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ABSTRACT: With the increasing integration of emerging source-load types such as distributed photovoltaics, electric
vehicles, and energy storage into distribution networks, the operational characteristics of these networks have evolved
from traditional single-load centers to complex multi-source, multi-load systems. This transition not only increases
the difficulty of effectively classifying distribution networks due to their heightened complexity but also renders
traditional energy management approaches—primarily focused on economic objectives—insufficient to meet the
growing demands for flexible scheduling and dynamic response. To address these challenges, this paper proposes
an adaptive multi-objective energy management strategy that accounts for the distinct operational requirements of
distribution networks with a high penetration of new-type source-loads. The goal is to establish a comprehensive energy
management framework that optimally balances energy efficiency, carbon reduction, and economic performance in
modern distribution networks. To enhance classification accuracy, the strategy constructs a multi-dimensional scenario
classification model that integrates environmental and climatic factors by analyzing the operational characteristics
of new-type distribution networks and incorporating expert knowledge. An improved split-coupling K-means pre-
clustering algorithm is employed to classify distribution networks effectively. Based on the classification results, fuzzy
logic control is then utilized to dynamically optimize the weighting of each objective, allowing for an adaptive adjust-
ment of priorities to achieve a flexible and responsive multi-objective energy management strategy. The effectiveness of
the proposed approach is validated through practical case studies. Simulation results indicate that the proposed method
improves classification accuracy by 18.18% compared to traditional classification methods and enhances energy savings
and carbon reduction by 4.34% and 20.94%, respectively, compared to the fixed-weight strategy.

KEYWORDS: High-proportion new-type source-loads; multi-dimensional scenario classification; clustering algo-
rithms; fuzzy logic control; adaptive multi-objective energy management

1 Introduction
With the increasing integration of distributed photovoltaics, wind power generation, and electric vehicle

charging stations, the volatility and uncertainty of distribution network loads have risen significantly, posing
substantial challenges for traditional energy management strategies in handling complex and dynamic
operational scenarios [1–3]. Meanwhile, although the deployment of energy storage systems enhances the
flexibility of system scheduling, it also adds layers of complexity to energy management. Effective control
of storage charging and discharging strategies is essential to ensure a coordinated balance between supply
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and demand [3–6]. However, the absence of robust multi-dimensional scenario classification methods has
hindered the ability to comprehensively characterize the diverse operational characteristics of different
distribution networks, ultimately compromising the effectiveness of energy management strategies [7–10].
Therefore, there is an urgent need for an adaptive multi-objective energy management strategy capable
of dynamically adjusting objective weights to achieve optimal energy efficiency, carbon reduction, and
economic performance across varying operational scenarios.

There has been considerable research on classification methods for low-voltage distribution networks.
References [11,12] propose deep learning models based on deep neural networks for classifying distribution
networks. Reference [13] introduces a formula-based classification for distributed system optimization,
identifying two main types: nested and alternating formulas. Reference [14] explores the use of classification
methods to facilitate the accurate estimation of probabilistic constraints in optimization problems under
uncertainty. Reference [15] proposes the use of the ISODATA (Iterative Self-Organizing Data Analysis
Technique) algorithm for customer classification within distribution networks. Reference [16] presents a
hierarchical and zonal planning strategy for low-voltage distribution network looped equipment based on
an improved K-Means partitioning method. While these studies have made progress in distribution network
classification, they primarily rely on single indicators or specific types of classification methods and fail
to comprehensively account for the complexities arising from the interactions among multi-source loads,
distributed energy resources, and energy storage systems, as well as the diversity and dynamics induced by
load fluctuations and bi-directional power flows. This makes them inadequate for accurately identifying the
characteristics of different distribution networks.

Current research on energy management strategies primarily focuses on the following areas: Opti-
mization design and energy management strategies for integrated energy systems, such as the universal
optimization framework and model proposed in reference [17], which achieve optimal structural configura-
tion and energy management strategies for multi-energy systems through optimization. Energy management
methods addressing renewable energy uncertainty, such as the multi-microgrid energy management strategy
proposed in references [18,19], which aims to mitigate the impact of uncertain renewable energy outputs on
the system. Global optimization requirements, such as the inner-outer framework proposed in reference [20],
which includes an outer layer for size optimization and an inner layer focused on optimizing the operation
of the energy management system. Modeling of carbon emission flows and energy transmission processes,
such as the carbon emission flow model for multi-energy systems in reference [21]. Economic scheduling
of regional energy systems coupled with multiple networks, such as the regional energy system scheduling
model for power and gas network coupling proposed in reference [22]. Integration of renewable energy and
energy storage technologies, such as the smart distribution network energy management system for hydrogen
storage and renewable energy introduced in reference [23]. Energy management methods considering
demand response, such as the probabilistic methods used in reference [24] to simulate uncertain load
behavior for efficient and sustainable energy management. Optimization management of energy storage
systems, such as the fuzzy logic-based power allocation between hydrogen storage and electricity storage
in reference [25]. And energy management of flexible energy centers, such as the optimization strategy for
connecting energy centers to the grid discussed in reference [26]. Moreover, the application of historical
data collected by energy management systems is of significant importance. Reference [27] proposes a
data-driven system strength forecasting scheme based on historical online data collected by the energy
management system, and utilizing multi-objective machine learning algorithms to enhance prediction
accuracy. Reference [28] proposes an adaptable grid resiliency framework derived from a meticulous
examination of existing metric structures. Based on the analysis of the above literature, combined with the
research content of this paper, the relevant summary and comparison are shown in Table 1.
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Table 1: Comparison and summary of current literature research status and contribution of this study

Existing research Methodology Limitations Contribution of this study
Deep learning for

distribution network
classification [11,12]

Neural networks Lacks physical
interpretability and
expert knowledge

Incorporates environmental
factors and expert knowledge

for better adaptability
Formula-based
classification for
optimization [13]

Mathematical
models

Limited to specific
structures, lacks

flexibility

Uses an improved K-means
method to enhance stability and

reduce initial condition
dependence

ISODATA and
K-means for
distribution

networks [15,16]

Clustering
algorithms

Focuses on topology,
ignores distributed

generation and storage

Proposes a split-coupled
K-means approach considering
multi-source loads and storage

Energy management
in distribution

networks [17–19]

Optimization
models

Lacks scenario
adaptability

Integrates classification with
adaptive energy management

Uncertainty modeling
of renewable

energy [20,21]

Forecasting and
optimization

Uses fixed objective
weights, lacks

dynamic adjustment

Adopts fuzzy logic to
dynamically balance energy,
carbon, and cost objectives

Multi-network energy
optimization [22–26]

