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ABSTRACT: With the large-scale promotion of distributed photovoltaics, new challenges have emerged in the
photovoltaic consumption within distribution networks. Traditional photovoltaic consumption schemes have primarily
focused on static analysis. However, as the scale of photovoltaic power generation devices grows and the methods of
integration diversify, a single consumption scheme is no longer sufficient to meet the actual needs of current distribution
networks. Therefore, this paper proposes an optimal evaluation method for photovoltaic consumption schemes based
on BASS model predictions of installed capacity, aiming to provide an effective tool for generating and evaluating
photovoltaic consumption schemes in distribution networks. First, the BASS diffusion model, combined with existing
photovoltaic capacity data and roof area information, is used to predict the trends in photovoltaic installed capacity
for each substation area, providing a scientific basis for consumption evaluation. Secondly, an improved random
scenario simulation method is proposed for assessing the photovoltaic consumption capacity in distribution networks.
This method generates photovoltaic integration schemes based on the diffusion probabilities of different regions and
evaluates the consumption capacity of each scheme. Finally, the Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS) is used to comprehensively evaluate the generated schemes, ensuring that the selected scheme
not only meets the consumption requirements but also offers high economic benefits and reliability. The effectiveness
and feasibility of the proposed method are validated through simulations of the IEEE 33-node system, providing strong
support for optimizing photovoltaic consumption schemes in distribution networks.

KEYWORDS: BASS model; photovoltaic installation forecast; diffusion probability; photovoltaic consumption; multi
objective evaluation

1 Introduction
With the continuous growth of global energy demand and increasing concerns about carbon emissions,

renewable energy has gradually become an important alternative to traditional fossil fuels. Photovoltaic (PV)
power generation, due to its cleanliness, renewability, and distributed nature, is gaining widespread adoption
globally [1–3]. By the end of 2021, China’s newly installed PV capacity reached 54.88 million kW [4]. However,
the large-scale integration of distributed photovoltaics can cause voltage fluctuations, making the assessment
of the consumption capacity of distribution networks with high levels of PV integration particularly
important [5–7]. Predicting the future installed capacity of photovoltaics in distribution networks is a
prerequisite for the evaluation of their consumption capacity.

Literature [8,9] addressed the issue of PV growth in the evaluation of photovoltaic installed capacity by
adopting an increase in penetration rate, which does not accurately reflect the actual growth of photovoltaics.
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Therefore, more realistic predictions of PV capacity growth are needed. Some recent studies have focused
on predicting future trends in distributed PV capacity. For example, literature [10] utilized a system
dynamics model based on an improved grey wolf optimization algorithm to forecast user PV installations,
incorporating factors such as electricity subsidies that directly affect household PV sales. In a similar vein,
literature [11] proposed a system dynamics model to predict incentives for PV installation and decision-
making models for users regarding grid-connected PV systems. However, both studies focused on objective
factors such as dynamic policy evolution, rather than simulating the subjective factors of user purchasing
behavior, which limits their accuracy in photovoltaic forecasting. If both subjective and objective factors are
considered comprehensively, the prediction of photovoltaic installed capacity can be more accurate.

Currently, methods for assessing PV consumption capacity can be broadly classified into two cate-
gories: software simulation methods [12–14] and mathematical optimization algorithms [15–17]. Software
simulation methods, such as those using MATLAB and other computational software, build systems for
simulation, allowing for real-time calculation and evaluation of various parameters. Literature [12] employs
a two-stage adjustable robust optimization to address the uncertainties in load demands and DG outputs,
and proposes a robust comprehensive DG capacity assessment method considering three-phase power flow
modeling and active network management (ANM) techniques. Literature [13] discussed the photovoltaic
consumption capacity under three different scenarios: concentrated at the feeder source, middle point, and
end point, and determined the maximum consumption capacity for each location. The second category is
mathematical optimization algorithms, including analytical methods, intelligent optimization algorithms,
and stochastic scenario simulations, which establish network models and solve them using various algo-
rithms. For instance, literature [15] categorized PV integration into single, multiple, or all nodes and applied
an improved simulated annealing-particle swarm optimization algorithm to find the maximum consumption
capacity for different distribution network conditions. However, the results obtained from analytical methods
and intelligent optimization algorithms are often local or global optima, which may not reflect the true,
comprehensive photovoltaic consumption capacity of the distribution network. By using stochastic scenario
simulation methods, various photovoltaic integration situations can be simulated, and extensive simulation
sampling can be conducted to reflect the actual consumption capacity of the distribution network.

