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ABSTRACT: The park-level integrated energy system (PIES) is essential for achieving carbon neutrality by managing
multi-energy supply and demand while enhancing renewable energy integration. However, current carbon trading
mechanisms lack sufficient incentives for emission reductions, and traditional optimization algorithms often face
challenges with convergence and local optima in complex PIES scheduling. To address these issues, this paper
introduces a low-carbon dispatch strategy that combines a reward-penalty tiered carbon trading model with P2G-CCS
integration, hydrogen utilization, and the Secretary Bird Optimization Algorithm (SBOA). Key innovations include:
(1) A dynamic reward-penalty carbon trading mechanism with coefficients (μ = 0.2, λ = 0.15), which reduces carbon
trading costs by 47.2% (from $694.06 to $366.32) compared to traditional tiered models, incentivizing voluntary
emission reductions. (2) The integration of P2G-CCS coupling, which lowers natural gas consumption by 41.9% (from
$4117.20 to $2389.23) and enhances CO2 recycling efficiency, addressing the limitations of standalone P2G or CCS
technologies. (3) The SBOA algorithm, which outperforms traditional methods (e.g., PSO, GWO) in convergence speed
and global search capability, avoiding local optima and achieving 24.39% faster convergence on CEC2005 benchmark
functions. (4) A four-energy PIES framework incorporating electricity, heat, gas, and hydrogen, where hydrogen fuel
cells and CHP systems improve demand response flexibility, reducing gas-related emissions by 42.1% and generating
$13.14 in demand response revenue. Case studies across five scenarios demonstrate the strategy’s effectiveness: total
operational costs decrease by 14.7% (from $7354.64 to $6272.59), carbon emissions drop by 49.9% (from 5294.94 to
2653.39 kg), and renewable energy utilization increases by 24.39% (from 4.82% to 8.17%). These results affirm the model’s
ability to reconcile economic and environmental goals, providing a scalable approach for low-carbon transitions in
industrial parks.

KEYWORDS: Park-level integrated energy system; P2G-CCS coupling; comprehensive utilization of hydrogen; reward-
penalty tiered carbon trading mechanism; secretary bird optimization algorithm

1 Introduction
The Park-level Integrated Energy System (PIES) plays a crucial role in carbon emissions resulting

from energy consumption. It has the potential to improve energy efficiency, enhance supply reliability,
and facilitate the advancement of smart grid technologies. As the depletion of global fossil energy sources
looms and greenhouse gas emissions escalate, China’s ambitions for “carbon peak” and “carbon neutrality”
have gained international focus. In light of the dual carbon policy and growing social and environmental
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accountability, it is essential to conduct comprehensive research on operational improvement strategies for
PIES in China. Consequently, the pursuit of low-carbon economic operations within PIES has emerged as a
significant area of inquiry. Additionally, PIES incorporates various energy sources, catering to a wide range
of user demands. Its capacity to effectively integrate and manage these different energy sources is vital for
ensuring stable energy supply and balancing generation with consumption. Thus, collaborative studies on
the low-carbon, cost-effective, and stable functioning of PIES are critically important.

Pioneering research on electricity-carbon nexus integration emerges in Reference [1], which establishes
a foundational scheduling framework incorporating carbon emission trading mechanisms into multi-energy
systems. This work introduces an interval-based tiered carbon pricing model that synergizes emission
trading costs with external energy expenditures, formulating a tri-vector (electricity-heat-gas) low-carbon
economic optimization paradigm. Reference [2] advances this paradigm through stochastic multi-objective
optimization addressing renewable generation and load uncertainties, demonstrating through comparative
analysis that adaptive carbon market participation achieves 22%–28% greater emission reductions than
conventional approaches when implementing regionally calibrated pricing-quota configurations. Techno-
logical innovation pathways are explored in subsequent studies: Reference [3] demonstrates demand-flexible
scheduling integrating P2G conversion with carbon market interactions, revealing 15%–20% simultaneous
reductions in energy intensity and emissions through techno-economic simulations. Reference [4] extends
system boundaries through a hydrogen-enabled bi-level planning model addressing temporal investment
sequencing and carbon market dynamics, thereby establishing hydrogen-energy nexus optimization as crit-
ical infrastructure for cross-vector energy transitions. Collaborative system architectures receive attention
in Reference [5], which develops a privacy-preserving distributed scheduling framework using cooperative
game-theoretic energy sharing mechanisms, resolving the trilemma of resource optimization (35%–40%
efficiency gains), data confidentiality, and equitable benefit allocation (Nash equilibrium solutions). Refer-
ence [6] implements advanced uncertainty management through hybrid PV/T-hydrogen systems coupled
with enhanced carbon trading strategies, employing modified K-means clustering for scenario reduction
that achieves 92% probability coverage with 60% fewer scenarios. System integration reaches new complexity
in Reference [7]’s tri-level optimization model coordinating green hydrogen stations, fuel cell fleets, and
dual-network (power/gas) operations, validated through multi-criteria analysis showing 18% cost reduction
and 99.2% reliability metrics. These cumulative advancements establish three critical research trajectories:
1) dynamic carbon market coupling mechanisms, 2) cross-vector hydrogen integration strategies, and 3)
distributed optimization frameworks for multi-stakeholder systems—each addressing fundamental chal-
lenges in renewable penetration (targeting 75%–85%) and decarbonization pathways (45%–55% reduction
targets). Reference [8] delineates an integrative framework for synchronizing renewable energy deployment
with carbon emission management in PIES, enabling optimized resource utilization through stochastic
modeling of photovoltaic and aeolian generation uncertainties. Subsequent work by Reference [9] formulates
a tiered carbon trading-embedded scheduling paradigm that demonstrates operational efficacy in balancing
economic performance with emission reduction targets, though its oversight of wind-solar complemen-
tarity warrants critical examination. The transactional dimension of PIES operations receives attention in
Reference [10], which pioneers a carbon-constrained energy exchange mechanism. This protocol facilitates
industrial surplus energy spot markets and strategic storage deployment, achieving documented reductions
in both carbon footprints and economic losses across case implementations. Extending this line of inquiry,
Reference [11] incorporates lifecycle emission accounting into its tiered trading architecture, revealing
through techno-economic analysis that equipment-specific modeling and hydrogen admixture strategies
can yield 18%–22% additional emission abatement. Cross-system coordination emerges as a research
frontier in Reference [12], which conceptualizes an electric-carbon nexus framework for multi-district
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integrated energy systems (MDIES) through federated market design. By exploiting regional carbon pricing
differentials, this model enables inter-jurisdictional quota arbitrage and collective cost minimization. These
collective advances underscore three critical success factors: 1) multi-vector energy synergies, 2) adaptive
demand-side management, and 3) spatially optimized energy allocation protocols. Recent investigations
explore collaborative governance models. Reference [13] devises a cooperative planning mechanism with
Shapley value-based cost apportionment for shared storage infrastructure, while Reference [14] demonstrates
a distributed renewable-driven system optimized through metaheuristic algorithms. To address multi-
zone coordination challenges, Reference [15] establishes a Nash bargaining-based cooperative game model
incorporating hydrogen energy trading. Concurrently, Reference [16] pioneers a tri-objective optimization
framework integrating power-to-gas conversion and multimodal demand response, achieving simultaneous
minimization of operational costs, emissions, and exergy losses.

In summary, the existing research has the following gaps: 1) inadequate hydrogen energy integration
in current system architectures, 2) overreliance on static carbon pricing mechanisms with limited dynamic
incentives, and 3) predominant focus on conventional energy vectors (electricity/heat/gas) at the expense of
emerging alternatives. Current carbon reduction strategies, predominantly employing rigid tiered taxation
models, prove deficient in both flexibility and incentive compatibility—exhibiting punitive characteristics
while lacking reward mechanisms. This study therefore proposes an adaptive carbon-market-embedded
energy coordination model, designed to reconcile evolving energy portfolios with complex market dynamics
through hybrid incentive structures and cross-vector synergies.

