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ABSTRACT: The globe faces an urgent need to close the energy demand-supply gap. Addressing this difficulty
requires constructing a Hybrid Renewable Energy System (HRES), which has proven to be the most appropriate
solution. HRES allows for integrating two or more renewable energy resources, successfully addressing the issue
of intermittent availability of non-conventional energy resources. Optimization is critical for improving the HRES’s
performance parameters during implementation. This study focuses on HRES using solar and biomass as renewable
energy supplies and appropriate energy storage technologies. However, energy fluctuations present a problem with
the power quality of HRES. To address this issue, the research paper introduces the Generalized Dynamic Progressive
Neural Fuzzy Controller (GDPNFC), which regulates power flow within the proposed HRES. Furthermore, a unique
approach called Enhanced Multi-Objective Monarch Butterfly Optimization (EMMBO) is used to optimize technical
parameters. The simulation tool used in the research work is HOMER (Hybrid Optimization of Multiple Energy
Resources)-PRO, and the system’s power quality is assessed using MATLAB 2016. The research paper concludes with
comparing the performance of existing systems to the proposed system in terms of power loss and Total Harmonic
Distortion (THD). It was established that the proposed technique involving EMMBO outperformed existing methods
in technical optimization.

KEYWORDS: Hybrid renewable energy sources (HRES); multi-objective optimization; generalized dynamic
progressive neural fuzzy controller (GDPNFC); pre-feasibility analysis; total harmonic distortion (THD); enhanced
multi-objective monarch butterfly optimization (EMMBO)

1 Introduction
Over the past few decades, the conventional energy sources derived from fossil fuels have played a

crucial role as major energy resources [1]. Recently, however, there has been a notable shift towards non-
conventional energy sources, encompassing solar, geothermal, tidal, wind, biomass, and hydropower. This
transition is driven by their positive attributes such as environmental sustainability, cost-effectiveness, and
natural abundance [2,3]. However, small-scale power generation and transmission are challenging in rural
areas. In recent years, hybrid energy systems have been popular to produce power from more generating
stations such as PV arrays with wind turbines, wind-diesel, and biomass plants with solar panels [4–6].

In Hybrid Renewable Energy Systems (HRES), optimization plays a crucial role in the development of
an economically viable and secure generation system. The challenge with hybrid energy systems lies in the
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need for backup due to the intermittent nature of renewable energy resources. To address this intermittency,
integrating a Renewable Energy System (RES) is proposed. An examination of the feasibility and cost of
incorporating biomass, wind, hydrogen cells etc. with solar cells is conducted to fulfil the energy demands
of rural areas, utilizing Hybrid Optimization techniques [7–10]. Additionally, the consideration of resources
and load is vital in the design of HRES. In a hybrid solar-biomass system [11,12] employing the Artificial
Bee Colony (ABC) algorithm [13], Grey Wolf Optimization Scheme [14]. As a result, various controller
approaches, such as PI controller, Fuzzy Logic, Artificial Neural Network (ANN), PID controllers [15] with
Firefly-Pattern Search and fuzzy gain scheduling algorithms [16], are implemented to manage the unstable
voltage situation in the grid-connected to renewable resources. The HRES may be a grid-connected system
or a standalone system.

A standalone system with sufficient storage for power fluctuation is considered a microgrid [17]. To
improve the power quality and reduction of reactive power in the peak season, the concept of microgrid and
controllers are implemented for the HRES system [18]. Designing an off-grid system requires storage to feed
power for an extended period during the interruption and apply batteries for such support [19]. Furthermore,
due to the oversizing of the system, the generated costs are higher. Therefore, the Life cycle cost (LCC) of
HRES is essential to assess the positive outcomes of using RES [20]. Besides, power quality issues [21,22] are
present in any power system in varying quantum, which generally occurs in a distribution system. Harmonic
currents create heating in electrical cables, leading to premature aging and overstressing electrical insulation,
leading to deteriorated power quality, which will change the consecutive development of future grids [23].
Therefore, an effective control technique is required to reduce these HRES challenges.

In this paper, solar and biomass are often preferred over other renewable resources in the proposed
hybrid renewable energy systems for several key reasons:

• Availability and Flexibility:

Solar: Solar energy is abundant and widely available across the globe, especially in areas with a high
number of sunny days. It also offers flexibility, as it can be harnessed in various ways, from large-scale solar
farms to smaller rooftop installations.

Biomass: Biomass is a flexible resource that can be sourced locally from organic materials like agricul-
tural waste, wood, or even algae. It can be stored and used as fuel when needed, making it suitable for both
continuous and intermittent energy production.

• Complementary Nature:

Solar and biomass complement each other well in hybrid systems. Solar energy is intermittent, as it
only generates power during the day and is affected by weather conditions. Biomass, on the other hand, can
provide a stable, continuous power supply, helping to balance out the variability of solar energy and ensuring
a more reliable energy system.

• Energy Storage:

Biomass: Unlike some other renewables, biomass can be stored for long periods and used on demand.
This makes it easier to manage the energy supply and smooth out periods of low solar energy generation,
like at night or during cloudy weather.

Solar: While solar energy typically needs to be paired with storage solutions like batteries to manage
intermittency, hybrid systems often combine solar with biomass to reduce reliance on large-scale storage
systems.
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• Low Environmental Impact (When Managed Sustainably):

Solar energy has a very low environmental impact once operational, as it produces no emissions during
energy generation.

Biomass, when sustainably sourced, can be carbon-neutral (or even carbon-negative, depending on the
feedstock) and can help reduce waste by converting organic materials that would otherwise decompose in
landfills and lead to various diseases and land pollution.

• Economic and Technological Advancements:

Solar energy technology has seen significant cost reductions over the past decade, making it more
economically viable in a wide range of applications.

Biomass technologies, while slightly more expensive than solar, are still competitive when compared to
fossil fuels and provide additional benefits such as waste reduction and local job creation.

• Scalability:

Both solar and biomass systems can be scaled from small to large applications, making them versatile
for different geographic areas and energy needs, from rural villages to urban areas.

Because of these factors, combining solar and biomass in hybrid systems creates a more reliable,
sustainable, and cost-effective renewable energy solution that addresses the intermittent challenges of each
resource when used alone.

The proposed work concentrated on firstly developing robust HRES that considers a wide range
of operational conditions, including varying solar irradiance and biomass fuel availability. Secondly, a
multi-objective optimization in system design has been proposed and the technical parameters have been
investigated using dynamic fuzzy controller.

The organization of this paper is as follows: Section 2 discusses the related work, and Section 3 has the
system descriptions along with the models. Then, Section 4 has a detailed problem statement, and Section 5
explains the proposed intelligent control and multi-objective optimization. Finally, the results and discussion
are explained along with the comparison in Section 6, and discussions are concluded in Section 7. The
above-mentioned sections are followed by Acknowledgement, Funding Statement, Author Contributions,
Availability of Data and Materials, Conflicts of Interest and References.