This paper adopts the BASS diffusion model to predict the future growth of distributed photovoltaics
in each substation area. Secondly, a photovoltaic integration scenario generation method based on diffusion
probabilities is proposed, which simulates photovoltaic integration schemes and evaluates the consumption
capacity of all schemes year by year as photovoltaic capacity grows [18]. Finally, the Technique for Order
Preference by Similarity to an Ideal Solution (TOPSIS) [19] is applied, which not only evaluates the scheme
with the highest maximum photovoltaic consumption capacity under optimal economic efficiency and
reliability but also provides the corresponding photovoltaic configuration. Using the IEEE 33-bus system as
a benchmark example, simulations are conducted in MATLAB, and the results validate the accuracy and
effectiveness of the proposed method.

2 Prediction of Distributed Photovoltaic Installed Capacity Based on the BASS Diffusion Model
The consumption capacity of distributed photovoltaics is influenced by the location of connection

substations, the size of rooftop areas, and the progress of development. On one hand, it is necessary to
select a tool to simulate the diffusion process, ensuring that the growth of photovoltaics aligns with actual
conditions; on the other hand, a development cap needs to be established to constrain growth based on
rooftop photovoltaic area.

Building on this, the approximate assessment of photovoltaic installed capacity in distribution networks
can illustrate the dynamic evaluation process of annual growth and provide a clear representation of the
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photovoltaic consumption situation for each year. The Bass Diffusion Model is commonly used to predict the
diffusion trends of innovative products and technologies, and it has also been widely applied in the prediction
of rooftop photovoltaic installed capacity [20]. The basic form of the BASS diffusion model is as follows:

nt =
dNt

dt
= p (M − Nt) + q 1

M
Nt (M − Nt) (1)

In the equation, nt represents the installed capacity of distributed photovoltaics at time t; Nt denotes
the cumulative purchased capacity of distributed photovoltaics; M indicates the installation potential of
distributed photovoltaics; p represents the innovation coefficient; and q denotes the imitation coefficient,
p, q ∈ [0, 1].

The diffusion parameters M, p and q of the BASS diffusion model have a significant impact on prediction
accuracy. This study uses nonlinear least squares to estimate the values of the diffusion parameters p and q.
The installation potential M is influenced by the rooftop area of substations; therefore, the data for this study
is sourced from the measurement of rooftop areas obtained from high-resolution satellite imagery [21]. The
basic prediction results are shown in Fig. 1.

Figure 1: BASS diffusion model distributed photovoltaic installation fitting diagram

The blue squares represent historical rooftop photovoltaic data from 2013 to 2022, while the red
circles indicate the photovoltaic installed capacity values predicted based on the BASS model. The overall
prediction curve exhibits an S-shaped pattern. In the early stages, the growth is primarily influenced by the
innovation coefficient p, resulting in a gradual increase from 2023 to 2030. In the later stages, the influence
of the imitation coefficient q becomes dominant, leading to a rapid increase in the mid-term, followed
by a slowdown as it approaches saturation from 2030 to 2055. The saturation value is determined by the
installation potential M, with the installed capacity in 2055 reaching 4894.45 kW, which is close to the figure
of 4900 kW depicted in the graph. Overall, the trend aligns with the initial rapid growth of photovoltaics
followed by gradual saturation and slowing growth, effectively predicting the true trajectory of photovoltaic
development and demonstrating the validity of the BASS diffusion model. However, in practice, the rooftop
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photovoltaic area of substations is dynamically changing, so for the prediction process, a certain amount
of new rooftop photovoltaic area will be added for the upcoming year to introduce uncertainty, thereby
simulating this variation to make the predictions more reflective of reality.