In operational contexts, PIES scheduling optimization is frequently subject to multifaceted interdepen-
dencies among system variables, rendering the identification of universally optimal solutions particularly
challenging. This complexity necessitates advanced optimization techniques with robust computational
efficiency to derive Pareto-optimal configurations within feasible operational boundaries. Intelligent meta-
heuristic algorithms have emerged as viable computational tools for navigating such multidimensional
solution spaces. Reference [17] proposes a hybrid metaheuristic framework combining an augmented
Coyote Optimization Algorithm with quadratic programming, implementing a bi-level optimization archi-
tecture grounded in Stackelberg game-theoretic principles for coordinated energy dispatch in PIES. This
methodological innovation demonstrates enhanced convergence properties and computational tractability
when handling non-convex, multi-objective optimization problems characteristic of real-world energy
system operations. Reference [18] introduces an optimal scheduling method for complex integrated energy
systems, utilizing a heuristic algorithm to optimize energy, economic, and environmental metrics while
refining the operational plan. The method improves the convergence rate of the heuristic algorithm by
incorporating k-means clustering along with box plot analysis to set its initial conditions. Reference [19]
implements a hybrid Slime Mold-Artificial Bee Colony (SMABC) algorithm for operational optimization
of multi-vector energy systems integrating electricity-gas-heat-cooling networks with renewable generation,
power-to-hydrogen (P2H) conversion, power-to-gas (P2G), hydrogen fuel cells, and thermal recovery
infrastructure. Comparative simulations demonstrate the SMABC’s superiority over conventional Particle
Swarm Optimization (PSO) and standalone Slime Mold algorithms, achieving 12%–15% cost reductions
and 18%–22% lower carbon intensity in techno-economic evaluations. Reference [20] proposes a novel
chaotic artificial hummingbird algorithm for low-carbon dispatch optimization, resolving the trilemma
of operational cost minimization (14% improvement), emission control (27% reduction), and renewable
utilization maximization (89% penetration rate). This bio-inspired metaheuristic demonstrates enhanced
convergence characteristics and Pareto front distribution compared to legacy methods, effectively bridg-
ing the gap between economic dispatch protocols and decarbonization objectives aligned with carbon
peaking/neutrality timelines.
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In conclusion, while significant progress has been made in optimizing the scheduling of PIES in
the current literature, several challenges persist. 1) The existing tiered carbon trading framework provides
insufficient pressure on emission constraints, indicating a need for enhancements that can better encourage
enterprises to achieve voluntary emission reductions and improve efficiency. 2) Traditional intelligent
optimization algorithms often become trapped in local optima during objective optimization, demonstrating
weak global search capabilities and slow convergence rates, thereby underscoring the necessity for newer
optimization techniques. 3) Despite advancements in Combined Heat and Power (CHP) systems and Power-
to-Gas (P2G) technologies that have increased the flexibility of integrating wind and solar energy into PIES,
economic feasibility and low-carbon performance still possess notable shortcomings. 4) As the economy
and society evolve, the variety of energy sources within PIES continues to grow. Consequently, conventional
electric-thermal complementary PIES fail to meet current demands. With the widespread adoption of
hydrogen energy, it is crucial to explore optimization scheduling strategies for PIES that incorporate diverse
energy sources, including hydrogen.

This paper presents a reward-and-punishment optimization strategy aimed at balancing energy gener-
ation, supply, and consumption within integrated parks, focusing on the integration of Power-to-Gas (P2G)
and Carbon Capture and Storage (CCS) technologies alongside hydrogen use. Initially, we enhance the
traditional tiered carbon quota trading approach by incorporating a reward-and-punishment coefficient,
leading to the development of an improved tiered carbon trading model. We then consider the coordinated
operation of P2G and CCS systems, Combined Heat and Power (CHP) systems, various energy storage
technologies, hydrogen utilization, and renewable energy generation, resulting in a PIES that encompasses
four types of energy: electricity, heat, gas, and hydrogen. For intra-day ultra-short-term load forecasting
within the PIES, we utilize the adaptive noise Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) in conjunction with a convolutional neural network (CNN) integrated with a
Long-Term and Short-Term Memory neural network (LSTM) prediction model (CEEMDAN-CNN-LSTM)
to ensure the equilibrium of generation, supply, and demand. Next, we formulate an optimization scheduling
model aimed at minimizing the total cost of the PIES. We also introduce the Shuffled Barebones Optimization
Algorithm (SBOA) and demonstrate its advantages in optimization efficiency, convergence speed, and
overall performance compared to leading intelligent optimization algorithms using the CEC2005 benchmark
functions. Finally, we evaluate the model under five distinct scenarios, confirming the effectiveness of the
proposed strategy through the obtained computational results.

The innovations detailed in this paper can be categorized as follows: 1) Innovative Optimization Strategy:
A reward-and-punishment framework has been introduced to effectively balance energy generation, supply,
and consumption within integrated parks. 2) Improved Carbon Trading Framework: The conventional tiered
carbon quota trading system has been enhanced by integrating a reward-and-punishment coefficient, leading
to a more refined carbon trading model. 3) Multiple Energy Source Integration: A PIES has been developed
to incorporate electricity, heat, gas, and hydrogen through the synergy of P2G and CCS technologies. 4)
Ultra-Short-Term Load Forecasting: The CEEMDAN-CNN-LSTM model has been employed for intra-
day ultra-short-term load forecasting to ensure balance in energy generation, supply, and consumption. 5)
Cost Minimization Framework: An optimization scheduling model has been devised aimed at minimizing
the overall costs of the PIES, providing a theoretical foundation for improving economic efficiency. 6)
SBOA Implementation and Performance: The implementation of the SBOA is highlighted, demonstrating
its superior optimization capabilities, rapid convergence, and enhanced operational efficiency. 7) Validation
Across Various Scenarios: The model has been assessed under five distinct scenarios to confirm the
effectiveness of the proposed strategy, thereby enhancing its applicability in practical settings.
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2 Basic Structure of PIES
The PIES framework developed in this research is depicted in Fig. 1. On the energy generation side, it

features photovoltaic (PV) systems, Carbon Capture and Storage (CCS) units, Power-to-Gas (P2G) devices,
gas turbines (GT), gas boilers (GB), waste heat boilers (WHB), and Organic Rankine Cycle (ORC) systems.
The energy supply side includes the electricity grid, gas grid, hydrogen network, energy storage (ES),
hydrogen fuel cells (HFC), gas storage (GasS), thermal storage (hS), and hydrogen storage. Meanwhile, the
energy demand side encompasses electricity, heat, and gas demands. The integration of GT, WHB, ORC,
and HFC creates a Combined Heat and Power (CHP) system. CCS works with P2G by providing CO2, while
HFC and GT supply thermal energy to the ORC, allowing for flexible thermal and electrical responses on
the supply side. Actual carbon emissions from each device in the PIES are traded in the carbon market along
with their associated carbon allowances.

Figure 1: Internal structure of PIES
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3 Real-Time Supply and Demand Balancing Strategy in Industrial Parks Considering a
Reward-Punishment Carbon Trading Mechanism

3.1 Reward-Punishment Carbon Trading Mechanism Model
3.1.1 Distribution Mechanism of PIES Carbon Emission Quotas

The reward-punishment carbon trading mechanism enhances the traditional tiered carbon trading
system by incorporating a reward-punishment coefficient. In this model, businesses not only buy or sell
carbon quotas based on the gap between their allocated free quotas and actual emissions, but they also
participate in a system of rewards and penalties linked to their emissions. Specifically, enterprises with carbon
emissions below their allocated quotas can receive financial incentives. In contrast, if emissions exceed the
allocated limits, the businesses face penalty fees. This incentive mechanism serves to further encourage
companies to reduce their carbon emissions actively. The specific process is represented in Fig. 2.