2 Related Work
Reliability issues arise with renewable energy resources in various climatic conditions due to their

intermittent nature [24–26]. To address these challenges, Li et al. [27] suggested the development of a hybrid
system to ensure a dependable energy supply, considering the Loss of Power Supply Probability (LPSP) and
aiming to minimize the Net Present Cost (NPC) of the system. The sizing of the model can be optimized
using algorithms such as the ABC Algorithm, Firefly Algorithm (FA), Flower Pollination Algorithm (FPA),
and Harmony Search (HS) algorithm. Simulation results indicate that the Firefly Algorithm outperforms
other algorithms, exhibiting the best performance and the shortest execution time.

The availability and utilizations of renewable energy resources vary significantly based on geographical
locations. Consequently, optimizing the model size becomes a crucial principle in the development of an
economically optimized and efficient Hybrid Renewable Energy System (HRES). In addressing this need,
Murugaperumal et al. [28] introduced a study focused on the techno-economic aspects and the attainability
of optimal design for a HRES whose purpose is to fulfill the energy requirements of rural areas. Various load
growth forecasting schemes are capable of conducting load forecast assessments, and a system operating
strategies analyzer was employed in the final phase of the design.
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Optimizing the size and cost of the system holds substantial importance in the development of a
HRES [29–32]. Considering this, Elkadeem et al. [33] have discussed design approaches for both devel-
oping and optimizing the performance of a Hybrid Renewable Energy System (HRES), while considering
grid connectivity.

A strategy was introduced by Congguang Zhang et al. [34] for the development of a HRES having
solar-biomass energy supply system. It incorporated an evaluation of its thermodynamic features and
feasibility. The economic aspect is examined through life cycle cost (LCC) analysis, considering a simple
payback (SPB). Additionally, the optimization of thermodynamic performance is accomplished using the
Genetic Algorithm.

The load frequency control (LFC) of Hybrid Renewable Energy Systems (HRES) plays a pivotal role
in achieving stable system performance, particularly in the face of disturbances that can lead to frequency
fluctuations. Addressing this challenge, Hasanein et al. [35] introduced the Salp Swarm Algorithm (SSA)
for the optimal load frequency control of HRES. The SSA-PID controller effectively manages the system
under diverse conditions, including variations in renewable energy resources, unreliability, and step load
perturbations. Moreover, the SSA-PID controller improves the dynamic response of the proposed system.

Some of the important works have been included in the following Table 1.

Table 1: Few important research works

S. No. Author(s) Technique used Objectives Advantages Disadvantages
(1) Dar et al. [36] Structural

breaks
cointegration

analysis

Assess the
relationship

between fossil
fuel

consumption
and renewable

energy
generation in

India.

Supports evidence-based
policymaking; emphasizes

the benefits of transitioning
to renewables.

Potential complexities in
policy implementation;
challenges in changing

consumer habits.

(2) Farghali
et al. [37]

Review of RES
integration

consequences

Evaluate the
social,

environmental,
and economic

impacts of
integrating
renewable

energy sources.

1. Hybrid energy systems
have been improving

reliability and resilience
against climate change

impacts.
2. Solar, wind, and

hydroelectric combinations
had been increasing power
generation while reducing

environmental impacts
significantly.

3. Renewable energy hybrid
systems had been aligning
with government policies,

contributing to job creation
and cost reduction.

1. The lack of standardized
methods for evaluating

energy complementarity
has been complicating the

assessment of system
performance.

2. Large or poorly designed
hybrid systems have been

resulting in high
installation costs.

3. The need for thor ough
technical and financial

evaluations before
implementation has been
underscored due to the

complexity of these
systems.

(Continued)
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Table 1 (continued)

S. No. Author(s) Technique used Objectives Advantages Disadvantages
(3) Jafarinejad

et al. [38]
Renewable

energy–water–
environment

(REWE) nexus
analysis

To explore
interconnec-
tions between

renewable
energy, water
resources, and
environmental
sustainability.

1. The study had been
identifying key knowledge
gaps in the REWE nexus,

helping to develop
solutions to support

sustainable development.
2. California had been
leading the way in the
adoption of renewable
energy technologies,

promoting both
environmental and
economic benefits.

3. The development of new
technologies and practices

has been enabling the
management of both

energy and water demand
in a sustainable manner.

1. The complex nature of
the REWE nexus has made

it challenging to manage
both energy and water

demands while maintaining
environmental health.

2. Some of the proposed
technologies, such as
cooling systems for

thermoelectric plants, have
been requiring significant

investments and
innovation.

3. End-of-life renewable
energy waste management

had been an overlooked
issue that needed more

attention.

(4) Siren
Pritchett [39]

Focused on
integrating

Green Software
Engineering

(GSE)
principles with

renewable
energy systems

to optimize
their

performance
through

energy-efficient
software

development,
data analytics,
and real-time
monitoring.

To explore how
sustainable

software
practices can
enhance the

efficiency and
sustainability of

renewable
energy systems.

1. The study has been
improving operational
efficiency of renewable
energy systems using

predictive maintenance and
real-time monitoring.

2. It had been reducing the
environmental impact of

energy systems by
integrating GSE principles

into software design.
3. The integration of

financial incentives and
regulatory frameworks has

been encouraging the
development of sustainable

software.

1. The integration of GSE
has been requiring

significant investment in
new technologies and
software development.

2. Limited collaboration
between stakeholders has

been hindering the
widespread adoption of

GSE practices in renewable
energy sectors.

3. Real-time monitoring
systems needed ongoing

maintenance and updates
to ensure effectiveness.

(Continued)
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Table 1 (continued)

S. No. Author(s) Technique used Objectives Advantages Disadvantages
(5) Hanief Jasmin

and Akhtar
Saleem [40]

Integrated
predictive

scaling,
uncertainty

quantification,
generative

models, and
reinforcement
learning (RL)
to optimize

resource
management
and enhance

the adaptability
of autonomous
AI systems in

cloud
computing.

To optimize
cloud

computing
operations by

efficiently
managing
resources,

accounting for
uncertainties,

and adapting to
dynamic

workloads.

1. The combination of
predictive scaling and RL

had been enabling
proactive adjustments and
continuous optimization,
enhancing cloud system

performance.
2. Theintegration of UQ
had been ensuring that

unpredictable fluctuations
were managed effectively,

improving
decision-making.

3. Generative models had
been simulating various
scenarios to prepare the

system for rare or extreme
workload patterns.

1. The need for continuous
data generation and
simulation has been
requiring significant

computational resources.
2. The dependency on

real-time learning had been
introducing challenges in
managing adaptation and
optimization, especially
during initial stages of

implementation.
3. The integration of

multiple techniques has
been introducing

complexity, potentially
affecting system stability
during transition phases.

(6) Lam Hong Yin
et al. [41]

IoT-based
weather

monitoring
system

To develop a
system for

accurate solar
energy

forecasting by
monitoring

environmental
conditions.

1. The system provided
precise and reliable data on
environmental parameters,
improving solar forecasting.

2. The integration with
Google Sheets enabled

real-time data access and
online logging for rapid

decision-making.
3. The system had been

validated against
established PVSyst models,

confirming its high
accuracy and reliability.