Coordinated
scheduling

Focuses on regional
systems, not

distribution networks

Optimizes energy management
based on scenario classification

As can be seen from Table 1, existing scenario classification methods are often based on single indicators
or specific types, with limited consideration of multidimensional factors such as environmental and climatic
conditions, and they lack integration with expert knowledge. This leads to inadequate adaptability and
accuracy in classification results. Meanwhile, conventional energy management strategies are generally
generic and fail to optimize operations for different distribution feeder scenarios, making it difficult to fully
achieve the comprehensive objectives of energy efficiency, low carbon emissions, and economic viability.
To address these issues, this paper proposes a multidimensional scenario classification method that extends
traditional classification criteria by incorporating environmental and climatic factors while integrating
expert knowledge to enhance classification accuracy and adaptability. Furthermore, a split-coupled improved
K-means pre-clustering algorithm is employed to classify distribution feeders, mitigating the dependency on
initial conditions and improving the stability and precision of clustering results. Based on this classification,
a self-adaptive multi-objective energy management strategy is proposed, utilizing fuzzy logic control to
dynamically optimize objective weights. This strategy enables an effective balance among energy efficiency,
carbon reduction, and economic benefits by adaptively adjusting the weight of each objective according to
different scenarios. Through case studies, the effectiveness of this strategy is validated, demonstrating its
capability to enhance energy efficiency, reduce carbon emissions, and improve economic performance.

2 Scenario Classification Model for Source-Grid-Load-Storage Integrated New Distribution Networks
The scenario classification model for new distribution networks integrates environmental and climatic

factors with expert knowledge to enhance classification accuracy. It identifies five key dimensions to quantify
essential indicators: load characteristics, distributed energy characteristics, energy storage characteristics,
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environmental factors, and comprehensive system attributes. These dimensions are rigorously defined to
accommodate the classification requirements of various operational scenarios. Based on a detailed analysis
of the distinctive features of new distribution networks, a multi-dimensional scenario classification model
is developed. To further refine the classification process, an improved split-coupled K-means pre-clustering
algorithm is employed, optimizing the overall classification methodology.

2.1 Characteristic Analysis of New Distribution Network
The characteristics analysis of the new distribution network mainly includes the following five aspects:
(a) Load Characteristics
First, Average Load (Lavg): Represents the mean load over a given period, used to assess the baseline

load level of the distribution network. It is defined as follows:

Lavg =
1
T

T
∑
t=1

L (t) (1)

where L(t) is the load at time t; T is the total time.
Second, Load Fluctuation (Lvar): Measures the variability of load across different time intervals,

providing insights into load stability. It is defined as:

Lvar =

√
1
T

T
∑
t=1
(L (t) − Lavg)

2

Lavg
(2)

Third, Flexible Load Ratio (Fflex): Represents the proportion of flexible load within the total load, serving
as an indicator of the distribution network’s flexibility. It is given by:

Fflex =

T
∑
t=1

Lflex (t)
T
∑
t=1

L (t)
(3)

where Lflex(t) is the flexible load at time t.
Fourth, Charging Load Utilization Rate (UCP): Measures the effective utilization of electric vehicle

charging piles, defined as the ratio of the actual charging load to the total charging pile capacity:

UCP =

T
∑
t=1

PCP (t)

PCP,cap × T
(4)

where PCP,cap is the total load capacity of the charging pile; PCP(t) is the load of charging pile at time t.
(b) Output Characteristics of Distributed Energy (such as photovoltaic)
First, Average PV Output (PPV,avg): Represents the mean power generation of the photovoltaic system

over a specified period:

PPV,avg =
1
T

T
∑
t=1

PPV (t) (5)

where PPV(t) is the photovoltaic output at time t.
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Second, PV Output Fluctuation (PPV,var): Evaluates the degree of variation in PV output, reflecting the
stability of the distributed power source:

PPV,var =

√
1
T

T
∑
t=1
(PPV (t) − PPV,avg)

2

PPV,avg
(6)

Third, Photovoltaic Output Climate Influence Coefficient (αcl): Quantifies the impact of climatic
conditions (e.g., sunlight intensity and temperature) on PV output. It is defined as follows:

αcl =
PPV,max

Isolar ⋅ APV ⋅ ηPV
(7)

where PPV,max is the maximum PV output; Isolar is the solar irradiance; APV is the photovoltaic panel area;
ηPV is the photovoltaic system efficiency.

(c) Energy Storage Characteristics
First, Energy Storage Charging and Discharging Efficiency (ηst): Reflects the energy conversion

efficiency of the energy storage system and is given by:

ηst =
Edis

Ech
(8)

where Edis is the total energy of discharge; Ech is the total energy of the charge.
Second, State of Charge (SOC): Indicates the current charge level of the energy storage system, expressed

as a ratio ranging from 0 to 1.
Third, Energy Storage Charging and Discharging Time Ratio (γch): Quantifies the relationship between

charging and discharging durations of the energy storage system:

γch =
Tch

Tdis
(9)

where Tch is the total charging time of the energy storage system; Tdis indicates the total discharge time of
the energy storage system.

(d) Environmental and Climatic Characteristics
First, Average Temperature (Tavg): Represents the average temperature over a given period (e.g.,

annually or seasonally) to assess its potential impact on system operation:

Tavg =
1
T

T
∑
t=1

T (t) (10)

where T(t) is the temperature value at time t.
Second, Humidity Variation Rate (Hvar): Captures the indirect impact of humidity on load demand and

distributed energy output:

Hvar =

√
1
T

T
∑
t=1
(H (t) −Havg)

2

Havg
(11)

where H(t) is the humidity value at time t; Havg is the mean humidity over the period.
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(e) Comprehensive Indicators
First, Source-Load Matching Degree (M): Evaluates the alignment between distributed generation

output and load demand, measured as the standard deviation of their difference:

M =

�
		
 1

T

T
∑
t=1
(L (t) − PDG (t))2 (12)

where PDG(t) represents the total output of the distributed generation at time t.
Second, Load Regulation Capability (C): Reflects the system’s capacity to adjust load demand in response

to grid conditions, quantified by the total flexible load response:

C =
T
∑
t=1

ΔLflex (t) (13)

where ΔLflex(t) represents the amount of flexible load adjustment at time t.