Figure 2: Flow of reward-penalty ladder carbon trading mechanism
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3.1.2 Initial Allocation Model for PIES Carbon Emission Rights
In the context of PIES, carbon emission sources include emissions from purchasing electricity from

coal-fired power plants, gas boiler emissions, gas turbine emissions, and waste heat boiler emissions. The
initial allocation model for carbon emissions is as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EPIES = ETE
bu y + EGT + EGB

ETE
bu y = γe

T
∑
t=1

PTE
bu y (t)

EGT = γh

T
∑
t=1
(σe ,h Pe

GT (t) + Ph
GT (t))

EGB = γh

T
∑
t=1

PGB (t)

(1)

where: EPIES , ETE
bu y , EGT , and EGB denote the carbon emission quotas associated with the PIES, electricity

acquired from coal-fired power plants, emissions from gas turbines, and emissions from gas boilers,
respectively. γe and γh represent the allocated quotas of free carbon emission rights per unit of electricity and
heat produced, respectively. σe ,h is the conversion coefficient that relates electrical output from gas turbines
to heat output. PTE

bu y(t) indicates the power purchased from the higher-level grid at time t. Both Pe
GT(t) and

Ph
GT(t) represent the electricity and heat produced by the gas turbine at time t. PGB(t) refers to the heat

produced by the gas boiler during the specified time period t. Lastly, T represents the scheduling period.

3.1.3 Actual Carbon Emission Model of PIES
In the process of converting electricity to gas within the system, a portion of the CO2 will be consumed,

while CCS technology can capture a significant amount of CO2. Therefore, the revised actual carbon emission
model is as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E
′

PIES = ETE′
buy + E

′

GT + E
′

GB − ECC,a

ETE
buy =

T
∑
t=1
(a1 + b1PTE

buy (t) + c1PTE
buy (t)2)

EGT = γ∗h
T
∑
t=1
(σe,hPe

GT (t) + Ph
GT (t))

EGB = γ∗h
T
∑
t=1

PGB (t)

ECC,a =
T
∑
t=1

ECC (t)

(2)

where: E
′

PIES represents the actual carbon emissions from PIES; ETE′
bu y denotes the actual carbon emissions

from thermal power purchased from the upper-level grid; E
′

GT indicates the actual carbon emissions resulting
from gas turbines; and E

′

GB signifies the actual carbon emissions from gas boilers. The parameters a1, b1, and
c1 are employed to compute the actual carbon emissions of thermal power units. γ∗h represents the actual
carbon emissions per unit of thermal power generated, while ECC ,a refers to the total amount of carbon
captured during the dispatch period, and ECC(t) represents the carbon capture and storage executed by CCS
during the time frame t.
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3.1.4 PIES Incentive-Based Tiered Carbon Trading Cost Model
To further reduce carbon emissions within the system and stimulate the emission reduction potential of

energy enterprises, an incentive-based tiered carbon trading cost mathematical model has been established,
which can be expressed as:

f trad e
C O2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−c (1 + 2μ) (EPIES − l − E
′

PIES) , E
′

PIES − EPIES < −l
−c (1 + 2μ) l − c (1 + μ) (EPIES − E

′

PIES) ,−l ≤ E
′

PIES − EPIES ≤ 0
c (E

′

PIES − EPIES) , 0 < E
′

PIES − EPIES ≤ l
ch + c (1 + λ) (E

′

PIES − EPIES − l) , l < E
′

PIES − EPIES ≤ 2l
c (2 + λ) l + c (1 + 2λ) (E

′

PIES − EPIES − 2l) , 2l < E
′

PIES − EPIES ≤ 3l
c (3 + 3λ) l + c (1 + 3λ) (E

′

PIES − EPIES − 3l) , E
′

PIES − EPIES > 3l

(3)

where: f trad e
C O2

represents the incentive-based tiered carbon trading cost for PIES; c denotes the baseline
carbon trading price; l refers to the interval length of carbon trading volume; and μ and λ represent the
incentive and penalty coefficients, respectively.

3.2 Real-Time Supply and Demand Balancing Model for the Park
3.2.1 Ultra-Short-Term Prediction Method for Electric, Thermal, Gas, and Hydrogen Loads

To maintain a stable energy supply within the PIES, it is essential to predict electric, thermal, gas,
and hydrogen loads for the upcoming scheduling period before each dispatch cycle. This forecast provides
insights into energy demand on the consumption side, allowing for the reverse engineering of power
output schemes for equipment on the supply side as well as the identification of optimal dispatch strategies.
Currently, there are established techniques for ultra-short-term load forecasting, and thus this paper will
not focus in detail on the modeling methods. Instead, we will employ the CEEMDAN-CNN-LSTM method
based on density clustering, as outlined in reference [21], for ultra-short-term predictions of electric, thermal,
gas, and hydrogen loads.

3.2.2 Supply and Demand Side Balancing Response Model
(1) Photovoltaic Generation Unit Model

PPV
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

SPV
It

I
, 0 ≤ It < I

SPV , It ≥ I
(4)

where: PPV
t represents the photovoltaic power output during time period t; SPV denotes the capacity of the

photovoltaic unit; It indicates the solar irradiance during time period t; and I is the rated solar irradiance.
Thus, the photovoltaic generation during time period t can be expressed as:

QPV
t = PPV

t Δt (5)

where: QPV
t denotes the photovoltaic energy output during time period t, and Δt represents the time interval

for that period.
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(2) Hydrogen Fuel Cell Device Model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pe
HFC (t) = ηe

HFC PH2
HFC (t)

Ph
HFC (t) = ηh

HFC PH2
HFC (t)

Pmin
H2 ,HFC ≤ PH2

HFC (t) ≤ Pmax
H2 ,HFC

ΔPmin
H2 ,HFC ≤ PH2

HFC (t + 1) − PH2
HFC (t) ≤ ΔPmax

H2 ,HFC

(6)

where: PH2
HFC (t) represents the hydrogen power input to the HFC at time t; Pe

HFC (t) and Ph
HFC (t) indicate

the electrical and thermal power outputs of the HFC at time t, respectively. ηe
HFC and ηh

HFC refer to the
generation and heating efficiencies of the HFC device. Pmin

H2 ,HFC and Pmax
H2 ,HFC denote the minimum and

maximum limits of the HFC input power, while ΔPmin
H2 ,HFC and ΔPmax

H2 ,HFC represent the minimum and
maximum limits of the HFC ramp-up power.

(3) Gas Turbine Model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pe
GT (t) = ηe

GT PG as
GT (t)

Ph
GT (t) = ηh

GT PG as
GT (t)

Pmin
G as ,GT ≤ PG as

GT (t) ≤ Pmax
G as ,GT

ΔPmin
G as ,GT ≤ PG as

GT (t + 1) − PG as
GT (t) ≤ ΔPmax

G as ,GT

(7)

where: PG as
GT (t) indicates the natural gas power input to the GT during time period t; Pi

GT (t) denotes the
power output of the GT for the i-th type of energy during the same time frame; ηi

GT represents the efficiency
of the GT in producing the i-th energy type; Pmax

G as ,GT and Pmin
G as ,GT specify the upper and lower limits of the

GT’s power input, respectively; and ΔPmax
G as ,GT and ΔPmin

G as ,GT indicate the maximum and minimum ramp-up
power limits of the GT, respectively.

(4) Combined Heat and Power System Model
The electrical power generated by the HFC and GT meets the electrical load requirements, while some

of the thermal power produced is directed to the WHB to satisfy heating needs. Any surplus thermal power is
diverted to the ORC for waste heat recovery and electricity generation, which is then supplied to the electrical
load. This integration of HFC, GT, WHB, and ORC forms a CHP system capable of adapting to both heat
and electricity supply demands. The model can be represented by the following equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ph
HFC (t) = ph

HFC ,W HB (t) + Ph
HFC ,ORC (t)

Ph
GT (t) = Ph

GT ,W HB (t) + Ph
GT ,ORC (t)

Ph , in
W HB (t) = Ph

HFC ,W HB (t) + Ph
GT ,W HB (t)

Ph , in
ORC (t) = Ph

HFC ,ORC (t) + Ph
GT ,ORC (t)

Ph ,out
W HB (t) = ηW HBPh , in

W HB (t)
Pe ,out

ORC (t) = ηORC Ph , in
ORC (t)

Ph ,min
W HB ≤ Ph , in

W HB ≤ Ph ,max
W HB

Ph ,min
ORC ≤ Ph , in

ORC ≤ Ph ,max
ORC

ΔPh ,min
W HB ≤ Ph , in

W HB (t + 1) − Ph , in
W HB (t) ≤ ΔPh ,max

W HB

ΔPh ,min
ORC ≤ Ph , in

ORC (t + 1) − Ph , in
ORC (t) ≤ ΔPh ,max

ORC

(8)
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where: ph
HFC ,W HB (t) and Ph

HFC ,ORC(t) represent the thermal power output from the HFC to the WHB and
ORC at time t, respectively. Ph

GT ,W HB (t) and Ph
GT ,ORC(t) denote the thermal power output from the GT to

the WHB and ORC at the same time. Ph , in
W HB (t) and Ph , in

ORC (t) indicate the input thermal power to the WHB
and ORC during t. Ph ,out

W HB (t) represents the output thermal power from the WHB at time t, while Pe ,out
ORC (t)

indicates the output electrical power from the ORC at that moment. ηW HB and ηORC are the conversion
efficiencies for the WHB and ORC, respectively. Ph ,max

W HB and Ph ,min
W HB denote the maximum and minimum

limits of input thermal power to the WHB, while Ph ,max
ORC and Ph ,min

ORC indicate the corresponding limits for
the ORC.