1. The reliance on an
IoT-based platform had
required stable internet

connectivity for real-time
data access.

2. The system had been
limited by the availability of
the sensors used for specific
environmental parameters.

3. Scaling the system for
wider application has

introduced challenges in
data storage and

management.

(7) Oluwatoyosi
Bamisile
et al. [42]

Optimization
techniques for
HRES and ESS

To integrate
energy storage
systems with

hybrid
renewable

energy systems
(HRES) using
optimization
techniques.

1. Hybrid optimization
techniques had combined

strengths from various
approaches, improving
system reliability and

efficiency.
2. Capacity and CO2

emissions constraints have
been effectively

incorporated to design
practical and

environmentally friendly
systems.

3. The study successfully
addressed the intermittency
and variability of renewable

energy, enhancing the
consistency of the energy

supply.

1. The optimization
techniques faced challenges
in handling complex system

configurations and
operational strategies.

2. Managing the life time
and efficiency of energy

storage systems (ESS) has
remained a critical area for

improvement.
3. Large-scale de ployment

of these systems has
introduced scalability and

integration challenges.

(Continued)
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Table 1 (continued)

S. No. Author(s) Technique used Objectives Advantages Disadvantages
(8) Bade et al. [43] Co-located

utility-scale
wind–solar-
based hybrid
power plants

To explore
sizing

methodologies,
optimization

techniques, and
energy

management
and control

strategies for
co-located
wind-solar

HPPs.

1. Meta-heuristic
algorithms have been
widely used for sizing,

offering effective solutions
for hybrid systems.

2. Hybrid approaches
combining multiple

optimization techniques
had resulted in global best

configurations.
3. Centralized and
distributed control

strategies have shown
effectiveness in optimizing

performance and
improving system

reliability.

1. No single optimization
approach outperformed all
problem types, limiting the

ability to generalize
solutions.

2. The need for more
comparative studies has

been emphasized due to the
limited number of relevant

studies.
3. Complex objective spaces

and inherent uncertainty
posed challenges in

optimization and energy
management.

(9) Espitia
et al. [44]

Solar energy
applications in
greenhouses

To analyze the
integration of

solar energy in
protected

agriculture,
particularly in
greenhouses,

through
bibliometric
and technical

review.

1. Has provided insights
into hybrid systems

combining solar
technologies with other
resources for improved

energy efficiency.
2. Has emphasized

advancements in artificial
intelligence for climate
control, improving crop

sustainability.
3. Has highlighted the
significance of energy

storage and desalination
technologies for sustainable

greenhouse operation.

1. Has identified challenges
in economic and

operational feasibility, such
as efficient moisture and

CO2 management.
2. The widespread

implementation of solar
technologies has been

hindered by the lack of local
and regional studies under
diverse climatic conditions.
3. Has pointed out the need
for more exploration into

passive systems and
photovoltaic cells in

greenhouse applications.

3 System Description
The system consists of a Solar PV array, biomass generator, battery storage bank, power converter, and

various dissimilar loads.

3.1 Solar PV Array
The energy from solar radiation is converted into DC using photovoltaic (PV) array. In a concentrated

solar power system, the sunlight is collected by mirrors, lenses, and tracking systems. PV arrays employ
photovoltaic material for converting solar energy into electrical current. Electronic power converters convert
the DC to AC. Parallel or serial connections of PV arrays are made through this inverter according to the
required applications.

The voltage and current characteristics of solar PV array [45] can be expressed in Eq. (1):

IPV = Ip − Idsc [(
exp q∗ (VPV + IPV R∗s )

n∗ϑT
) − 1] (1)
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where Ip is the photocurrent, IPV is the solar PV cell current in A, R∗s is the series resistance in Ω, Idsc is the
saturation current of the diode, VPV is the solar PV voltage in V, q∗ is the electron charge, n∗ is the number
of solar PV module, ϑ is represented as the constant and T is denoted as the temperature.

The output power of solar PV array [46] can be obtained by Eq. (2):

P′PV = PPV
STC DF ( IPV R∗

IPV R∗STC
) [1 + ηp (T − TSTC)] (2)

where PPV
STC is the solar power under Standard Test Condition (STC), TSTC is the temperature of solar PV

cell beneath STC condition at 250C, ηp is the coefficient of the power and R∗STC is the series resistance in
STC condition.

3.2 Biomass System Model
Biomass electricity generation can be done via either a biochemical method, such as anaerobic digestion

or fermentation, or a thermo-chemical procedure such as gasification, direct combustion, or pyrolysis. The
output power of the Biomass system [47] can be calibrated using the Eq. (3):

EBG = 365 × 24 × capacity f actor (3)

PBG = BGav × CV × η × 1000
365 × 24 × o

(4)

where PBG is the biomass rating, CV represents the calorific value, η is the biomass generator’s conversion
efficiency, and o is the operating hour per day.

3.3 Battery Bank Storage System
In a Hybrid Renewable Energy System (HRES), various types of storage systems are considered to

enhance reliability, stability, and efficiency of power generation, especially when integrating renewable
sources like solar, wind, and hydropower [48]. Here are the main types of storage systems and their specific
roles in HRES:

➢ Batteries (Lithium-Ion, Lead-Acid, etc.)

Role: Battery storage is essential for providing short-term energy storage, especially in off-grid systems
or during periods of low generation. It stores excess energy produced by renewable sources and supplies it
when demand exceeds production (e.g., during cloudy or windless days).

Key Benefits: Quick response time, high energy density, flexible sizing and scalability
Use Case: Commonly used in both residential and commercial systems, as well as in grid stabilization

applications.

➢ Pumped Hydro Storage

Role: Used for long-term energy storage, pumped hydro storage involves pumping water to a higher
elevation during times of excess power generation and releasing it to generate electricity when demand is
high or renewable generation is low.

Key Benefits: Large-scale energy storage, High efficiency and long discharge duration, Proven and
reliable technology

Use Case: Typically used in large-scale power plants to provide grid stability and balance intermittent
renewable sources.
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➢ Compressed Air Energy Storage (CAES)

Role: Compressed air energy storage stores excess electricity by compressing air and storing it in
underground caverns or tanks. The air is released, heated, and used to drive turbines to generate electricity
when needed.

Key Benefits: Can store large amounts of energy and long discharge times
Use Case: Used in large-scale systems for grid-level stabilization, typically in regions with appropriate

geological conditions.

➢ Flywheel Energy Storage

Role: Flywheels store energy by spinning a rotor at high speed and release it when needed. They are
typically used for short-term storage to provide rapid bursts of power.

Key Benefits: Fast response time, High cycling capabilities (can charge/discharge many times) and lower
maintenance compared to batteries

Use Case: Ideal for frequency regulation and stabilizing the grid in HRES.

➢ Thermal Energy Storage (TES)

Role: Thermal energy storage systems store energy in the form of heat, typically using materials like
molten salt, water, or phase-change materials. When excess renewable energy is available, heat is stored and
later converted back into electricity using a heat engine or used directly for heating applications.

