96.90%

(a) (b) (c)

Figure 7: Comparison table of each index. (a) Comparison table of RMSE; (b) Comparison table of R2; (c) Comparison
table of MAE

To evaluate the robustness of our methodology across diverse contexts, we conducted additional exper-
iments on two distinct datasets: residential load data from a Shanghai community (2023) with distinct daily
patterns, and urban grid data from a Guangdong mixed-use grid (2023) with high renewable penetration.

As shown in Table 3, the comparative analysis of three scenario datasets reveals the significant
advantages of the IGRNN model. In three typical application scenarios—Jiangsu Chemical Park, Shanghai
Residential Area, and Guangdong Urban Grid—the IGRNN achieves RMSE values of 11.1361, 12.3145, and
13.0567, respectively. Compared to the ICS-BP model, it reduces errors by 3.3%, 16.9%, and 16.7%, while
achieving error reductions of 2.3%, 12.4%, and 12.9% compared to the GRNN model. These results demon-
strate that the model effectively enhances prediction accuracy and scenario generalization performance.

Table 3: RMSE values of each model

Scenario ICS-BP GRNN IGRNN
Jiangsu chemical park 11.5119 11.3962 11.1361

Shanghai residential area 14.8237 14.0528 12.3145
Guangdong urban grid 15.6789 14.9856 13.0567
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3.3 Capacity Allocation Results for Energy Storage Plants
As shown in Fig. 8, the capacity allocation model constructed in this paper was used to experiment with

more than 1000 historical data from a chemical park in the Jiangsu region, and the effect of peak shaving was
apparent, with the load data fluctuating around 800 kW every day, which showed that the power load curve
rose rapidly from 840.625 to 1169.5125 kW between the 410th and 478th days; and then fell from 1169.5125 to
879.675 kW between the 478th and Such a drastic change in load has increased the burden on the grid to a
large extent. By optimizing the configuration of the storage plant to participate in peak regulation, the bag
is kept between 752.775 and 898.7125 kW from day 400 to day 500, with the difference between peak and
valley reduced from 321.2125 to 145.9875 kW, which has a significant effect on the load curve and effectively
reduces the pressure on the grid.
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Figure 8: Graph showing the effect of peak shaving on the total load curve

As shown in Fig. 9, the peak value of the original load curve is reduced from 876.3625 to 804.4632 kW,
the valley value is increased from 626.95 to 667.45 kW, the peak-to-valley difference is reduced from 249.4125
to 137.0132 kW, and the variance of the load predict curve is reduced from 4128.952 to 923.103 (kW)2, with a
significant reduction in friction, indicating that There was a substantial reduction in the conflict of the curve,
indicating a reduction in the steepness of the curve; between days 71 and 138 and days 200 and 265, there
was a significant reduction in the peak-to-valley effect. Between days 71 and 138, the peak load valley value
increased from 629.225 to 725.5125 kW, and the peak-valley difference decreased from 150.023 to 100.027 kW;
between days 200 and 265, the peak load value decreased from 876.3621 to 804.3625 kW, and the peak-valley
difference decreased from 249.4136 to 89.673 kW, significantly reducing This reduces the pressure on the grid
and effectively improves energy efficiency. Fig. 10 shows the effect of peak shaving on the load prediction
curve. After the energy storage station participates in peak regulation, the peak value of the original load
curve decreases from 876.3625 to 804.4632 kW, and the valley value increases from 626.95 to 667.45 kW. The
peak-valley difference decreases from 249.4125 to 137.0132 kW, and the variance of the load forecasting curve
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decreases from 4128.952 to 923.103 (kW)2, indicating a reduction in the steepness of the curve. The peak—
shaving and valley—filling effects are significant between day 71 and day 138 and between day 200 and day
265. Between day 71 and day 138, the load valley increases from 629.225 to 725.5125 kW, reducing the peak—
valley difference from 150.023 to 100.027 kW. Between day 200 and day 265, the load peak decreases from
876.3621 to 804.3625 kW, and the peak-valley difference reduces from 249.4136 to 89.673 kW, significantly
alleviating grid operation pressure and improving energy utilization efficiency.