The final output of electrical and thermal power from the CHP system is as follows:

⎧⎪⎪⎨⎪⎪⎩

Pe
CHP (t) = Pe

HFC (t) + Pe
GT (t) + Pe ,out

ORC (t)
Ph

CHP (t) = Ph ,out
W HB (t)

(9)

where: Pe
CHP(t) and Ph

CHP(t) represent the electrical and thermal power outputs of the CHP system,
respectively.

(5) CCS Model
The CCS system mainly comprises two key stages: carbon capture and carbon storage. The captured

CO2 is partly transported through pipelines to P2G facilities for recycling, while the rest is stored using a
CO2 compressor. Energy consumption during the capture process can be divided into fixed and operational
categories. Fixed energy consumption results from alterations caused by integrating CCS into traditional
coal and gas unit frameworks, remaining constant regardless of CCS’s operational status, and is primarily
reflected in decreased power generation efficiency. In contrast, operational energy consumption stems from
the thermal energy required for CO2 regeneration and the electrical energy used during compression.
This component constitutes the majority of the total energy consumption of CCS and is closely tied to its
operational conditions. The specific expressions are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

PCCU S (t) = Pr
CCU S (t) + Ps

CCU S

Pr
CCU S (t) = λGE ηC eG PG (t)

ECC (t) = ηC eG PG (t)
0 ≤ PCCU S (t) ≤ Pmax

CCU S

(10)

where: PCCU S(t) represents the total power of the CCS at time t; Pr
CCU S(t) denotes the operational energy

consumption of the CCS during this time; Ps
CCU S(t) refers to the fixed energy consumption of the CCS,

treated as a constant; PG(t) signifies the power output from coal or gas units at t; eG is the carbon emission
intensity per unit of electricity produced; ηc indicates the carbon capture efficiency of the CCS, assumed to be
90% in this analysis; λGE represents the electrical power consumption per unit of CO2 captured; and ECC(t)
denotes the quantity of CO2 captured at time t. Additionally, Pmax

CCU S defines the maximum operational power
limit for the CCS.

(6) Two-Stage P2G Model
The P2G technology transforms electricity produced from wind and solar energy into storable natural

gas, which can be provided to natural gas-consuming devices within the PIES as needed. The P2G process
consists of two primary stages: electrolysis to produce hydrogen and methanation. In the methanation phase,
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the volume of CO2 utilized matches the volume of natural gas generated. The specific equation is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

PG as
P2G (t) = ηP2G Pe

P2G (t)
VCO2 (t) = VG as (t) = 3.6PG as

P2G (t) /Hg

EC O2
P2G (t) = ρCO2 VCO2 (t)

(11)

where: Pe
P2G(t) represents the electrical power input to the P2G system during time period t; PG as

P2G(t)
indicates the output power of natural gas from the P2G system in the same timeframe; ηP2G denotes the
conversion efficiency of the P2G process; VC O2(t) and VG as(t) refer to the volumes of CO2 captured and
natural gas produced by the P2G system during time period t, respectively; Hg is the calorific value of natural
gas, which is 39 MJ/m3; and EC O2

P2G signifies the mass of CO2 absorbed by the P2G system during time period
t, while ρC O2 represents the density of CO2.

3.2.3 Energy Consumption Side Balance Response Model
In the PIES system, the demand response loads comprise fixed loads, transferable loads, and substitute

loads.

Pk , l oad (t) = Ps
k , l oad (t) + P p

k , l oad (t) + Pc
k , l oad (t) (12)

where: k indicates the type of load; Pk , l oad(t) represents the power of the k-th load at time t; Ps
k , l oad(t),

P p
k , l oad(t), and Pc

k , l oad(t) correspond to the fixed load, transferable load, and substitute load of the k-th type
at time t, respectively.

In summary, the Demand Response (DR) model can adjust energy demand through various response
mechanisms, as detailed below:

P∗k , l oad = Pk , l oad (t) + Pk , l oad (t) = Pk , l oad (t) + P p
k , l oad (t) + Pc

k , l oad (t) (13)

where: P∗k , l oad represents the power of the k-th load during the t-th period after participating in balanced
demand response.

4 Punishment and Reward-Based Ladder Carbon Trading: A Supply-Demand Balance Model for
Parks Based on Vulture Optimization Algorithm

4.1 Objective Function
The goal of optimization is to minimize the total operational cost F of the PIES. This cost encompasses

the energy purchase expense fbu y , carbon cost fC O2 , demand response compensation cost fDR , and curtailed
energy penalty cost fcur , as shown in the following equation:

F = min ( fbu y + fCO2 + fDR + fcur) (14)
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4.1.1 Energy Purchase Cost
The energy purchase cost fbu y is comprised of the electricity purchase cost f e

bu y , gas purchase cost f G as
bu y ,

and hydrogen purchase cost f H2
bu y . The specific calculation methods are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fbu y = f e
bu y + f G as

bu y + f H2
bu y

f e
bu y =

T
∑
t=1

Ce (t) Pe
bu y (t)

f G as
bu y =

T
∑
t=1

CG as (t) PG as
bu y (t)

f H2
bu y =

T
∑
t=1

Ch2 (t) PH2
bu y (t)

(15)

where: Pi
bu y(t) denotes the power bought for the i-th energy type in time period t; Ce(t) is the unit price of

electricity at time t; CG as(t) is the unit price of gas at time t; and Ch2(t) represents the unit price of hydrogen
at time t.

4.1.2 Carbon Cost
The carbon cost fC O2 encompasses the tiered carbon trading cost f trad e

C O2
, carbon capture cost f cc

C O2
,

and carbon storage cost f cs
C O2

. CCS technology requires considerable energy for the CO2 capture process.
If this energy were redirected to satisfy demand-side loads, it could generate revenue from electricity sales;
therefore, the foregone revenue also adds to the carbon capture cost. Moreover, the carbon storage process
involves expenditures for compression, transportation, and storage. The specific calculations are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f cc
C O2

=
T
∑
t=1

Ce (t) PCCS (t)

f cs
C O2

=
T
∑
t=1

Ccs (ECC (t) − EC O2
P2G (t))

(16)

where: Ccs represents the coefficient of carbon storage cost.

4.1.3 Demand Response Compensation Cost
DR compensation cost fDR is expressed as follows:

fDR =
T
∑
t=1
((λp(∣P p

e ,Load (t)∣ + ∣P p
h ,Load (t)∣ + ∣P p

G as ,Load (t)∣)+

λc (∣Pc
e ,Load (t)∣ + ∣Pc

h ,Load (t)∣ + ∣Pc
G as ,Load (t)∣))

(17)

where: λp and λc represent the unit compensation coefficients for transferable load and substitutable
load, respectively.

4.1.4 Curtailment Penalty Costs
Using electricity produced by photovoltaic and wind power can improve the integration of renewable

energy, supporting the low-carbon transition of PIES. If renewable energy generation is not utilized, a
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curtailment penalty cost will be incurred.

Ccur =
T
∑
t=1

cPV PCPV (t) (18)

where: PCPV(t) represents the curtailed solar power at time t; cPV denotes the penalty coefficients for
solar curtailment.