Key Benefits: Long duration storage can be used for both electricity generation and heating
Use Case: Commonly integrated into concentrated solar power (CSP) plants but can also be used in

residential and industrial applications.

➢ Hydrogen Storage

Role: Hydrogen can be produced through electrolysis using excess renewable energy, stored, and later
used in fuel cells or combustion engines to generate electricity when needed.

Key Benefits: High energy density and long-duration storage, can be stored and transported easily
Use Case: Used in both grid and off-grid HRES, particularly for long-term energy storage and

transportation fuel.

➢ Supercapacitors (Ultracapacitors)

Role: Supercapacitors are used for storing energy in the form of an electric field. They provide high
power output for short durations and are useful for balancing energy fluctuations in the system.

Key Benefits: Very fast charge/discharge cycles, excellent for short-term power balancing and fre-
quency regulation

Use Case: Typically integrated with other storage technologies to support short-term balancing of
renewable output.

Integration of Storage Systems in HRES:

• Grid Stabilization: Energy storage systems like batteries, pumped hydro, and CAES help to smooth out
the intermittency of renewable energy sources and ensure a steady power supply to the grid.

• Load Management: Storage systems are used to manage demand-side variations by storing energy
during off-peak times and discharging during peak demand, reducing the reliance on fossil fuel-based
backup generation.
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• Renewable Penetration: By utilizing energy storage, HRES can support higher levels of renewable energy
integration, enabling more consistent and reliable power even when renewable generation fluctuates.

Each type of storage system plays a distinct role depending on the scale of the HRES, the energy demand
profile, and the specific characteristics of the renewable energy sources used. In some cases, a combination
of storage technologies may be used to balance the different needs of the system. The storage systems are
required to compensate and balance the generated energy with the consumed energy within the system.

The capacity of battery storage bank at t′ hour in charging condition can be given in Eq. (5):

E∗B (t′) = E∗B (t′ − 1) + (E∗ERG (t′) × η0C × ηCE) (5)

where η0C and ηCE are the charge controlling and battery charging efficiency, and E∗ERG is the excess energy.
In discharging conditions, the battery storage bank capacity at an t′ hour can be calibrated by the Eq. (6):

E∗B (t′) = (1 − ω) × E∗B (t′ − 1) − [ E∗N L (t′)
η0CE × ηDCE

] (6)

E∗N L (t′) = E∗ac (t′) + (E∗d c (t′) × η0CE) (7)

E∗ac (t′) = PBMS (t′) × Δt′ (8)

E∗d c (t′) = PPV S (t′) × Δt′ (9)

where ω is the discharge value, η0CE and ηDCE are the battery discharging and converter efficiency.

3.4 Power Converter
The power converter is a bidirectional operation connected between the DC and AC buses. Based on

the power flow, it works as an inverter when the power is transferred from the PV array to the AC load, and
as a rectifier to transfer the power from the biomass generator to the charging battery bank. Moreover, the
converter is modeled based on its rated capacity and efficiency, which are assumed to be constant throughout
its operating range. The inverter size depends on the demand of the load at peak periods P∗ (t). The power
rating of the inverter P∗inv [49] is expressed in Eq. (10):

P∗inv =
P∗ (t)

η
(10)

where P∗ (t) is the demand of the load at peak periods and η is represented as the system’s efficiency.

4 Problem Statement
The primary goal of this research is to reduce the proposed system’s total cost, power loss, and harmonic

distortion. The primary decision variables are biomass, solar PV cell, and battery rating and sizing.

4.1 Objective Function
PV arrays, biomass generator and battery bank have been selected for the optimized configuration of the

proposed HRES. The annualized capital cost is utilized for the economic investigation of the hybrid system.
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The annualized capital cost of solar PV panels, biomass gasifiers, and power inverters can be calculated using
the capacity recovery factor (CRF). The annualized net present cost (NPC) [50–53] is expressed below:

C∗N PC = C∗a
CRF (I, Lp)

(11)

where C∗a is the overall annual cost in $/year, capital recovery factor is denoted as CRF, I is the interest
represented in %, and the project’s lifetime in overall years is represented by Lp. The CRF value can be
expressed below:

CRF (P, N∗) = P (1 + P)N∗

(1 + P)N∗−1 (12)

where P is the rate of interest and N∗ is the number of years. Moreover, the Cost of Energy (COE) is estimated
by the homer using the Eq. (13):

COE = C∗a
PL + DL + Gs

(13)

where AC or DC primary load is denoted as PL kW/h, the deferrable load is denoted as DL kW/year, and the
overall grid sales are represented Gs in kWh/year. Moreover, the harmonic distortion of the voltage waveform
affects the system’s power quality. It can be measured through THD of voltage [52,53] as expressed in (14):

THDV =

√
M
∑

m=2
v2

m

v1
× 100% (14)

where i2
m and v2

m are the current and voltage which are related to the mth harmonic.

4.2 Operating Constraints
For optimizing the objective function, the following constraints are utilized. Solar irradiation and

temperature at a particular time in a specific region affect the outcome of PV power. The power outcome
limits of the PV array are expressed below:

0 ≤ n′pv ≤ n′pv ,max (15)

where n′pv is the number of PV panels. The power outcome limits of biomass are expressed below:

0 ≤ n′BG ≤ n′BG ,max (16)

where n′BG is the number of biomass generators. The battery storage system performs crucial function
in hybrid renewable systems because it stores electrical energy. The overcharging and over-discharging of
the battery drastically reduces its life. To prevent the over-discharging of the battery, its operating limit
constraints have been used in the simulations. At any hour t, the battery bank’s capacity (EBATT) should lie
between its maximum and minimum operating capacity. The related constraints used in the simulations are
given by Eqs. (17) to (19):

E∗B min ≤ E∗BAT T ≤ E∗B max (17)
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E∗B min = (v∗B × p∗B × n∗BAT T
1000

) × S∗min (18)

E∗B max = (v∗B × p∗B × n∗BAT T
1000

) × S∗min (19)

where E∗B min and E∗B max represents the minimum and maximum operating capacity of the battery storage,
S∗min and S∗min are denoted as the minimum and maximum state of charge value of the battery, v∗B is the rated
voltage of the battery, p∗B is the rated capacity of the battery in Ah, and n∗BAT T is the number of the battery.
In the network, the total generation of power from the grid and distributed energy resources must be equal
to the summation of load demand and power losses of the system [53].

P′G +
m
∑
k=1

P′DG −
mn
∑

k=1, i=k+1
D2

ki .Y
′
ki =

m
∑
k=1

P′L (20)

where P′G is the total power supplied through the grid, P′DG is the power generation from distributed
generation, D is the branch current, Y ′ denotes the branch impedance, and P′L is the system load demand.