0 50 100 150 200 250 300

600

650

700

750

800

850

900

)
w

K(
da

ol
yticirtcel

E

Time (Days)

Load Forecast Curve

Load curve after optimized configuration

Figure 9: Graph showing the effect of peak shaving on the load-predicting curve

3.4 Economic Assessment
The cost-effective solution in any domain is a considerable factor [33]. As is shown in Fig. 10, through

the cumulative cost and cumulative revenue comparison can be seen, this paper’s photovoltaic energy storage
power plant construction cost is about 2.45 million yuan, the annual maintenance cost of 1–3 million yuan,
the yearly profit varies between 120,000–250,000 yuan, from the cumulative cost and cumulative revenue
difference can be seen, energy storage power plant operation for about 15 years, the incremental revenue can
exceed the accumulative cost.
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Figure 10: Cumulative costs vs. benefits

4 Conclusion
This paper proposes a capacity allocation method for energy storage plants based on power load

forecasting technology, combining the grey predicting method with the neural network, making reasonable
use of the ability of the BP neural network to approximate arbitrary functions and the ability of grey
predicting method better to predict the general trend of power load changes. At the same time, the BP neural
network requires multiple samples to train the neural network, while the grey predicting method can use
fewer samples for modelling and predicting. The two can complement each other’s strengths and weaknesses.
The integration of multiple linear regression prediction on the above basis, combining time series prediction
with regression prediction, further reduces the prediction error, effectively improves prediction accuracy,
and provides a reliable basis for the capacity allocation of energy storage plants.

The experiments show that the Informer-grey regression neural network model proposed in this
paper achieves achieving an RMSE of 11.1361, an R2 of 96.90%, and an MAE of 8.264. Compared to
the benchmark models, it has the smallest RMSE and MAE, and the R2 closest to 1, indicating the best
prediction performance.

In this paper, the capacity allocation method of energy storage power station is used to construct a
capacity allocation model of energy storage power station by studying the resulting curve of power load
prediction, and the multi-objective snake optimization algorithm is used to solve the model and obtain the
optimal capacity allocation of energy storage power station. After the power station participates in peak
regulation, the effect of peak shaving and valley filling is significant, and the cost is relatively low. While
meeting the regular operation of the chemical park relieves the pressure of grid operation and improves the
economic return.
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While our experiments primarily focused on a chemical park, the additional validations on residential
and urban grids confirm the model’s applicability to diverse scenarios. Future work will explore integration
with real-time weather forecasts and policy-driven constraints to further enhance practical relevance.
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Symbol Description
This paper summarizes the symbols and definitions used in the text, as shown in table below.

Symbol Definition
CP Cost per unit of power for energy storage plants
Ce Energy storage plant cost per unit of electricity capacity
Pe Power of energy storage plant
Ee Capacity of energy storage plant
Y The operational life of energy storage plants energy storage
r Benchmark discount rate
α (r, Y) The equal annual value of funds regression coefficient
Ck Unit price per unit of power maintenance for energy storage plants
Cv The unit price of maintenance per unit capacity of energy storage plants
Pk Lithium battery end-of-life costs
β (r, Y) A discount factor of funds
Cz Lithium battery capacity-assisted cost
FR Battery failure rate
ILB Number of failed battery cells
LB Total number of battery cells for electric storage units
S Indicators for evaluating the effectiveness of peak shaving
Pmax Peak load
Pmin Valley of the load
Pi Predicted data load value at the moment i
P Average of predicted load data
ω Balance parameters
ŷ i Electricity load forecast for the day i
yi Actual value of the electrical load on the day i
yi Electricity load average
Ec Size of the battery capacity
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