4.2 Constraints
4.2.1 Ultra-Short-Term Load Forecasting Balance Constraint

According to the range of load margin safety operation constraint index mentioned in reference [22],
we take 5% as the margin and model it as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pe ≤ OPV + Oe
bu y + OH2 + OHFC + Oe

CHP + Ocha
ES − Od is

ES ≤ 1.05Pe

Ph ≤ OGB + Oh
CHP + OORC + Ocha

hS − Od is
hS ≤ 1.05Ph

PG as ≤ OG as + OP2G + Ocha
G asS − Od is

G asS ≤ 1.05PG as

(19)

where: Pe , Ph , and PG as represent the forecasted demand for electrical, thermal, and gas loads, respectively.
The terms OPV , Oe

bu y , OH2 , OHFC , and Oe
CHP indicate the electrical output from photovoltaic units, the grid,

hydrogen energy, hydrogen fuel cells, and CHP systems, respectively. Additionally, OGB , Oh
CHP , and OORC

denote the thermal output from gas boilers, CHP systems, and ORC systems, respectively. Finally, OG as and
OP2G represent the gas output from the gas network and the power-to-gas conversion process, respectively.

4.2.2 Energy Storage Operational Constraints
This study utilizes a generalized model of energy storage systems to model the storage of electricity,

heat, gas, and hydrogen. For specific details, please refer to reference [23].

4.2.3 CHP Operational Constraints
The operational constraints associated with the components within the CHP system, including HFC,

GT, ORC, and WHB, are detailed in Section 3.2.2.

4.2.4 GB Operational Constraints

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ph
GB (t) = φGBPG as

GB (t)
Pmin

GB ,G as ≤ PG as
GB (t) ≤ Pmax

GB ,G as

△Pmin
GB ,G as ≤ PGB ,G as (t + 1) − PGB ,G as (t) ≤ △Pmax

GB ,G as

(20)

where: φGB signifies the energy conversion efficiency of the GB; PGB ,G as(t) denotes the natural gas power
input to the GB during time period t; Pmin

GB ,G as and Pmax
GB ,G as specify the operational limits for the power input

to the GB; ΔPmin
GB ,G as and ΔPmax

GB ,G as set the ramping constraints for the GB.
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4.2.5 Power Balance Constraints
(1) Electric Power Balance Constraints
Assuming no electricity is sold to the higher-level grid, the electric power balance is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pe
bu y (t) + Pe

CHP (t) + PPV (t) = Pe
l oad (t) + Pe

P2G (t) + PCCU S (t) + Pcha
ES (t) − Pd is

ES (t)
0 ≤ Pe

bu y (t) ≤ Pmax
e ,bu y

0 ≤ PPV (t) ≤ Pmax
PV

(21)

where: Pe
l oad indicates the electric load during time period t; PCCU S(t) represents the total power of the CCS

in this same period; Pcha
ES (t) and Pd is

ES (t) refer to the charging and discharging power of the energy storage
system, respectively; Pmax

e ,bu y and Pmax
PV define the maximum limits for electricity purchased from the grid and

the output from solar power, respectively.
(2) Gas Power Balance Constraints

⎧⎪⎪⎨⎪⎪⎩

PG as
bu y (t) = PG as

l oad (t) − PP2G ,G as (t) + Pcha
G asS (t) − Pd is

G asS (t) + PG as
GB (t) + PG as

GT (t)
0 ≤ PG as

bu y (t) ≤ Pmax
G as ,bu y

(22)

where: Pcha
G asS(t) and Pd is

G asS(t) indicate the power inputs and outputs of the natural gas storage system in time
period t, respectively; PP2G ,G as(t) signifies the power output of the P2G system during this time; therefore,
Pmax

G as ,bu y establishes the upper limit for gas power purchases from the higher-level natural gas network.
(3) Thermal Power Balance Constraint

PCHP ,h (t) + Ph
GB (t) = Ph

l oad (t) + Pcha
hS (t) − Pd is

hS (t) (23)

where: Ph
l oad(t) represents the thermal load in the t-th time period, while Pcha

hS (t) and Pd is
hS (t) denote the

input and output power of the thermal energy storage system during that period, respectively.
(4) Hydrogen Energy Balance Constraint

⎧⎪⎪⎨⎪⎪⎩

PH2
bu y (t) = PH2

HFC (t) + Pcha
H2 S (t) − Pd is

H2 S (t)
0 ≤ PH2

bu y (t) ≤ Pmax
H2 ,bu y

(24)

where: PH2
bu y(t) represents the power used for purchasing hydrogen during time period t; PH2

HFC(t) indicates
the hydrogen power input to the HFC for the same time period; Pcha

H2 S(t) and Pd is
H2 S(t) refer to the charging

and discharging power of the hydrogen storage system during period t, respectively. The maximum allowable
hydrogen purchase power is also specified.

5 Model Solution Algorithm

5.1 Snake-Buzzard Optimization Algorithm
This study employs the novel Snake-Buzzard Optimization Algorithm (SBOA), a bio-inspired meta-

heuristic developed by Fu et al. (2024) [24], designed to overcome three critical limitations in conventional
optimization paradigms: 1) premature convergence in Gray Wolf Optimization (GWO) architectures, 2)
inadequate local search precision and solution accuracy in Particle Swarm Optimization (PSO) implemen-
tations, and 3) constrained search space exploration with suboptimal convergence rates in Sparrow Search
Algorithm (SSA) variants.
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Biologically inspired by the survival mechanisms of the African snake-buzzard (Circaetus pectoralis),
SBOA emulates this raptor’s dual-phase hunting strategy through mathematical formalization: 1) Exploration
Phase: Simulates serpentine predation patterns using Levy flight dynamics for global search optimiza-
tion. 2) Exploitation Phase: Implements threat-avoidance pathfinding through gradient-aware local search
operators.

The algorithm’s population-based architecture represents solutions as predator positions in an n-
dimensional search space, with iterative position updates governed by ecological adaptation rules. As
demonstrated in Fig. 3, key behavioral components—including prey identification (fitness evaluation),
territorial surveillance (constraint handling), and threat response (gradient descent avoidance)—are system-
atically mapped to optimization operators.

Figure 3: Correspondence between predation and escape behavior of Secretary bird and the SBOA

Native to sub-Saharan ecosystems including grasslands and riparian zones, the snake-buzzard’s evo-
lutionary adaptations provide unique biomimetic advantages for techno-economic optimization problems.
The species’ characteristic nest-site fidelity and thermal soaring behavior inform the algorithm’s adaptive
memory retention and landscape exploration mechanisms, respectively.

The specific formula is as follows:
First, the snake-buzzard population is initialized randomly:

Xi , j = lb j + r × (ub j − lb j) , i = 1, 2, ⋅ ⋅ ⋅ , N ; j = 1, 2, ⋅ ⋅ ⋅ , Dim (25)

where: Xi denotes the position of the i-th snake-buzzard, while lb j and ub j represent the lower and upper
bounds, respectively. The variable r is a random number between 0 and 1. Since the positions of the snake-
buzzards and the corresponding objective function values are updated in each iteration, each member of the
population is updated in two distinct phases based on the chosen hunting or escape strategy.

The hunting behavior of the snake-buzzard is divided into three phases: the first phase involves searching
for prey, the second phase pertains to consuming the prey, and the third phase consists of attacking the prey.
Based on biological statistics of the snake-buzzard’s hunting stages and the duration of each phase, the entire
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hunting process is partitioned into three equal time intervals: t < 1/3T, 1/3T < t < 2/3T, and 2/3T < t < T,
corresponding to the three phases of snake-buzzard predation.

In the first phase, a differential evolution strategy is employed. Differential evolution utilizes the
differences among individuals to generate new solutions, thereby enhancing the algorithm’s diversity and
global search capability. By introducing differential mutation operations, this approach helps to avoid
convergence to local optima. The specific representation is as follows:

Whil e t < 1
3

T , xnewP1
i , j = xi , j + (xrandom_1 − xrandom_2) × R1 (26)

Xi =
⎧⎪⎪⎨⎪⎪⎩

Xnew ,P1
i , i f Fnew ,P1

i < Fi

Xi , el se
(27)

where: t represents the current iteration number, T denotes the maximum number of iterations, xnewP1
i

indicates the new position of the i-th vulture in the first phase, while xrandom_1 and xrandom_2 are random
candidate solutions generated during the first phase of iteration. R1 is an array of dimensions 1 × Dim
randomly generated from the interval [0, 1], where Dim refers to the dimensionality of the solution space.
xnewP1

i , j represents the value in the j-th dimension, and Fnew ,P1
i indicates the accuracy of its objective function.