5 Proposed GDPNFC and EMMBO
The HRES is integrated with the grid framework, which contains PV arrays, biomass, and battery

storage component. Furthermore, the units of the HRES are integrated with the grid using converters. In
this research, the PV array and biomass are used for power generation to meet the 1, 2, 3, 5, and 7 kVA load
demand. Furthermore, when the demand outstrips the power generation, the grid will satisfy the essential for
storage. The representation of the proposed control arrangement of the HRES system is illustrated in Fig. 1.

Loads 

1,2,3, 5 and 

7kVA

DC bus AC bus

Photovoltaic 

Array 

Battery 

Storage

Biomass 

generator

Power 

converter

GDPNFC

Controller

EMMBO 

method

Figure 1: Representation of the Proposed hybrid solar-biomass system with the control method

The Enhanced Monarch Butterfly Optimization (EMMBO) [54,55] and the Generalized Dynamic
Progressive Neural Fuzzy Controller (GDPNFC) [56–58] are both innovative approaches that contribute
significantly to the implemented work.

Enhanced Monarch Butterfly Optimization (EMMBO) Novelty:
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• Inspiration: EMMBO is based on the Monarch Butterfly Migration behavior, an intelligent optimization
technique that mimics the migration patterns of Monarch butterflies. The traditional Monarch Butterfly
Optimization (MBO) algorithm is improved in EMMBO, which enhances its ability to explore and
exploit the solution space more effectively.

• Enhanced Exploration and Exploitation: The “Enhanced” aspect in EMMBO refers to its improved
mechanisms for balancing exploration (searching broadly across the solution space) and exploitation
(refining the best solution found). This is done by incorporating modifications to the search strategies,
possibly introducing new genetic operations or dynamic adjustments to control the search behavior.

• Robustness: The enhancement in EMMBO aims to overcome the limitations of standard MBO algo-
rithms, such as slow convergence and tendency to get trapped in local optima. This improvement makes
EMMBO more robust, especially in complex optimization problems.
Contribution:

• Optimization Problems: EMMBO has been particularly useful in solving complex and large-scale
optimization problems, particularly in engineering, machine learning, and artificial intelligence, where
traditional optimization algorithms might struggle.

• Better Solution Quality: By enhancing the original MBO, EMMBO often achieves better performance
in terms of solution quality and computational efficiency.

• Application Range: EMMBO has demonstrated its ability to be applied to a wide range of real-world
problems, such as power system optimization, feature selection, machine learning hyperparameter
tuning, and scheduling problems.
Generalized Dynamic Progressive Neural Fuzzy Controller (GDPNFC) Novelty:

• Hybrid Approach: The GDPNFC combines the power of neural networks, fuzzy logic systems, and
dynamic controllers, creating a hybrid approach that is more adaptive and capable of handling uncertain
and nonlinear systems.

• Progressive Learning: The “progressive” aspect of the GDPNFC refers to its ability to progressively learn
from its environment and adjust the control strategy over time. It learns the system’s dynamics as it
operates, making it more effective in real-time control applications.

• Dynamic Adaptation: Unlike traditional fuzzy controllers, GDPNFC can adapt to changing system
dynamics in real-time, making it suitable for complex systems that require continuous adjustment, such
as in robotics, autonomous systems, and industrial control.
Contribution:

• Improved Control Performance: GDPNFC offers improved performance over traditional control sys-
tems, particularly in systems with uncertainties, nonlinearities, and dynamic changes. It provides a more
robust solution for controlling complex systems.

• Versatility: The use of neural networks in conjunction with fuzzy logic allows GDPNFC to handle both
qualitative and quantitative data. This makes it highly versatile, as it can be applied to a wide range of
control problems, including those with uncertain or imprecise information.

• Real-Time Adaptive Control: GDPNFC is particularly beneficial for real-time applications that require
continuous monitoring and adjustment, such as in robotics, process control, and autonomous vehicles.
The system’s ability to learn and adapt dynamically provides a significant advantage in environments
where conditions are constantly changing.
Hence, the key contribution of EMMBO lies in enhancing the Monarch Butterfly Optimization

algorithm to provide more efficient solutions for complex optimization problems, improving both explo-
ration and exploitation, and delivering higher-quality outcomes. GDPNFC, a hybrid controller combines
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neural networks, fuzzy logic, and dynamic control, contributing to improved real-time adaptive control
for nonlinear, uncertain, and dynamic systems. Its progressive learning capability is particularly useful for
systems that evolve over time.

Both methods provide innovative solutions in their respective domains, significantly advancing the
state-of-the-art in optimization and control systems.

5.1 Proposed GDPNFC Control Method
The GDPNFC-based intelligent control is applied to the inverter to regulate the output power delivered

to the grid. In the GDPNFC-based control system, active and reactive power is the two input of the GDPNFC,
illustrated in Fig. 2.

Figure 2: GDPNFC-based novel intelligent control method for new hybrid solar-biomass system

The active power of the GDPNFC determines the direct component of the current to be provided
through an inverter [57,58]. The active power is expressed in Eq. (21):

Pg = Vgd Igd + VgqIgq (21)

The error between the active power stipulated via the grid Pre f
g and the actual active power injected

through the inverter into the grid Pg is given to the input of the GDPNF Controller, represented as Ai. The
membership function (MF) in Gaussian functions is expressed in Eq. (22):
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μi k (Ai) = exp(−(Ai − bi k)2

ω2
k

) (22)

i = 1, 2, . . . p, k = 1, 2, . . . m

where μi k is the kth membership function of Ai , ωk is the width of kth the Gaussian membership function Ai ,
i is the number of input variables, m is the number of membership functions, and bk is denoted as the center
of kth the Gaussian membership function Ai . Similarly, in the reactive power of the GDPNF controller, the
error between the reactive power stipulated via the grid Qre f

g and the actual reactive power injected through
the inverter into the grid Qg is given to the input of the GDPNF Controller and denoted as Ci .

μi k (Ci) = exp(−(Ci − bi k)2

ω2
k

) (23)

i = 1, 2, . . . p, k = 1, 2, . . . m

For IF-part of the fuzzy rule, then the output of the kth rule for active power is expressed below:

ϕk = exp
⎛
⎜
⎝
−

p
∑
i=1
(Ai−bik)

2

ω2
k

⎞
⎟
⎠
= exp [− ∥A−bk∥

ω2
k

] k = 1, 2, . . . m (24)

where A = A1 , A2, . . . Ap. The number of variables is equal to the fuzzy rules. The equation represents the
output of the m variable (Eq. (25)):

ψk = φk
p
∑
j=1

φ j

=
exp [− ∥A−bk∥

ω2
k

]
u
∑
j=1

exp [−∥A−b j∥
ω2

j
]

k = 1, 2, . . . m (25)

The summation of the active power output is expressed in Eq. (26):

x (A) =
p

∑
j=1

ω2 j .ψ j =

p
∑
j=1

ω2 j exp [− ∥A−bk∥
ω2

k
]

p
∑
j=1

exp [−∥A−b j∥
ω2

j
]