2.2 Multi-Dimensional Scene Classification Method
By quantifying the aforementioned characteristic indicators, a multidimensional feature space is con-

structed, mapping the operational data of distribution networks under varying environmental and climatic
conditions into this space. An improved split-coupling K-means pre-clustering algorithm is employed to
cluster sample points within the feature space, grouping distribution networks with similar characteristics
into distinct categories to form representative operational scenarios. To enhance classification accuracy and
applicability, the clustering results are further refined through expert knowledge-based optimization. The
main steps of the multidimensional scene classification method are as follows:

(a) Construction of a Multidimensional Feature Space
Based on the long-term operational characteristics of the distribution network, data from several weeks

or months is utilized to capture seasonal and time-of-day variations. This approach prevents excessive
classification by grouping similar scenarios and focusing on key factors that influence network performance,
thereby reducing the operational burden on system operators. The extracted features are represented as
feature vectors, with each distribution network’s data sample represented as an n-dimensional feature vector
Xi:

Xi = [Lavg, Lvar , Fflex , UCP, PPV,avg, PPV,var , αcl , ηst , SOC , γch, Tavg, Hvar , M , C]i (14)

where i represents the i distribution networks; n is the characteristic number. Construct all samples as matrix
X:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X1
X2
⋮

Xm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(15)

where m is the total number of sample distribution networks.
(b) Improved Split-Coupling K-Means Pre-Clustering Algorithm



Energy Eng. 2025;122(5) 1955

First, to quantify the similarity between different distribution networks, the Euclidean distance matrix
within the feature space is computed as follows:

D (i , j) =
�
		


n
∑
k=1
(Xi ,k − X j ,k)

2 (16)

Second, the K-means algorithm is widely used in power load curve clustering due to its efficiency.
However, it has notable limitations, such as the need to predefine the number of clusters K and its sensitivity
to the selection of initial cluster centers. These limitations are particularly evident when dealing with
high-dimensional power load data, where traditional K-means may fail to accurately capture the intrinsic
structure of the dataset. To address these issues, we propose an improved feature vector-based split-merge
K-means pre-clustering algorithm. Compared with traditional K-means, this method incorporates the
bisecting K-means algorithm, which initially treats all data as a single cluster and progressively partitions it
through bisecting clustering until the predetermined number of clusters is reached. This approach mitigates
the dependence on the initial cluster center selection and enhances the stability of the clustering process.
However, the performance of bisecting K-means is still influenced by the splitting strategy. Therefore, we
further integrate a split-merge mechanism guided by the Calinski-Harabasz Index (CHI) as an effectiveness
criterion. The algorithm performs splitting and merging operations only when the CHI index increases,
continuing until convergence, thereby dynamically determining the optimal number of clusters. The advan-
tage of this method lies in its ability to reduce the dependence on initial conditions inherent in traditional
K-means, while also optimizing the splitting process through an effectiveness metric, resulting in more
accurate and stable clustering outcomes. As a result, it is better able to capture the complex structure of power
load data, particularly when handling high-dimensional datasets.

(c) Expert-Guided Optimization and Final Classification
To enhance the practical applicability of the clustering results, expert knowledge is incorporated to refine

the classification process through the introduction of constraints and the adjustment of distance metrics.
First, introducing constraints into the clustering process

if Lvar > threshold⇒ Adjust Cluster (17)

Second, the distance measure is modified by incorporating feature-specific weights αk. allowing critical
features to exert a greater influence on the classification process:

D (i , j) =
�
		


n
∑
k=1

αk (Xi ,k − X j ,k)
2 (18)

where αk represents the weight of the k-th feature, determined based on expert experience to ensure that
critical features dominate the classification process.

By integrating formalized and quantified feature extraction with expert-guided optimization, the
proposed multidimensional scenario classification model enables the precise identification of representative
distribution network scenarios. The model categorizes distribution networks into four primary types: PV-
dominated, flexible load-dominated, charging pile load-dominated, and mixed-generation, load, and storage
scenarios. This classification framework ensures adaptability to the diverse operational conditions of modern
distribution networks.

A flowchart of the multidimensional scenario classification process is shown in Fig. 1.
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Figure 1: Flow chart of multi-dimensional scene classification

3 Adaptive Multi-Objective Energy Management Strategy Considering Dynamic Changes of Objective
Weights

The multi-dimensional scenario classification of modern distribution networks is inherently linked to
multi-objective energy management strategies. By analyzing the energy structure, load characteristics, and
operational environment of distribution networks, scenario classification distinguishes different distribution
networks, providing a systematic foundation for developing targeted energy management strategies. Based
on the classification results, customized strategies can be formulated to optimize network operation under
varying conditions. To this end, this paper proposes an adaptive multi-objective energy management strategy
that accounts for the dynamic adjustment of optimization objective weights. The proposed strategy leverages
fuzzy logic control to adaptively regulate the weights of multiple optimization objectives, thereby achieving
a balanced trade-off among energy conservation, carbon reduction, and cost-effectiveness.

3.1 Dynamic Adjustment of Objective Weights Based on Fuzzy Logic Control
The integration of scenario classification with fuzzy logic control plays a pivotal role in the proposed

adaptive energy management strategy, significantly enhancing the optimization capability of distribution
networks. By analyzing historical operational data, scenario classification groups distribution feeders into
representative categories and clarifies the dominant operational objectives for each category. For instance,
a PV-dominated scenario prioritizes peak-valley balancing, whereas a charging pile-dominated scenario
focuses on load flexibility. These scenario labels serve as critical inputs for the fuzzy logic control system,
enabling it to dynamically adjust the objective weights according to specific operational conditions. Fuzzy
logic control effectively addresses complexity and uncertainty in power system operation, facilitating real-
time adaptive optimization of the energy management strategy. By continuously refining decision-making
based on system conditions, fuzzy logic control enhances flexibility while reducing computational complex-
ity. Moreover, scenario classification streamlines fuzzy rule design, ensuring computational efficiency and
decision rationality.
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Through this integrated approach, scenario classification supports and enhances fuzzy control, making
the energy management strategy more adaptive, efficient, and capable of optimizing energy conservation,
carbon reduction, and economic performance. The fuzzy logic control process is illustrated in Fig. 2.

Dynamic weight

Scene classification result
PV-dominated, flexible load-dominated, charging pile load-dominated, 

source-load-storage hybrid scenarios

Input variable
Such as PV-dominated: PV output fluctuation rate, load matching degree

Flexible load-dominated: Load adjustment capability, load volatility

Fuzzification
The fuzzy inference process generates a set of output weights w=[ 1,

2,…, k], corresponding to different optimization objectives, such as 
energy conservation, cost-effectiveness, and low carbon. 

Fuzzy rule:IF u1 is A1 AND 
u2 is A2 THEN is B

Defuzzification
Such as prioritizing energy conservation and low carbon in PV-dominated 

scenarios, and emphasizing cost-effectiveness and load adjustment 
capability in charging pile-dominated scenarios.