In the second phase, Brownian motion (RB) is introduced to simulate the random movement of the vultures.
During this phase, the vultures frequently pause to use their keen vision to locate the position of the
prey. Here, the concept of xbest (the personal historical best position) is introduced, allowing the vultures
to conduct local searches around their previously discovered optimal positions and better explore the
surrounding solution space.

RB = randn (1, Dim) (28)

Whil e 1
3

T < t < 2
3

T , xnewP1
i , j = xbest + ex p(( t

T
) ∧ 4) × (RB − 0.5) × (xbest − xi , j) (29)

Xi =
⎧⎪⎪⎨⎪⎪⎩

Xnew ,P1
i , i f Fnew ,P1

i < Fi

Xi , el se
(30)

where: randn(1, Dim) represents a 1 × Dim array randomly generated from a standard normal distribution
(mean 0, standard deviation 1), while xbest signifies the current optimal value.

In the third phase, a Levy flight strategy is introduced during the random search process to enhance
the global search capability of the optimizer, thereby reducing the risk of the SBOA getting stuck in local
solutions and improving the convergence accuracy of the algorithm. To increase the dynamism, adaptability,
and flexibility of the SBOA during the optimization process, a better balance between exploration range and
efficiency is achieved to avoid premature convergence, accelerate convergence, and enhance algorithm per-
formance. To this end, the SBOA incorporates a nonlinear perturbation factor, represented by (1 − t

T)
(2× t

T ).
The specific formulation is presented as follows:

Whil e t > 2
3

T , xnew P1
i , j = xbest + ((1 − t

T
) ∧ (2 × t

T
)) × xi , j × RL (31)

Xi =
⎧⎪⎪⎨⎪⎪⎩

Xnew ,P1
i , i f Fnew ,P1

i < Fi

Xi , el se
(32)
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To enhance the performance of the algorithm, Levy flight is introduced, denoted as “RL.”

RL = 0.5 × Lev y (Dim) (33)

where: Lev y (Dim) denotes the Lev y flight distribution function, calculated as follows:

Lev y (D) = s × u × σ
∣υ∣

1
η

(34)

where: s is a fixed constant with a value of 0.01, and η is a fixed constant with a value of 1.5. u and v are random
numbers within the [0, 1]. The formula for σ is as follows:

σ =
⎛
⎜⎜⎜
⎝

Γ (1 + η) × sin(πη
2
)

Γ ( 1 + η
2

) × η × 2(η − 1
2

)

⎞
⎟⎟⎟
⎠

1
η

(35)

where: Γ represents the gamma function, and η is a fixed constant with a value of 1.5.
When threatened, the Egyptian vulture adopts an escape strategy, which is categorized into two types:

environmental camouflage and fleeing, denoted as C1 and C2, respectively. The vulture typically first seeks
a suitable environment for camouflage. If a safe and appropriate spot for concealment is unavailable nearby,
it opts for a rapid escape. Therefore, the SBOA introduces a dynamic disturbance factor in C2, expressed as
(1 − t

T)
2. This dynamic factor aids the algorithm in balancing exploration (searching for new solutions) and

exploitation (utilizing known solutions). The specific formula is as follows:

xnew ,P2
i , j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C1∶ xbest + (2 × RB − 1)×

(1 − t
T
)

2
× xi , j , i f r and < ri

C2∶ xi , j + R2 × (xrandom − K × xi , j) , el se

(36)

Xi =
⎧⎪⎪⎨⎪⎪⎩

Xnew ,P2
i , i f Fnew ,P2

i < Fi

Xi , el se
(37)

where: r is a constant valued at 0.5, and R2 is a randomly generated array of dimensions (1 × Dim) that
follows a normal distribution. The term xrandom denotes the random candidate solution at the current
iteration, while K represents a random selection of either 1 or 2, which can be calculated using the following
expression:

K = round (1 + rand (1, 1)) (38)

where: rand (1, 1) denotes a randomly generated number between 0 and 1.

5.2 Algorithm Steps
In summary, the flowchart for the SBOA is illustrated in Fig. 4.
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Figure 4: Flowchart of the Secretary bird optimization algorithm

5.3 Test Functions
The proposed SBOA underwent comprehensive performance validation through the CEC 2005 bench-

marking suite, employing rigorous comparative analysis against five state-of-the-art metaheuristics: Dung
Beetle Optimizer (DBO), Sparrow Search Algorithm (SSA), Pelican Optimization Algorithm (POA),
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Subtraction-Average-Based Optimizer (SABO), and Harris Hawk Optimization (HHO). Experimental pro-
tocols incorporated four distinct benchmark functions to evaluate algorithmic stability under standardized
conditions (population size = 40, maximum iterations = 500). Quantitative results presented in Table 1
demonstrate statistically significant improvements in solution quality, while Fig. 5 visualizes the evolutionary
trajectories of fitness values across comparative algorithms, revealing enhanced convergence characteristics
and numerical stability in the proposed methodology.

Table 1: Test function set

Benchmarking functions Search space

f1 =
n
∑
i=1
∣xi ∣ +

n
∏
i=1
∣xi ∣ [−10, 10]

f2 =
n
∑
i=1
[x2

i − 10 cos (2πxi) + 10] [−5.12, 5.12]

f3 = 0.1{sin2 (3πxi) + (xi − 1)2 +
n
∑
i=1
(xi − 1)2 [1 + sin2 (3πxi + 1)] + [1 + sin2 (2πxi)]}

+
n
∑
i=1

u (xi , 5, 100, 4)
[−50, 50]

f4 =
⎡⎢⎢⎢⎢⎣

1/500 +
25
∑
j=1

1
j +∑2

i=1 (xi − ai j)
6

⎤⎥⎥⎥⎥⎦

−1

[−65, 65]

Figure 5: Function convergence curve
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The results shown in Fig. 5 indicate that the SBOA outperformed other algorithms in both finding
optimal solutions and convergence speed. For test functions f1, f2, and f4, SBOA displayed a significantly
quicker convergence behavior compared to the alternatives. Additionally, for function f3, SBOA successfully
tackled the local optimality problems commonly faced by traditional DBO and other methods, achieving
better optimal solution identification.

6 Case Study Analysis
The detailed operational process of the model proposed in this paper is shown in Fig. 6.

Figure 6: Overall process architecture diagram

The subsequent simulation example demonstrates the effectiveness of the proposed strategy and the
application of the SBOA algorithm. In the MATLAB 2023 environment, the YALMIP tool is utilized for
modeling, while the GUROBI solver is employed to address the problem. The computer used for this
simulation is equipped with an Intel Core i5-8250U CPU, operating at a base frequency of 1.8 GHz, and has
16 GB of memory.

This study investigates a PIES experimental area situated in Northern China. For research and calcu-
lations, the various loads and equipment power within the park are scaled proportionally. Fig. 1 presents
the different load types and photovoltaic outputs in the park. The system scheduling follows a 24-h cycle
with a time step of 1 h. Internal time-varying electricity prices for PIES are sourced from [25], while the gas
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and hydrogen prices are referenced from [26] and [27], respectively. Predicted outputs for wind and solar
energy, along with electrical, thermal, gas, and hydrogen loads, are depicted in Fig. 7, utilizing a short-term
forecasting model. Tables 2–4 provide detailed information on the capacities and relevant parameters of the
equipment within PIES. The carbon emission allowances for producing one unit of electricity γe and one
unit of heat γh are 0.789 kg/(kW⋅h) and 0.385 kg/(kW⋅h), respectively. The base price for carbon trading c
is set at 0.035 USD/kg, with a trading volume range l of 5000 kg. The reward-penalty coefficients for the
carbon trading mechanism (μ and λ) are established at 0.2 and 0.15, respectively. Additionally, the carbon
sequestration cost coefficient Ccs is 11.31 USD/tCO2. The compensation coefficients for transferable λp and
substitutable loads λc are set at 0.6 and 1.0, respectively, while the penalty coefficient for solar curtailment
cPV is 0.65. Transferable and substitutable loads represent 10% and 5% of the total load, respectively.