(26)

where ω2 j is the weight of each rule, and x is denoted as the output variable value. Similarly, the summation
of the reactive power output is illustrated in the Eq. (27):

x (C) =

p
∑
j=1

ω2 j exp [− ∥C−bk∥
ω2

k
]

p
∑
j=1

exp [−∥C−b j∥
ω2

j
]

(27)

If ∥Ei∥ > ke∗ , then the error criterion is denoted in Eq. (28):

∥Ei∥ = ∥yi − xi∥ (28)
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where yi represented as the desired output and xi is the GDPNFC output. The equation calculates the distance
between the input Ai and the centre bk in the Eq. (29):

Di (k) = ∥Ai − bk∥ k = 1, 2, ...m (29)

If d∗min > kd∗ , the d∗min value can be determined using the Eq. (30):

d∗min = arg min(Di (k) (30)

where kd∗ is the accommodation boundary radius. The hierarchical learning method gradually reduces the
accommodation boundaries’ effective radius and the given error. More specifically, the selected ke∗ and kd∗

constants are given in Eqs. (31) and (32):

ke∗ = max (PEmax × αi , PEmin) (31)
ke∗ = max (Lmax × δi , Lmin) (32)

where PEmax is the predefined maximum error, PEmin is denoted as the accuracy of GDPNFC output, α and
δ are the convergence and decay constant, Lmaxrepresented as the largest input space Lmin and the smallest
length of interest. The current components are transformed from the reference frame of direct quadrature
zero transformation to the ABC reference structure, which is utilized to describe the switching pulses of
the inverter.

5.2 Proposed EMMBO for Optimization
The novel EMMBO method is proposed to optimize the unit cost of the system along with optimizing

the power loss, THD, and controller performance. The flow chart of EMMBO for proposed hybrid solar
and biomass system is illustrated in Fig. 3. The main aim of using the proposed controller is to improve the
dynamic performance and regulate the power flow of the grid-integrated HRES.

The monarch butterfly migrates from southern Canada and the northern USA to Mexico during the
autumn and summer. Therefore, the migration of the population of monarch butterflies can be separated
into two groups: Land 1 and Land 2. Furthermore, the monarch butterfly migration can be simplified by the
butterfly individuals living in Land 1 for four months and Land 2 for seven months. In April, the butterfly
individuals in Land 2 move to Land 1, and the butterfly individuals in Land 1 move to Land 2 in September.
Based on the EMMBO, the annualized cost is expressed in Eq. (33):

Ci , j = Ct
p , j (33)

where Ci , j represents the present annualized cost jth element of Ci Ct
p , j, indicates jth the element of Cp

that is optimized annualized cost. The value P is randomly selected from subpopulation 1 and calculated by
the Eq. (34):

P = rand ∗ peri (34)

Then, they Ct
new , i can be computed using the greedy strategy as given by,

Ct
new , i =

⎧⎪⎪⎨⎪⎪⎩

Ct
p , j f (Ct

p , j) < f (Ci , j)
Ci , j el se

(35)
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where Ct
new , j represents the annualized cost. The fitness value of Ct

p , j and Ci , j is f (Ct
p , j) and f (Ci , j)

respectively. Similarly, Pt
new , i and Ht

new , i are calculated using greedy strategy is estimated for the power loss
and harmonics, which is given by,

Pt
new , i =

⎧⎪⎪⎨⎪⎪⎩

Pt
p , j f (pt

p , j) < f (Pi , j)
pi , j el se

(36)

Ht
new , i =

⎧⎪⎪⎨⎪⎪⎩

Ht
p , j f (Ht

p , j) < f (Hi , j)
Hi , j el se

(37)

Figure 3: Flow chart for the EMMBO in hybrid solar and biomass system
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The crossover operator is included in the butterfly adjusting operator, which is expressed in Eq. (38):

Ct
new , j = Ct

p , j × (1 − Ccr) + Ci , j × Ccr (38)

Here Ccr is the crossover rate, which is calculated by the Eq. (39):

Ccr = 0.8 + 0.2 ×
f (Ci , j) − f (Cbest)

f (Cworst) − f (Cbest)
(39)

where Cbest and Cworst indicate the best and worst annualized cost corresponding to the fitness of f (Cworst)
and f (Cbest), respectively. The crossover rate can lie from 0.2 to 0.8. Similarly, the power loss and total
harmonics are optimized by the Eqs. (40) and (41):

Pt
new , j = Pt

p , j × (1 − Pcr) + Pi , j × Pcr (40)
Ht

new , j = Ht
p , j × (1 − Hcr) + Hi , j × Hcr (41)

where Pt
new , j and Ht

new , j is represented as the annualized power loss and total harmonics. Once the optimal
solution is attained, the criteria stop the process until it continues till the finest solution is reached.

6 Result and Discussion
The proposed technologies on hybrid solar and biomass system models are implemented in HOMER

pro software, and the power quality results were compared with MATLAB. In addition, the HOMER
simulation software provides optimized results for the hybrid system by performing simulations based on
input parameters like fuel price and costs per unit of the proposed hybrid system.
Case Study

In this research, the National Capital Region (NCR) of India is chosen, which is located at 28.7041○N
and longitude 77.1025○E that has been selected for the proposed hybrid system. The proposed hybrid solar
and biomass system is validated by Homer software. The execution values are 1 kW of PV cells, 500 kW of
biomass generator with 12 batteries, and 3.33 kW converter. The dissimilar loads are considered, such as 1, 2,
3, 5, and 7 kVA of load demand, which is shown in Table 2. Moreover, the simulation time step is considered
for one hour and run on data for one year. The initial optimization assessment data for hybrid solar and
biomass systems is detailed. Initially, the total Net Present Cost (NPC) of the hybrid solar and biomass system
is $.462,101. Then, the COE and primary investments are $9.17/kWh and $504,395, respectively.

Table 2: Initial optimization result data for hybrid solar and biomass system

Architecture Cost System Biomass
PV/
Biomass/
Battery/
converter

PV
(kW)

Bio
(kW)

SAGM
12

Con
verter
(kW)

Effi
ciency

Dis
patch

NPC
($)

COE
($)

Oper
ating

cost ($)

Initial
cap-
ital
($)

Ren
frac
(%)

Total
fuel

(tonnes
/yr)

Hours Produc
tion

(kWh)

Fuel
(tons)

O&M
cost
($/yr)

1.00 500 28 3.33 0 LF 462,101 9.17 -3,309 504,395 100 139 177 44250 139 88.6

Based on the electricity produced, the Biomass Generator is the big contributor to this configuration
system with 73%, and another 27% of energy is generated from PV panels. The HRES has also been configured
with load following dispatch strategy.

A load following dispatch strategy is when the generator runs; it produces just enough energy to meet
the loads. The energy generated by HRES developed is shown in Fig. 4, where the grey color indicates the
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total electrical load served, moreover the orange color denotes the power output. Besides, the green color
represents the input power of the system. The average biomass power is 250 kW.