Exact weight value

Matched feature
Adaptive 

configuration

Figure 2: Fuzzy logic control

Embedding scenario classification results into a fuzzy logic control system is key to guiding the
configuration of the fuzzy rule base and dynamically adjusting optimization weights. Scenario classification
results influence the inputs, rule selection, and weight outputs of the fuzzy logic system as follows:

(a) Configuring Fuzzy Control Inputs Based on Scenario Classification
After classifying the distribution areas into scenarios such as PV-dominated, flexible load-dominated,

charging pile load-dominated, and source-load-storage hybrid scenarios, each scenario exhibits distinct
operational characteristics. Based on the classification results, the input variables of the fuzzy logic control are
configured to match the specific features of the current scenario, reflecting the actual operating conditions of
the distribution area. For example, in a PV-dominated scenario, the inputs may include PV output fluctuation
rate and load matching degree, while a flexible load-dominated scenario may focus on load adjustment
capability and load volatility.

(b) Scenario-Adaptive Configuration of the Fuzzy Rule Base
The fuzzy rule base is dynamically configured to align with the identified scenario, ensuring targeted

and flexible control logic. For example, in a PV-dominated scenario, the rule base prioritizes objectives such
as peak shaving, valley filling, and output stability, defining a set of IF-THEN rules as follows:

IF u1 isA1 AND u2 is A2 THEN ω is B (19)
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where Ai (i = 1, 2, . . . , n) represents the fuzzy sets of the input variables, and B denotes the fuzzy set of
the output variable (weight). By linking classification results to rule selection, the control system remains
adaptive to different operational conditions.

(c) Dynamic Weight Outputs via Fuzzy Inference
The fuzzy inference process generates a set of output weights w = [ω1, ω2, . . . , ωk], corresponding to

different optimization objectives, such as energy conservation, cost-effectiveness, and low carbon. The system
flexibly adjusts these weights based on the characteristics of the classified scenario. For instance, in a PV-
dominated scenario, the weights for energy conservation and low carbon objectives are increased, whereas
in a scenario with high load volatility, the emphasis may shift to cost-effectiveness and low carbon. This
approach ensures that the fuzzy logic output aligns with the operational demands of different distribution
area scenarios.

(d) Defuzzification for Precise Weight Determination
The fuzzy weight set obtained from inference is transformed into precise values ω through defuzzifi-

cation, enabling their application in the multi-objective optimization process. Since the fuzzy rule base is
adaptively configured based on scenario classification results, the defuzzified weights inherently reflect the
specific demands of the current distribution area scenario. For instance, in a PV-dominated scenario, energy
conservation and low carbon are assigned higher weights, while in a charging pile load-dominated scenario,
greater emphasis is placed on cost-effectiveness and load adjustment capabilities.

At its core, fuzzy logic control dynamically adjusts objective weights in a multi-objective optimization
strategy, achieving a balanced trade-off between energy conservation (efficiency), carbon reduction (emis-
sion minimization), and cost-effectiveness. Since these objectives often involve conflicting requirements,
the system dynamically prioritizes each objective based on real-time operational conditions. This approach
effectively balances energy efficiency, carbon reduction, and economic viability, thereby enhancing the
overall optimization performance of the distribution network.

3.2 Adaptive Multi-Objective Energy Management Strategy
While energy prices and carbon emission prices are relatively mature and can be directly translated into

economic objectives, managing the complexity of distribution networks with a high proportion of renewable
energy and flexible loads cannot be fully addressed solely through conventional economic objectives. To this
end, this paper proposes an adaptive multi-objective energy management strategy. The optimization goals
of this strategy include energy efficiency (maximizing energy savings), low-carbon operation (minimizing
carbon emissions), and economic efficiency (minimizing costs). These objectives often involve intrinsic
trade-offs. To address this, the proposed strategy employs fuzzy logic control to dynamically adjust the
weights of each optimization objective based on the real-time operational conditions of different scenarios.
This enables a comprehensive and balanced optimization process that dynamically adapts to varying
system demands.

By leveraging fuzzy logic control for weight optimization, the strategy continuously adjusts objective
weights and integrates them into a comprehensive objective function for multi-objective optimization. The
resulting objective function is formulated as follows:

F =min
n
∑
i=1

ωi fi (x) (20)

where ωi is the weight coefficient of the i-th object, and its value range is [0, 1]; f i(x) is the i-th objective
function.
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First, the energy-saving objective aims to enhance energy utilization efficiency and minimize energy
losses by optimizing the charging and discharging strategy of the energy storage system:

f1 (x) =min(
T
∑

t

El oss (t)
Etotal (t)

) (21)

where T is the total time step; Eloss(t) is the energy loss at time t; Etotal(t) is the total energy at time t (including
charge and discharge energy).

Second, the low-carbon objective seeks to minimize the overall carbon emissions of the system by
optimizing the charging and discharging strategy of the energy storage system:

f2 (x) =min(
T
∑
t=1

Pg (t) αg (t) +
T
∑
t=1

Pc (t) αe (t) ηch (t) −
T
∑
t=1

Pd (t) αg (t)
ηd is (t)

) (22)

where Pg(t) is the power consumption of the distribution network at time t; Pc(t) and Pd(t), respectively
represent the charge and discharge of energy storage at time t; ηch(t) and ηdis(t) are the charging and
discharging efficiencies at time t of energy storage, respectively. αg(t) and αe(t) are the carbon emission
factors of grid electricity and energy storage charging at time t, respectively.

Third, the economic objective aims to minimize the total cost, which includes electricity procurement
costs, operation and maintenance costs, and energy storage degradation costs. This is achieved by optimizing
the charging and discharging strategy of the energy storage system:

f3 (x) =min
T
∑
t=1
(Cbu y (t) +M (t) + O (t) + Pc (t) λch (t) − Pd (t) λd is (t)) (23)

where Cbuy(t) is the cost of electricity purchase cost, which is influenced by electricity price fluctuations;
M(t) and O(t) are respectively the operation and maintenance cost and the degradation cost of the energy
storage system at time t of the station. λch(t) and λdis(t) are the electricity purchase and selling prices at
time t.

Fourth, Constraints include the following aspects:
(a) Energy Balance Constraints

Pg (t) ≤ Pd (t) + Pv (t) + Pgr id (t) (24)

where Pv(t) is the photovoltaic power generation at time t; Pgrid(t) supplies power to the grid at time t.
(b) Power Limitations

{ 0 ≤ Pc (t) ≤ Pmax
0 ≤ Pd (t) ≤ Pmax

(25)

where Pmax is the maximum power of charge and discharge.
(c) State of Charge (SOC) Constraints

SOCmin ≤ SOC (t) ≤ SOCmax (26)

where SOC(t) is the state of charge of energy storage at time t; SOCmin and SOCmax are the minimum and
maximum charged states of energy storage, respectively.
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(d) Flexible Load Constraints

Pload,min (t) ≤ Pload (t) ≤ Pload,max (t) (27)

where Pload,min(t) is the power of flexible load at t; Pload,min(t) and Pload,max(t) are respectively the minimum
and maximum power requirements of the flexible load at t.