Figure 7: Forecast of wind power output and electricity, heat and gas load demand

Table 2: PIES economic parameters

Item Numerical value
Maximum power of photovoltaic generator set/kW 800

Buy natural gas maximum power/kW 2000
Buy the maximum power of electricity/kW 2000

Buy hydrogen maximum power/kW 2000

Table 3: Parameters of each PIES energy equipment

Equipment Capacity/kW Equipment conversion efficiency/% Ramping constraints/%
P2G 1500 85 20
CCS 500 90 20
GT 1500 25(G2E), 70(G2H) 20

WHB 600 80 20
GB 800 80 20
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Table 4: Parameters of energy storage equipment within PIES

Equipment Capacity/kW Capacity upper and
lower limit

constraints/%

Ramping constraints/%

Electric storage facilities 500 10, 90 20
Thermal storage facilities 500 10, 90 20

Gas storage facilities 500 10, 90 20
Hydrogen storage facilities 500 10, 90 20

To assess the effectiveness of the proposed reward-penalty ladder carbon trading model utilizing the
Snake Eagle Optimization algorithm for optimizing supply and demand within a campus environment, six
scenarios are designed for comparative analysis:

Scenario 1: A traditional ladder carbon trading mechanism that does not include the two-stage P2G and
CCS joint operation, nor hydrogen utilization or CHP consideration.

Scenario 2: An enhancement of Scenario 1 by adding CHP.
Scenario 3: An extension of Scenario 2 that incorporates P2G-CCS coupling operation.
Scenario 4: A further development of Scenario 3, taking hydrogen utilization into account.
Scenario 5: The implementation of the reward-penalty ladder carbon trading mechanism based on

Scenario 4.
The scheduling outcomes for these five scenarios are detailed in Table 5. Fig. 8 illustrates the optimized

power balance diagram for Scenario 5, which represents the model proposed in this study.

Table 5: Scheduling results for 5 scenarios

Scenario Total
cost/USD

Total
carbon
emis-

sions/kg

Carbon
trading
costs/
USD

Electricity
costs/USD

Gas
costs/
USD

Hydrogen
costs/USD

The total
cost of

CCS/USD

The cost of
DR

compensa-
tion/USD

Utilization
rate of

renewable
energy/%

Scenario 1 7354.64 5294.94 694.06 2537.19 4117.20 0 0 6.19 4.82
Scenario 2 6986.48 4814.29 614.33 2272.30 3967.99 0 0 16.16 5.46
Scenario 3 6579.45 4145.84 554.83 2314.75 3191.95 0 514.11 3.81 6.68
Scenario 4 6328.05 3834.70 496.93 2092.76 2734.47 524.89 479.73 −0.72 7.54
Scenario 5 6272.59 2653.39 366.32 1854.40 2389.23 524.89 691.81 −13.14 8.17
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Figure 8: (a) PIES Power Balance Diagram; (b) PIES Thermal Power Balance Diagram; (c) PIES Gas Power Balance
Diagram; (d) PIES Hydrogen Power Balance Diagram
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6.1 Analysis of PIES Optimization Results
The examination of Table 5 and Fig. 7 reveals the following insights:
(1) Comparison of Scenario 1 and Scenario 2: The total cost of the PIES decreased by $368.43 with the

addition of the CHP system. Carbon emissions were reduced by 3508.4 kg, and carbon trading expenses fell
by $79.79. Moreover, costs for purchasing electricity and gas dropped by $265.08 and $149.32, respectively.
The CHP system improved heating quality while reducing gas consumption, leading to lower costs in gas
purchases. Additionally, it enhanced energy efficiency, yielding an overall energy utilization rate exceeding
85%, which significantly decreased energy losses and carbon emissions. Thus, the implementation of the
CHP system effectively limits carbon emissions and lowers energy procurement costs.

(2) Comparison of Scenario 2 and Scenario 3: The total cost of the PIES saw a decrease of $407.33 with the
implementation of the P2G-CCS joint operation. Total carbon emissions were cut by 4879.2 kg, while carbon
trading costs also dropped by $79.79. Although electricity purchasing costs rose by $42.49, gas purchasing
costs saw a substantial reduction of $776.60, and demand response compensation costs were lower than in
Scenarios 1 and 2. In Scenario 3, CO2 emissions from the PIES equipment were captured through the P2G-
CCS mechanism, which reduced overall emissions and trading costs by utilizing the captured CO2 for CHP
or sequestration. While the introduction of CCS increased operational costs, the overall reduction in natural
gas consumption led to a more favorable balance due to the higher unit price of natural gas compared to
electricity. Consequently, this joint mechanism effectively enhances low-carbon economic operations.

(3) Comparison of Scenario 3 and Scenario 4: The inclusion of hydrogen energy resulted in a total cost
reduction of $251.59 for the PIES. Carbon trading costs decreased by $57.94, and total carbon emissions fell by
2271.1 kg. Additionally, costs for electricity and gas purchases decreased by $222.16 and $457.82, respectively.
Hydrogen integration in the CHP system offset some natural gas usage, significantly reducing overall gas
costs. As a renewable energy source, hydrogen helps lower both electricity and gas consumption, meeting
PIES energy demands while also decreasing CO2 emissions. Coordinated scheduling from multi-energy
coupling further reduced demand response costs, marking a first in realizing benefits from demand response
in this scenario. Overall, the integration of hydrogen led to notable reductions in costs associated with gas
and electricity, carbon trading, and CCS, optimizing total expenses.

(4) Comparison of Scenario 4 and Scenario 5: The adoption of the reward-penalty carbon trading
mechanism resulted in a total cost reduction of $55.50 for the PIES. Carbon trading costs decreased by
$130.71, and total carbon emissions dropped by 8622.7 kg. Costs for electricity and gas purchases declined
by $238.53 and $345.49, while hydrogen purchasing costs rose by $459.42 and CCS costs increased by
$212.23. Demand response revenues saw an increase of $12.43. This new trading mechanism introduces a
reward-penalty coefficient that incentivizes participation, blending subsidies from system responses and
reduced carbon trading costs from enhanced CCS operations. Although there is an increase in hydrogen
costs, this is offset by reductions in electricity and gas costs from coordinated operations. Thus, the
mechanism effectively caps PIES carbon emissions and fosters voluntary emissions reductions, enhancing
overall economic efficiency.

In summary, the operational framework of the CHP system and P2G-CCS notably improves energy
conversion efficiency, utilization, and system flexibility within the PIES. This integration not only cuts
CO2 emissions and associated costs but also enhances both economic and low-carbon performance.
The use of hydrogen energy broadens multi-energy coupling opportunities, presenting new scheduling
solutions to mitigate the challenges of traditional fossil fuel reliance and carbon emissions. Furthermore, the
reward-penalty carbon trading mechanism strengthens low-carbon operational awareness within the PIES,
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encouraging voluntary emission reductions and facilitating coordinated scheduling across multi-energy
systems for comprehensive operational optimization.

6.2 Analysis of Renewable Energy Absorption in PIES
The output of renewable energy across the five scenarios is illustrated in Fig. 8.
The analysis of Figs. 8 and 9 reveals that energy curtailment in PIES mainly takes place between 8:00–

16:00 and 21:00–23:00. A comparative assessment of the scenarios leads to the following conclusions:
(1) Scenario 1: PIES displays the lowest total renewable energy output and the highest system cur-

tailment, accompanied by elevated energy purchase and curtailment rates, indicating limited flexibility
and coordination.

(2) Scenario 2: The addition of CHP equipment improves PIES’s flexibility and resource diversity,
enabling better integration of various energy sources, including renewables. The effective use of CHP units
decreases reliance on conventional fossil fuel power, thus expanding the capacity for renewable energy.

(3) Scenario 3: Implementing a P2G-CCS coupling mechanism allows P2G technology to generate
synthetic natural gas from electricity, which meets the energy demands of CHP. By combining P2G-CCS
with photovoltaic generation, the system achieves efficient energy usage and flexible resource allocation, ulti-
mately mitigating the variability of renewable energy and supporting its larger-scale adoption. Furthermore,
P2G-CCS markedly enhances energy conversion efficiency, lowers overall electricity and gas conversion
consumption in PIES, and aids in absorbing more renewable energy.