Figure 4: Energy generated by developed HRES

The performance of the 1 kW PV arrays for the average global period is represented in Fig. 5. The average
electrical energy generated by 1 kW PV arrays over the year is 1.2 kWh/month. During the months of July
and August, it produces more power compared to the other months of the year. Furthermore, April, May,
and June generate 1.1 kW of power. Besides, the October and December month produces the same power
at the rate of 1.01 kW. December month generates low power while compared to the other months. Before
optimization, the Levelized cost of the PV arrays is 0.0311 $/kWh. The hours of operation of solar PV panels
are 4401 Hrs/yr. Moreover, the minimum and maximum power output of solar PV array is 0 and 0.985 kW,
which is demonstrated in Table 3.
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Figure 5: 1 kW PV arrays for average global

Table 3: Performance of PV arrays before optimization

Quantity Value (kW/yr) Units
Minimum output 0 kW
Maximum output 0.985 kW

PV penetration 40.2 %
Hours of operation 4401 Hrs/yr

Levelized cost 0.0311 $/kWh

After applying the proposed intelligent control approach, the overall production of PV arrays is
1632 kWh/yr. Moreover, the most minor and most significant power output is 0.186 and 4.47 kW/d, which
are demonstrated in Table 4. The average electrical energy generated by 1 kW PV arrays over the year is
1.2 kWh/month, and the rated capacity of the PV panel is 1 kW. Besides, solar PV panels obtain a capacity
factor of 18.6%.

Table 4: Performance of PV arrays using the proposed method

Quantity Value (kWh/yr) Units
Rated capacity 1.00 kW
Mean output 0.186 kW
Mean output 4.47 kW/d

Capacity factor 18.6 %
Overall production 1632 kWh/yr
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The Contour plot for the performance of the 1 kW PV arrays is expressed in Fig. 6. The contour plot
represents solar power generation in the hours and years of the day with the rating of 1 kW. The average
global solar rate of 1 kW is demonstrated in Fig. 7.

Figure 6: Contour plot for the performance of the 1 kW PV arrays

Figure 7: The performance of the 500 kW biomass

The performance of the 500 kW Biomass Generator for the HRES is shown in Fig. 7 and Table 5. The
average electrical output generated per month is around 250 kW. Furthermore, January and November
produced more power than the other months. For example, in June, the biomass generator generated low
power at 44,250 kWh/yr.

Table 5: Performance quantity of biomass power generation

Quantity Value Units
Number of starts 177 Starts/year
Operational life 11.3 Yr
Capacity factor 1.01 %

Fixed generation cost 14.1 $/hr
Electricity production 44,250 kWh/yr

Minimum electrical output 250 kW
Fuel energy consumption 139 Tons/yr
Mean electrical efficiency 29.8 %



1908 Energy Eng. 2025;122(5)

The total amount of biomass feedstock consumed by the generator is 139 Tons/yr. As a result, the mean
electrical efficiency of the system is improved by 29.8%, and the operational life is achieved as 11.3 years.

The monthly power generation using the hybrid system is detailed in Fig. 8 and Table 6. The amount
of renewable fraction has attained 100% of values, and the maximum amount of renewable penetration is
considered 510%.

Figure 8: Monthly power generation using the hybrid system

Table 6: Monthly hybrid power generation system

Parameters kWh/yr %

Production
Generic flat plate

PV
1632 3.72

Generic 500 kW
biogas generator

42,250 96.3

Overall 43,882 100

Consumption AC primary load 3927 100
DC primary load 0 0

The performance of the 12V Trojan SAGM12 205 battery for the HRES connection is illustrated in Fig. 9.
The annual throughput of the Trojan SAGM12 205 battery is around 3327 kW/hr, and storage depletion is
55.0 kW/yr. Also, total losses are reduced up to 503 kW/hr, which are illustrated in Table 7. Moreover, the
nominal capacity of Trojan SAGM12 205 battery is 73.5 kWh, and the expected life is 20.5 years. Therefore,
the lifetime throughput is increased to 63.983 kWh.

Figure 9: The Performance of the Trojan SAGM 12 205

Consequently, the proposed hybrid system is validated with different load conditions such as 1, 2,
3, 5, and 7 kVA. The cost optimization of these loads under the system incorporation is estimated. The
optimization results of hybrid solar and biomass systems using homer pro is illustrated in Table 8.
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Table 7: Performance of 12V Trojan SAGM12 205 battery

Quantity Value (kW/yr)
Energy in 3327

Energy out 2878
Storage depletion 55.0

Losses 503
Annual throughput 3122

Table 8: Optimization result of hybrid solar and biomass systems with 1 kVA

Component Capital ($) Replacement ($) O&M ($) Salvage ($) Fuel cost ($) Total ($)
Generic flat plate PV 560.00 0 89.48 0.00 0.00 649.48

Converter 34,928.47 166.56 255.14 31.00 0.00 35,319.17
Trojan SAGM12 205 16,678.00 3655.15 3170.27 3586.31 0.00 19,917.11
Biomass generator 372,150.00 490.00 1080.19 50,015.09 0.00 323,215.10
Complete System 424,316.47 3821.72 4595.09 53,632.41 0.00 379,100.87

The hybrid renewable systems with 1 kW solar panels, 500 kW Biomass Generator, 12 batteries, 1 kVA
load, and converter have the lowest (NPC) at $35,319.17. The proposed GDPNFC and EMMBO approaches
have been applied in the hybrid system to enhance performance and reduce costs. The optimization by
HOMER shows that the HRES developed is the best and the optimal design. Moreover, the operating cost of
the system is $379,100.87 per year.

The yearly profile of the 1 kVA system is demonstrated in Fig. 10. The average 11.13 kWh/day of the
scaled load is attained, and an average of 0.46 kW is achieved. The peak load is obtained as 2.32 kW and the
20%-time step. The validated time step size is 60 min.

Figure 10: Yearly profile of 1 kVA system

Then, the proposed system is connected with the 2 kVA load. The optimization results of hybrid solar
and biomass systems with 2 kVA using homer pro are illustrated in Table 9. The daily profile of the 2 kVA
system is demonstrated in Fig. 11.
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Table 9: Optimization result of hybrid solar and biomass systems with 2 kVA

Component Capital ($) Replacement ($) O&M ($) Salvage ($) Fuel cost ($) Total ($)
Generic flat plate PV 560.00 0 89.48 0.00 0.00 649.48

Converter 28,437.5 135.61 207.73 25.24 0.00 28,755.0
Trojan SAGM12 205 18,830.00 3655.15 3579.24 46.48 0.00 22,362.86
Biomass generator 372,150.00 0 984.32 51,204 0.00 321,930.28
Complete System 419,977.50 135.61 4860.0 51,275.77 0.00 373,689.22

Figure 11: Daily profile of 2 kVA system

The average 11.13 kWh/day of the scaled load is attained, and an average of 0.46 kW is achieved. The
peak load is obtained as 2.32 kW and the 20%-time step. The validated step size is 60 min, and a 0.29 load
factor is taken.