Finally, to solve this multi-objective optimization problem, an improved particle swarm optimization
(IPSO) algorithm is employed. The key enhancements in IPSO include:

(a) Integration of Individual and Global Optima: Unlike the standard particle swarm optimization
(PSO) algorithm, IPSO incorporates a hybrid mechanism that balances individual and global optima,
improving both convergence speed and stability.

(b) Dynamic Inertia Weight Adjustment: A dynamic adjustment strategy is adopted for inertia weight,
enabling adaptive velocity updates based on the current iteration number.

The fundamental equations of the particle swarm optimization algorithm are given by:

vi (t + 1) = ωvi (t) + c1r1 (pi − xi (t)) + c2r2 (g − xi (t)) (28)
xi (t + 1) = xi (t) + vi (t + 1) (29)

where vi is the velocity of particle i, xi is the position of particle i, ω is the inertial weight, c1 and c2 are
acceleration constants, r1 and r2 are random numbers, pi is the individual optimal position of particle i, g is
the global optimal position.

Based on the above formulation, the flowchart of the adaptive multi-objective energy management
strategy for multi-dimensional scenario classification in the distribution network is illustrated in Fig. 3.

Data acquisition and preprocessing

Historical data of 
distribution network

Data are 
standardized

Feature extraction and scene classification

Fuzzy rule base 
configuration

Adjustment 
of weight

Fuzzy logic controller design

Guide Guide

+ No

System control and implementation

Yes

Is multi-objective 
optimization optimal?

Figure 3: Multi-objective energy management strategy flow chart
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4 Case Study and Validation

4.1 Background of the Case Study
The research presented in this study is based on historical operational data from 100 typical residential

distribution networks in a specific city. The dataset for each distribution networks encompasses a wide range
of parameters, including load data, distributed photovoltaic (PV) generation, flexible load ratios, charging
pile load data, energy storage system characteristics, environmental and climatic factors, electricity prices,
carbon emissions data, and operational constraints. The validation objectives are outlined as follows:

(a) Validation of Classification Accuracy: A comparative analysis was conducted between a multi-
dimensional scenario classification method (Method 1) and a traditional single-indicator classification
method (Method 2) [29]. The classification accuracy of these methods was evaluated against expert
classification results.

(b) Comparison of Energy Management Strategies: The performance of an adaptive multi-objective energy
management strategy (Strategy 1) was compared with a fixed-weight strategy (Strategy 2) [30] in
terms of energy efficiency, carbon emission reduction, and cost-effectiveness. Strategy 2 employs fixed
objective weights of 0.3, 0.3, and 0.4 for energy conservation, carbon reduction, and cost-effectiveness,
respectively, without adaptation throughout the optimization process. In contrast, Strategy 1 utilizes a
fuzzy logic control mechanism to dynamically adjust these weights in response to real-time operating
conditions and feeder characteristics.

To thoroughly evaluate both strategies, simulation experiments were first conducted on a 21-bus three-
phase four-wire low-voltage distribution networks. This model accurately represents a typical low-voltage
distribution system, allowing for the simulation of various operational scenarios involving electrical loads,
distributed energy generation, and energy storage regulation. The comparative analysis examines the trade-
offs in energy efficiency, carbon reduction, and cost savings between the two strategies. Based on these
insights, the study extends the evaluation to 100 distribution networks for a broader and more detailed
performance assessment.

The 21-bus low-voltage distribution network topology is shown in Fig. 4. The rated line voltage is 380 V,
the self-impedance of the line is Zii = 0.650 + j 0.412 Ω/km, and the length of each line is 50 m. Nodes 4, 8,
10, 11, 12, 13, 16, 17 and 20 are connected with different new source charges to construct different distribution
network scenarios.

MV(0) LV(1) 2 3 4

19 20 21

5 11 12 13 14 15 16

6 7 8 9 10

17 18
MV Transformer primary side
LV Transformer secondary side

Figure 4: 21 bus low-voltage distribution network topology
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The relevant parameters used in the simulation are shown in Table 2.

Table 2: Parameters of the low-voltage distribution network

Parameter Data Rationale
Power demand Max. 200 kW per hour Typical peak demand for a residential

community with distributed energy
resources

Photovoltaic
power

Single unit during the day (7–18 h)
maximum of 5 kW per hour, other times

0 kW

Based on typical residential rooftop PV
system capacity and solar radiation

patterns
Energy storage The single unit has a capacity of 40 kWh,

a maximum of 6 kW per hour, and a
charge and discharge efficiency of 90%

Reflects commonly used lithium-ion
battery storage in low-voltage networks

Electrovalence Peak hours (10:00–15:00, 18:00–21:00):
0.8 yuan/kWh;

Flat section (7:00–10:00, 15:00–18:00,
21:00–23:00): 0.5 yuan/kWh; Low period

(23:00–7:00): 0.3 yuan/kWh;

Time-of-use pricing structure based on
typical electricity market tariffs and

encourages load shifting and optimal
energy use

Charging pile Rated power 20 kW Standard fast-charging capability for
residential and electric public vehicle

charging
Electric vehicle Electric vehicle battery capacity 60 kWh,

maximum charging power
7 kW, maximum discharge power 5 kW

Represents mid-range electric vehicles
commonly used in urban areas

General carbon
emission factor

0.65 kg CO2/kWh Based on national energy mix and
emission factors from coal-dominated

grids

The standard curve of typical daily load and photovoltaic power generation is shown in Fig. 5.
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Figure 5: PV and load per unit curve
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4.2 Precision Comparison of Distribution Network Classification Methods
To thoroughly validate the classification accuracy, this study utilizes data from 100 distribution networks

with known types. These distribution networks include photovoltaic (PV)-dominated distribution networks
(Type 1), flexible load-dominated distribution networks (Type 2), charging pile-dominated distribution
networks (Type 3), and mixed-scenario distribution networks (Type 4). The classification results were
manually labeled by power grid experts based on actual operational data and their professional judgment,
which served as the reference for comparison. The dataset includes key variables such as PV output,
flexible load characteristics, charging pile load, environmental factors, and climatic conditions. To assess
classification performance, this study employs two commonly used accuracy metrics: recall and precision,
which are computed using the following formulas:

R = NT

NS
× 100% (30)

P = NT

NY
× 100% (31)

where R and P are recall rate and accuracy rate, respectively; NT , NS, and NY are respectively the number
of correctly classified distribution networks, the total number of actual distribution networks, and the total
number of predicted distribution networks. The classification results obtained by the two models are shown
in Table 3.