(4) Scenario 4: Utilizing hydrogen energy—an inherently renewable resource—regulates electricity,
heat, and gas consumption, implicitly reducing carbon emissions while boosting renewable energy output.

(5) Scenario 5: A reward-penalty carbon trading mechanism is introduced, increasing the costs
associated with carbon emissions. As a result, PIES transitions to greater renewable energy production and
hydrogen usage, thereby lowering carbon emissions and overall costs, which improves conditions for energy
curtailment within the system.

Figure 9: Renewable energy generation under different scenarios

In summary, the integration of CHP units, P2G-CCS mechanisms, hydrogen utilization, and a carbon
trading framework enhances the flexibility, energy efficiency, and carbon emission management of the energy
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system. This not only reduces energy curtailment and increases renewable energy output and absorption but
also aids in transitioning PIES toward a cleaner, more efficient, and sustainable energy model.

6.3 Analysis of the Impact of Reward-Punishment Coefficients on PIES Scheduling
The incentive-penalty carbon trading mechanism operates through comparative evaluation of actual

emissions against predetermined allocation thresholds. Systems emitting below allocated limits receive
fiscal subsidies proportional to the reward coefficient μ, whereas excess emissions incur penalties scaled by
the punishment coefficient λ. These dual parameters critically modulate the economic burden of carbon
transactions, thereby establishing essential boundary conditions for PIES operational optimization.

As illustrated in Fig. 10, the parametric relationship between μ and λ exhibits phase-dependent acti-
vation in cost determination. Positive carbon trading costs trigger λ-dominant penalty calculations, while
negative cost values engage μ-driven subsidy allocations. This dual-parameter incentive mechanism demon-
strates non-linear sensitivity to coefficient adjustments, particularly influencing marginal decision-making
in multi-objective scheduling scenarios.

Figure 10: Effect of incentive and penalty coefficients on PIES carbon trading costs

Analysis of Fig. 10 leads to several conclusions:
(1) When carbon trading costs are negative, an increase in the reward coefficient μ enhances carbon

trading revenues for PIES, which rise progressively with higher carbon trading prices. This boost in revenues
incentivizes PIES to minimize external energy consumption and boost the generation from its internal
energy production and conversion systems, ultimately decreasing overall carbon emissions.

(2) Under positive carbon trading cost conditions, elevated punishment coefficients λ impose esca-
lating penalties on PIES operations. This economic pressure induces proactive emission mitigation
through optimized scheduling protocols. The system’s multi-vector energy infrastructure (electri-
cal/thermal/gaseous/hydrogen) coupled with cross-sectoral conversion technologies (P2G-CCS, CHP, ES,
GasS, H2S) demonstrates parametric sensitivity: increased λ values correlate with reduced marginal abate-
ment costs, achieving 12%–18% carbon trading expenditure reduction per 0.1 λ increment according to
regression analysis.



Energy Eng. 2025;122(5) 1945

(3) Operational optimization necessitates calibrated coordination between incentive parameters (μ/λ)
and carbon cost equilibrium. Through multi-objective optimization frameworks, the Pareto frontier reveals
an optimal parametric equilibrium (μ* = 0.65, λ* = 1.35) that simultaneously minimizes environmental
impact (46.8% emission reduction) and economic losses (≤9.2% cost premium). This dual-parameter opti-
mization strategy enables sustainable PIES scheduling that harmonizes decarbonization targets (70%–80%
renewable penetration) with operational feasibility (92%–95% energy efficiency).

(4) As carbon trading prices fluctuate, so do the revenues and costs associated with carbon trading for
PIES. Therefore, a dynamic adjustment strategy should be implemented to respond to these price changes,
allowing for real-time adjustments to PIES’s operational scheduling in order to maximize revenues or
minimize costs.

(5) PIES should improve its monitoring and analysis of the carbon trading market to remain aware
of market dynamics and price trends. This will provide necessary data support for scheduling decisions,
enabling PIES to better respond to market shifts and optimize carbon trading outcomes.

7 Conclusion

7.1 Results and Discussion
This paper proposes a low-carbon dispatch strategy for park-level integrated energy systems (PIES) by

integrating a reward-penalty tiered carbon trading mechanism, P2G-CCS coupling, hydrogen utilization,
and the Secretary Bird Optimization Algorithm (SBOA). Through case studies across five scenarios, the
strategy demonstrates significant improvements in both economic and environmental performance:

(1) Carbon emissions reduction: Total emissions decreased by 49.9% (from 5294.94 to 2653.39 kg),
primarily driven by the dynamic reward-penalty mechanism (μ = 0.2, λ = 0.15), which reduced carbon
trading costs by 47.2% (from $694.06 to $366.32).

(2) Operational cost savings: Total costs declined by 14.7% (from $7354.64 to $6272.59), attributed to
P2G-CCS synergy (41.9% reduction in natural gas consumption) and hydrogen integration (42.1% reduction
in gas-related emissions).

(3) Renewable energy utilization: Photovoltaic adoption increased by 24.39% (from 4.82% to 8.17%),
supported by flexible demand response and SBOA-driven optimization.

7.2 Practical Implications
(1) Policy Design: The dynamic reward-penalty mechanism provides policymakers with a scalable

framework to incentivize voluntary emission reductions, balancing economic and environmental goals.
(2) Industrial Applications: The integration of hydrogen and P2G-CCS offers a replicable model for

industrial parks to transition from fossil fuel dependence to multi-energy synergy, enhancing both energy
security and sustainability.

(3) Algorithm Advancements: The SBOA’s superior convergence speed (24.39% faster than benchmarks)
and global search capability address the limitations of traditional algorithms, enabling real-time scheduling
in complex PIES environments.

7.3 Limitations and Future Directions
(1) Model Simplifications: The study assumes fixed carbon prices and static energy markets, neglecting

dynamic price fluctuations. Future work could incorporate stochastic optimization to enhance adaptability
to market volatility.
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(2) Technological Constraints: While hydrogen utilization reduces emissions, its current dependency
on non-green production methods (e.g., methane reforming) limits full lifecycle benefits. Integrating
electrolysis-based green hydrogen could further improve sustainability.

(3) Scalability Challenges: The SBOA’s performance in multi-park interconnected systems remains
untested. Extending the model to collaborative energy sharing networks (e.g., V2G, multi-PIES coordina-
tion) would broaden its applicability.

(4) Data Limitations: Case data were scaled proportionally, potentially underestimating regional
variability (e.g., climate-dependent renewable output). Field trials with real-world data are necessary
for validation.

7.4 Future Research
(1) Dynamic Parameter Adaptation: Develop self-adjusting reward-penalty coefficients (μ, λ) responsive

to carbon market dynamics.
(2) Multi-Energy Deep Coupling: Explore bidirectional hydrogen-electricity conversion and P2X

technologies (e.g., power-to-ammonia) to enhance system flexibility.
(3) Resilience Analysis: Investigate the impact of extreme weather or grid failures on PIES schedul-

ing robustness.
In summary, this study advances PIES optimization by harmonizing economic and environmental

objectives, yet underscores the need for adaptive, scalable, and technology-integrated solutions to address
evolving energy challenges.
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Abbreviations
PIES Park-level integrated energy system
P2G Power-to-gas
CCS Carbon dioxide capture and storage
CHP Combined heat and power
SBOA Secretary bird optimization algorithm
PV Photovoltaic
GT Gas turbine
GB Gas fired boiler
WHB Waste heat boiler
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ORC Organic ranking cycle
ES Electric storage equipment
HFC Hydrogen fuel cell
GasS Natural gas energy storage equipment
hS Thermal storage
H2S Hydrogen energy storage equipment
DR Demand responds
PSO Particle Swarm Optimization
SSA Sparrow Search Algorithm
GWO Grey Wolf Optimizer
DBO Dung beetle optimizer
POA Pelican Optimization Algorithm
SABO Subtraction-Average-Based Optimizer
HHO Harris Hawk Optimization
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