Also, the proposed system is connected with the 3 kVA load and validated the performance. The
optimization results of hybrid solar and biomass systems with 3 kVA using homer pro are illustrated
in Table 10. The daily profile of the 3 kVA system is demonstrated in Fig. 12.

Table 10: Optimization result of hybrid solar and biomass systems with 3 kVA

Component Capital ($) Replacement ($) O&M ($) Salvage ($) Fuel cost ($) Total ($)
Generic flat plate PV 560.00 0 89.48 0.00 0.00 649.48

Converter 46,666.7 222.54 340.89 41.42 0.00 649.48
Trojan SAGM12 205 18,292.00 4372.93 3477.07 3677.78 0.00 22,464.2
Biomass generator 372,150.00 0 1003.49 50,966.25 0.00 322,187.24
Complete System 437,668.67 4595.67 4910.94 54,685.45 0.00 392,489.63

Figure 12: Daily profile of 3 kVA system
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The average 11.13 kWh/day of the scaled load is attained, and an average of 0.46 kW is achieved. The peak
load is obtained as 1.6 kW and the 20% time step. The validated time step size is 60 min and 0.19 load factor.

Similarly, the proposed system is connected with the 5 kVA load and the performance is validated.
The optimization results of hybrid solar and biomass systems with 5 kVA using homer pro are illustrated
in Table 11. The daily profile of the 5 kVA system is demonstrated in Fig. 13. The average 11.13 kWh/day of the
scaled load is attained, and an average of 0.46 kW is achieved. The peak load is obtained as 4 kW and the
20%-time step. The validated time step size is 60 min, and the load factor is 0.12.

Table 11: Optimization result of hybrid solar and biomass systems with 5 kVA

Component Capital ($) Replacement ($) O&M ($) Salvage ($) Fuel cost ($) Total ($)
Generic flat plate PV 560.00 0 89.48 0.00 0.00 649.48

Converter 75,511.07 360.09 551.59 67.02 0.00 76,355.73
Trojan SAGM12 205 13,450.00 4541.11 2556.67 1639.52 0.00 18,908.26
Biomass generator 372,150.00 0.00 1323.08 47,003.09 0.00 326,469.99
Complete system 461,671.07 4901.20 4520.82 48,709.64 0.00 422,383.46

Figure 13: Daily profile of the 5 kVA system

Furthermore, the proposed system is connected with the 7 kVA load and validated the performance.
The optimization results of hybrid solar and biomass systems with 7 kVA using homer pro are illustrated
in Table 12. The daily profile of the 7 kVA system is demonstrated in Fig. 14. The average 11.13 kWh/day of the
scaled load is attained, and an average of 0.46 kW is achieved. The peak load is obtained as 5.6 kW and the
20%-time step. The validated time step size is 60 min, and the load factor is 0.08.

Table 12: Optimization result of hybrid solar and biomass systems with 7 kVA

Component Capital ($) Replacement ($) O&M ($) Salvage ($) Fuel cost ($) Total ($)
Generic flat plate PV 560.00 0 89.48 0.00 0.00 649.48

Converter 116,620.49 556.13 851.89 103.51 0.00 117,924.99
Trojan SAGM12 205 15,064 4245.01 2863.47 2546.64 0.00 19,625.84
Biomass generator 372,150.00 0.00 1,131.33 49,380.00 0.00 323,900.34
Complete system 504,394.49 4801,14 4936.14, 4936.17 0.00 462,100.65
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Figure 14: Daily profile of 7 kVA system

The analysis shows that biomass has a more significant initial investment than photovoltaics. Battery
storage units are the same price as biomass, except that they are infinitely reusable. Batteries are significantly
more expensive to maintain than solar power but are four times smaller than biomass power. When total
cost is considered, which includes capital, operation and maintenance, replacement, and salvage, PV and
battery storage are virtually the same. In contrast, biomass has a cost that is more than tenfold that of PV and
battery storage.

The THD and power loss obtained from the proposed system are 3.289% and 13.25 kW. For validating
the performance of the proposed method, the results of the hybrid system are compared with some of
the conventional state-of-the-art techniques such as the Artificial Neural Network (ANN) controller of
Dynamic Voltage Restorer (DVR) [30], techno-enviro-economic (TEE) [31], Multi-Objective Covariance
Matrix Adaption-Evolution Strategy (MOCMA-ES) algorithm [32], adaptive neuro-fuzzy inference system
(ANFIS) [33] and model predictive control (MPC) [34]. The comparison representation of the proposed
method attained THD value with the existing techniques is demonstrated in Fig. 15.

Figure 15: Comparison of THD with the existing technique

Moreover, the proposed EMMB optimization technique in the hybrid system has reduced the power loss
to 13.25 kW. Therefore, the proposed result is compared with similar existing techniques, as shown in Fig. 16.
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Figure 16: Comparison of power loss with the existing technique

The computational time of the proposed approach has been achieved at 10 s. The reliability of the HRES
was estimated using the Loss of Power Supply Probability (LPSP), expressed by the Eq. (42):

LPSP =

T∗

∑
t∗=1

LPS∗

T∗
∑

t∗=1
El oad (t∗)

(42)

where LPS∗ is the power supply loss (kW) estimated when the energy generated by the RES is lower than
the load demand, El oad (t∗) is the power consumed by the load t∗ (kW). Then, the overall comparison of
the proposed with existing methods are shown in Table 13.

Table 13: Overall comparison of the proposed solution over conventional methods

Techniques ANFISA [21] TEE [55] ANN-DVR [59] MOCCA-ES [60] MPC [61] Proposed
THD 2.89 1.27 0.86 3.6 0.30 0.25

Power loss (kW) 30 14.3 17.8 20.90 13.4 13.25
LPSP 0.34 0.5 0.1 0.42 2.536 0.01

In this paper, the proposed EMMB optimization technique significantly reduced the power loss at
13.25 kW and minimized the THD value of hybrid solar and biomass systems at 0.25%. Moreover, the cost of
the entire system is significantly diminished and improves the system’s performance. In addition, this proves
that the proposed system is more reliable than the other existing system.

7 Conclusion and Future Scope
The optimal design of hybrid solar and biomass systems is the power system’s most challenging and

significant issue. In this paper, the GDPNFC has been proposed to regulate the power supply of the proposed
hybrid system. Subsequently, the power loss, THD, and cost of the hybrid solar and biomass system were
reduced using the EMMB optimization technique. Finally, Homer software implemented the proposed
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hybrid solar and biomass system. From the simulation, the outcome shows that the NPC for the hybrid solar
and biomass system attains $462,101.

Moreover, the harmonics distortion range was attained within the limit of 5%. Besides, the power loss
and THD of the proposed approach were compared with other existing approaches, indicating that the
proposed technique reduces the power loss and THD of the hybrid solar and biomass system. Therefore,
it can be concluded that the proposed system is more reliable and cost-effective for providing sustainable
energy per the demand scenario.

In the future work, an analysis of the environmental benefits and cost implications of implementing the
proposed system would make the study more holistic and relevant for policymaking. Moreover, the potential
benefits of integrating additional renewable sources could be explored.
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