Table 3: Precision comparison of classification methods

Distribution network type Type-1 Type-2 Type-3 Type-4
Real quantity 25 30 20 25

Method 1 Count correctly 23 28 18 23
Method 2 Count correctly 20 24 14 20

Method 1 Predict the number 24 29 19 25
Method 2 Predict the number 30 32 18 23

Method 1 Recall Rate (%) 92 93.33 90 92
Method 2 Recall Rate (%) 80 80 70 80
Method 1 Accuracy (%) 95.83 96.55 94.74 92
Method 2 Accuracy (%) 66.67 75 77.78 86.96

Table 3 presents a comparison of classification accuracy methods for distribution networks, including
recall rate and precision, with a multi-dimensional model (Method 1) and a traditional model (Method 2)
analyzed. Among the four different types of distribution networks (photovoltaic-dominated, flexible load-
dominated, charging pile-dominated, and mixed generation-load-storage distribution networks), Method
1 demonstrates higher classification accuracy. The number of correctly classified instances for Method 1
exceeds that of Method 2 in all distribution network types. For example, in the photovoltaic-dominated
distribution network, Method 1 correctly classified 23 instances, while Method 2 classified only 20. For
the total of 100 distribution networks, Method 1 correctly classified 92 instances, compared to 78 by the
traditional method, showing an advantage of 14 instances. Additionally, recall rate, which measures the
proportion of correctly identified actual categories by the model, is consistently higher for Method 1 across
all distribution network types. Particularly in the photovoltaic-dominated and flexible load-dominated
distribution networks, the recall rate of Method 1 is 92% and 93.33%, respectively, significantly surpassing
Method 2’s 80% for both. In the mixed generation-load-storage distribution network type, Method 1’s
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recall rate also remains high at 92%, compared to 80% for Method 2. Precision, which measures the
proportion of correctly predicted instances for a given category, is also generally higher for Method 1. In
particular, in the photovoltaic-dominated and flexible load-dominated distribution networks, Method 1’s
precision is 95.83% and 96.55%, respectively, considerably higher than Method 2’s 66.67% and 75%. On
average, Method 1’s precision exceeds that of Method 2 by 18.18% across all distribution network types,
further emphasizing the superiority of the multi-dimensional model in distribution network classification.
Overall, the multi-dimensional model (Method 1) shows strong classification ability across all categories,
with superior performance in both recall rate and precision. While the traditional model (Method 2) is
also capable of classification, its performance in terms of accuracy, recall rate, and precision is inferior to
the multi-dimensional model, particularly in terms of recall and precision. This discrepancy can lead to
reduced classification accuracy for certain distribution network types, potentially impacting subsequent
energy management.

The superior performance of the multidimensional classification model can be attributed to its inte-
gration of multiple key features, including PV generation, flexible load regulation capability, and energy
storage response dynamics. These features collectively provide a more comprehensive representation of the
operational characteristics of distribution networks, thereby enhancing the model’s adaptability to complex
power system conditions. Unlike traditional classification models, which typically rely on a single index (e.g.,
load or generation), the multidimensional model incorporates diverse scenario-specific information. This
includes PV-dominated and charging pile load-dominated scenarios, as well as intricate load fluctuation
patterns. By capturing these complexities, the model achieves a higher degree of accuracy in scenario iden-
tification. Leveraging an extensive set of data features, it demonstrates superior flexibility and adaptability,
ensuring reliable classification performance across varying operational conditions. In contrast, conventional
models often disregard critical information, limiting their capability to accurately distinguish complex sce-
narios. This shortcoming underscores the advantage of the multidimensional model in uncovering intricate
patterns within the dataset, ultimately improving classification accuracy. The results demonstrate that the
multidimensional approach achieves higher recall and precision, making it significantly more effective
in recognizing and predicting the operational states of distribution networks. Notably, the model excels
in capturing the complex interdependencies among generation, load, and storage—an essential capability in
modern power systems. This advantage reinforces its applicability in distribution network classification and
highlights its potential to deliver accurate and reliable results across diverse operational environments.

4.3 Comparative Analysis with Traditional Energy Management Strategies
Based on a 21-bus low-voltage distribution network, various operational scenarios were constructed

by integrating different load types and proportions at nodes 4, 8, 10, 11, 12, 13, 16, 17, and 20, while main-
taining the baseline residential load unchanged. These scenarios simulate diverse operational conditions,
capturing the interactions among PV generation, flexible loads, charging pile loads, and energy storage
systems. The simulation results, comparing the adaptive multi-objective energy management strategy
(Strategy 1) with a traditional fixed-weight strategy (Strategy 2), are presented in Fig. 6. These results
illustrate the dynamic optimization capabilities of the proposed strategy across different load distributions
and operational conditions.
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Figure 6: Simulation comparison between Strategy 1 and Strategy 2: PV (a), flexible load (b), charging pile (c), mixed (d)

The analysis of each subfigure in Fig. 6 yields the following insights:
First, PV-Dominated Distribution Networks: PV-dominated networks exhibit distinct operational

characteristics, with PV generation contributing 60%–70% of the total daily energy output during peak
solar hours (10:00–16:00). Under Strategy 1, energy efficiency reaches an impressive 95%–98%, while
carbon emissions remain exceptionally low (below 20 kg/h). However, due to the intermittent nature of
PV generation, no electricity is produced at night, necessitating energy storage systems for peak shaving
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and valley filling. This requirement slightly increases operational costs compared to Strategy 2, leading to
marginally lower economic performance.

Second, Flexible Load-Dominated Distribution Networks: Networks dominated by flexible loads are
characterized by significant load fluctuations, with peak demand occurring during morning and evening
rush hours (6:00–8:00 and 18:00–21:00). Flexible load regulation, which can reach up to 30%, enables
Strategy 1 to prioritize daytime load adjustments to enhance energy efficiency and reduce carbon emissions.
During nighttime hours, adjustments focus primarily on cost minimization. Overall, Strategy 1 maintains
consistently high operational efficiency (not falling below 90%) while effectively mitigating carbon emissions
and costs.

Third, Charging-Pile Load-Dominated Distribution Networks: Charging-pile load-dominated net-
works exhibit pronounced peak charging characteristics, with surging demand during daytime (10:00–16:00)
and evening (18:00–21:00) peaks. Strategy 1 dynamically adjusts charging times and storage discharges
during peak periods to smooth load fluctuations, thereby significantly alleviating grid stress. This approach
enhances energy efficiency and reduces carbon emissions, demonstrating superior adaptability to high-
load conditions.

Fourth, Mixed Scenario Distribution Networks: In mixed-scenario networks, where PV generation,
flexible load adjustments, and charging-pile loads coexist, the adaptive strategy dynamically adjusts objective
weights in real time based on prevailing operational conditions. During daytime hours (10:00–16:00), PV
generation is prioritized to supply local loads, while storage systems mitigate peak demands. At night, a
combination of flexible load adjustments and storage discharges ensures a balanced optimization across
economic, efficiency, and carbon reduction objectives.

In contrast, the fixed-weight strategy maintains constant weight assignments throughout the opti-
mization process (energy efficiency: 0.3, carbon reduction: 0.3, economic performance: 0.4). While this
strategy achieves a general equilibrium among objectives, it lacks the responsiveness needed to accommodate
dynamic load variations and energy profile changes, particularly in scenarios with significant fluctuations.
Consequently, this limitation results in reduced efficiency during nighttime hours and slightly elevated
carbon emissions during the day. By contrast, the adaptive multi-objective strategy leverages fuzzy logic
control to dynamically adjust objective weights based on real-time load variations, energy distribution,
and electricity price fluctuations. This dynamic adaptability ensures optimal responses under varying
operational conditions, highlighting the superiority of the proposed strategy in modern distribution network
energy management.

The weights output by Strategy 1 at each time step are summarized in Table 4, illustrating its dynamic
adjustment capability.

Table 4: Strategy 1 output weight value at each moment

Time Type-1 Type-2 Type-3 Type-4
0:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%
1:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%
2:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%
3:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%
4:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%
5:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%
6:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%

(Continued)
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Table 4 (continued)

Time Type-1 Type-2 Type-3 Type-4
7:00 35%/40%/25% 50%/40%/10% 50%/30%/20% 40%/30%/30%
8:00 35%/40%/25% 50%/40%/10% 50%/30%/20% 50%/30%/20%
9:00 35%/40%/25% 50%/40%/10% 60%/30%/10% 60%/30%/10%
10:00 30%/50%/20% 60%/30%/10% 60%/30%/10% 70%/20%/10%
11:00 25%/55%/20% 60%/30%/10% 60%/30%/10% 70%/20%/10%
12:00 20%/60%/20% 60%/30%/10% 60%/30%/10% 70%/20%/10%
13:00 20%/60%/20% 60%/30%/10% 60%/30%/10% 60%/20%/20%
14:00 20%/55%/25% 60%/30%/10% 60%/30%/10% 50%/30%/20%
15:00 30%/50%/20% 50%/40%/10% 50%/30%/20% 50%/30%/20%
16:00 35%/40%/25% 50%/40%/10% 50%/30%/20% 50%/30%/20%
17:00 35%/40%/25% 50%/40%/10% 50%/30%/20% 50%/30%/20%
18:00 30%/30%/40% 60%/30%/10% 60%/30%/10% 50%/30%/20%
19:00 30%/30%/40% 60%/30%/10% 60%/30%/10% 50%/30%/20%
20:00 30%/30%/40% 60%/30%/10% 60%/30%/10% 50%/30%/20%
21:00 30%/30%/40% 50%/40%/10% 50%/30%/20% 40%/30%/30%
22:00 30%/30%/40% 30%/30%/40% 50%/30%/20% 40%/30%/30%
23:00 30%/30%/40% 30%/30%/40% 30%/30%/40% 30%/30%/40%

From the analysis of Table 4, it can be observed that the weights generated by Strategy 1 dynamically
adjust according to specific scenarios, demonstrating remarkable flexibility. For instance:

First, PV-Dominated Distribution Networks: During daytime, when PV generation peaks, the weights
for energy efficiency and carbon reduction are significantly higher. This prioritization maximizes the
utilization of clean energy and minimizes carbon emissions. At night, when energy storage discharges to
meet demand, the weight for economic performance increases moderately to reduce operating costs.

Second, Flexible Load-Dominated Distribution Networks: During the day, due to substantial load
fluctuations, the weights for energy efficiency and carbon reduction are prioritized. Flexible load adjustments
help reduce peak loads and optimize energy efficiency. At night, during low electricity price periods, the
weight for economic performance rises to minimize power procurement costs.

Third, Charging-Pile Load-Dominated Distribution Networks: During peak charging periods, energy
efficiency is emphasized to smooth load spikes, reducing grid stress. Conversely, during off-peak nighttime
periods, economic performance becomes the dominant objective to optimize charging costs.

Fourth, Mixed Scenario Distribution Networks: Incorporating the characteristics of PV generation,
flexible loads, and charging-pile loads, the adaptive algorithm dynamically adjusts weights in real time,
responding flexibly to complex changes. The seamless transition of weights ensures that the overall
operational performance, including energy efficiency, carbon reduction, and economic objectives, is com-
prehensively optimized.

Overall, the flexibility and scenario adaptability of Strategy 1 significantly enhance the comprehensive
performance of the system. This is particularly evident in distribution networks with substantial load
fluctuations or complex scenarios, where Strategy 1 demonstrates superior capabilities.

In the adaptive multi-objective energy management strategy, fuzzy logic control dynamically adjusts
the weights for energy efficiency, carbon reduction, and economic performance to achieve a balanced
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optimization across these objectives. Compared to fixed-weight strategies, this dynamic weight adjustment
mechanism demonstrates distinct advantages under different scenarios. For instance, the adaptive strategy
excels in PV-dominated, mixed-scenario, charging-pile-dominated, and flexible-load-dominated distribu-
tion networks. Its real-time weight adjustment ensures optimal performance in all cases, particularly in
terms of energy efficiency, carbon reduction, and cost optimization. The overall comparison results across
all distribution networks are presented in Fig. 7, highlighting the superior adaptability and optimization
capabilities of the adaptive strategy over the fixed-weight approach.

Fig. 7 demonstrates that the adaptive multi-objective energy management strategy outperforms the
fixed-weight strategy in terms of energy efficiency and carbon reduction. This superiority stems from the
adaptive strategy’s ability to dynamically adjust objective weights in response to real-time operational condi-
tions. By optimizing the utilization of renewable energy, reducing grid electricity purchases, and minimizing
carbon emissions, the adaptive strategy is particularly effective in scenarios with a high penetration of
distributed energy resources. However, in terms of economic performance, the fixed-weight strategy exhibits
a slight advantage over the adaptive strategy in relatively simple scenarios, such as PV-dominated and
flexible-load-dominated networks. These scenarios are characterized by stable PV generation and predictable
load adjustments, allowing the fixed-weight strategy to achieve cost reductions through conventional opti-
mization techniques. In contrast, the adaptive multi-objective energy management strategy demonstrates
superior economic performance in charging-pile-dominated and mixed-scenario networks. This advantage
arises from its dynamic scheduling mechanism, which effectively responds to load fluctuations and optimizes
resource allocation. Consequently, while the fixed-weight strategy is more suitable for simpler and more
stable operating conditions, the adaptive strategy exhibits greater overall optimization capability in complex
and dynamic scenarios.
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Figure 7: Strategy 1 and Strategy 2 comparison effect: PV (a), flexible load (b), charging pile (c), mixed (d)

The total operational costs for both strategies under various distribution network scenarios are
presented in Table 5.

Table 5: Comparison of total operating costs of distribution networks in different scenarios

Type Type-1 Type-2 Type-3 Type-4
Strategy 1 Cost (ten thousand yuan) 57.033 70.204 42.842 53.76
Strategy 2 Cost (ten thousand yuan) 54.13 63.19 44.87 55.6
Cost reduction (ten thousand yuan) −2.903 −7.014 2.028 3.84

Cost reduction percentage (%) −5.09% −9.99% 4.73% 7.42%

Table 5 highlights the differences in cost performance between the adaptive and fixed-weight strategies
across various scenarios. In PV-dominated and flexible-load-dominated networks, the fixed-weight strategy
effectively reduces operational costs, with the maximum reduction reaching 9.99%.

First, PV-Dominated Networks: The high PV generation output enables a direct reduction in grid
electricity purchases. While the adaptive strategy dynamically adjusts operational schedules, it may introduce
unnecessary scheduling complexity and computational overhead, such as engaging energy storage systems
(ESS) in charge-discharge operations when they are not essential. In scenarios with stable PV output and
electricity prices, the fixed-weight strategy efficiently leverages straightforward scheduling based solely on
PV generation, thereby minimizing computational complexity and overall costs.

Second, Flexible-Load-Dominated Networks: The fixed-weight strategy effectively simplifies demand-
response scheduling, avoiding the computational burden of dynamic adjustments. This streamlined
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approach directly reduces system costs while maintaining operational reliability. Conversely, in charging-
pile-dominated and mixed-scenario networks, the adaptive strategy exhibits superior cost-reduction
capabilities, achieving a maximum reduction of 7.42%.

Third, Charging-Pile-Dominated Networks: The high variability in electric vehicle (EV) charging
demand introduces significant load volatility. The fixed-weight strategy, constrained by its inability to
respond dynamically to fluctuations in load and electricity prices, often results in peak-period charging,
leading to increased system costs. In contrast, the adaptive strategy continuously adjusts charging sched-
ules based on real-time electricity prices and grid conditions, prioritizing off-peak charging to enhance
economic performance.

Fourth, Mixed-Scenario Networks: These networks require coordinated optimization of PV generation,
ESS, flexible loads, and charging-pile loads. The static weighting approach of the fixed-weight strategy
lacks the flexibility to accommodate the complexity of such multi-resource scheduling, often leading to
suboptimal resource utilization or increased costs. In contrast, the adaptive strategy dynamically reallocates
resources, reducing grid electricity consumption and minimizing energy waste, thereby achieving superior
economic performance.

The average energy efficiency pairs of the adaptive strategy and the fixed weight strategy in different
scenarios are shown in Table 6.

Table 6: Comparison of energy saving effect after implementation of different strategies

Type Type-1 Type-2 Type-3 Type-4
Strategy 1 Energy efficiency (%) 96.41% 97.35% 95.33% 96.70%
Strategy 2 Energy efficiency (%) 92.34% 93.35% 91.33% 92.70%
Efficiency improvement rate (%) 4.4% 4.28% 4.38% 4.31%

The analysis of Table 6 indicates that the implementation of the adaptive strategy has led to an
overall improvement in the energy efficiency of the distribution network across various scenarios, with
an increase of over 4%. This improvement is primarily attributed to the adaptive strategy’s capability to
dynamically coordinate the operation of PV generation, ESS, flexible loads, and charging piles. By effectively
mitigating resource conflicts and minimizing energy wastage, the strategy ensures optimal energy utilization.
Additionally, the adaptive strategy enhances the load profile through peak shaving, valley filling, and load
shifting, thereby reducing energy losses and transmission inefficiencies during power flow.

The total carbon emission pairs of the distribution network under different scenarios based on the
adaptive strategy and the fixed weight strategy are shown in Table 7.

Table 7: Comparison of total carbon emissions after implementation of different strategies

Type Type-1 Type-2 Type-3 Type-4
Strategy 1 Carbon emissions (kgCO2) 26,650 37,125 25,625 28,830
Strategy 2 Carbon emissions (kgCO2) 35,300 45,625 30,625 38,080
Carbon emission reduction rate (%) 24.50% 18.63% 16.33% 24.29%

As shown in Table 7, the adaptive strategy demonstrates significant carbon reduction effects across
all scenarios compared to the fixed-weight strategy. Among them, the photovoltaic (PV)-dominated
distribution network exhibits the highest carbon emission reduction rate, reaching 24.50%, while the
charging-pile-dominated network shows the lowest reduction rate at 16.33%, with an overall average
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reduction of 20.94%. The superior performance in PV-dominated networks is primarily due to the high
penetration of renewable energy, which significantly reduces reliance on traditional fossil fuels and enhances
energy utilization efficiency. Conversely, in charging-pile-dominated networks, carbon emissions remain
relatively high due to the presence of high-energy-consumption equipment. Nevertheless, the adaptive
strategy still achieves substantial carbon reduction, demonstrating its effectiveness in optimizing energy
consumption and reducing environmental impact.

5 Conclusion
Considering the differentiated needs of new source load distribution networks with a high proportion,

this paper proposes a multi-dimensional scenario classification method and an adaptive multi-objective
energy management strategy and conducts simulation analysis. The following conclusions are obtained:

First, this paper introduces multiple dimensions such as seasonality, time period, and climate con-
ditions. Combined with expert experience to optimize and adjust, it proposes a multi-dimensional scene
classification method. Compared with the traditional single-index classification method, the accuracy rate
of the proposed method is increased by 18.18% on average.

Second, in this paper, fuzzy logic control is used for weight optimization, and an adaptive multi-objective
energy management strategy considering dynamic changes in target weights is proposed. Compared with the
fixed weight strategy, the energy saving and low carbon of the proposed strategy are respectively improved
by 4.34% and 20.94% on average.

Although the proposed scenario classification method demonstrates satisfactory performance in terms
of classification accuracy and strategy adaptability, certain limitations remain. First, the adaptability of the
current method to complex load conditions and diverse energy structures requires further improvement.
In highly dynamic environments, the existing classification model may fail to accurately reflect real-time
variations in loads and energy generation. Second, the method does not account for all potential external
factors, such as climate variations or unforeseen events, which may lead to suboptimal performance in
specific scenarios. Therefore, future research should focus on enhancing the granularity of scenario clas-
sification, exploring real-time data updating mechanisms, and integrating artificial intelligence techniques
to improve classification accuracy and strategy adaptability further. Additionally, optimizing the existing
strategy is crucial, particularly for scenarios with complex loads and diverse energy structures. Developing
more generalized and robust optimization algorithms will be essential to address the increasingly complex
and dynamic operating conditions of distribution networks.
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