3 Based on the Improved Stochastic Scenario Simulation Method for Photovoltaic Consumption
Capacity Assessment in Distribution Networks

Large-scale integration of distributed photovoltaics may lead to unstable power fluctuations and
frequency deviations in the grid, affecting power quality. In severe cases, it can cause reverse power flow
issues, potentially resulting in equipment damage or failure, and even triggering system collapse. This paper
focuses on the issue of voltage fluctuations by imposing limits on the maximum voltage to facilitate bounded
simulations. There is uncertainty in the integration of distributed photovoltaics in substations, influenced by
users’ subjective factors. Therefore, this paper adopts a photovoltaic integration scheme generation method
based on diffusion parameters, which maintains uncertainty while making the integration choices more
realistic. Subsequently, based on the photovoltaic forecasts for each substation area, the photovoltaic growth
for all schemes is evaluated under typical load scenarios, thereby providing an approximate assessment of
the consumption capacity for each scheme.

3.1 Generation of Typical Scenarios
The load demand of the distribution network and the output of distributed photovoltaics exhibit

significant temporal characteristics and fluctuations. This study selects the most common photovoltaic-load
scenarios for evaluation. Based on annual load data and solar radiation intensity data, the K-means clustering
method is utilized to identify the day with the most typical photovoltaic load variation. The load-photovoltaic
difference is then defined as the moment when the absolute value of the load and the photovoltaic output
have the greatest disparity, which is analyzed as a typical moment. The formula is as follows:

αPV (t) = Pl oad (t) − Ppv (t) (2)

In the formula, αPV (t) represents the load-photovoltaic difference, indicating the disparity between
the absolute value of photovoltaic output and the absolute value of load at time t. The moment when this
difference reaches its minimum is defined as the typical moment T . Ppv (t) and Pl oad (t) represent the
photovoltaic output and active power values of the distribution network at time t, respectively. Most existing
literature employs the moment with the maximum photovoltaic-load ratio as the typical time slice; however,
this approach can lead to the misselection of extreme cases, adversely affecting subsequent research (for
instance, when photovoltaic output is low but load active power approaches zero). In this study, we adopt
the condition of selecting the minimum load-photovoltaic difference, which helps avoid such extreme cases
and accurately identifies common moments where photovoltaic output is high and load is low.

3.2 Stochastic Scenario Simulation of Photovoltaic Consumption Schemes in Distribution Networks Based
on Diffusion Probabilities

3.2.1 Stochastic Scenario Simulation Method Based on Diffusion Probabilities
Since the integration of distributed photovoltaics is not only random but also has a certain degree of

subjectivity, using Monte Carlo fully random sampling or uniform sampling methods to simulate distributed
photovoltaic access schemes is not accurate. In the previous section, the BASS diffusion model was used
to predict photovoltaic installed capacity, resulting in three diffusion parameters (M, p and q) for each
substation area. Therefore, this paper proposes a probability sampling method based on diffusion parameters,
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distinguishing between different user and load types to make the random simulation process more aligned
with engineering practices. During the simulation of photovoltaic installed capacity prediction, the diffusion
probability involves changes over time and the growth of installed capacity, primarily influenced by the
imitation coefficient q. Thus, the sampling probability calculation formula for substation areas is as follows:

P (i) = α1M + α2
q1

nt1 p1 + q1
+ α3

q2

nt2 p2 + q2
(3)

In the formula, P represents the sampling probability value for the substation area; i represents the
substation number; and α1 , α2, α3 represent the weight coefficients; M is the photovoltaic installation
potential from the BASS diffusion model; p1 , q1 and p2, q2 represent the innovation coefficient and imitation
coefficient of the BASS model before and after the addition of new rooftop area; nt1 and nt2 represent the
distributed photovoltaic installation capacities at moments before t2 and after t1 the addition of rooftops.

3.2.2 Improved Stochastic Scenario Simulation Steps
After determining the typical time slice T , random simulations can be conducted for the distribution

network. The specific steps for simulating photovoltaic access schemes are as follows:

(1) Determine the number of photovoltaic access nodes. Let the total number of nodes in the dis-
tribution network be N , excluding generator nodes. From the remaining load nodes Nl oad = N −
1, the number of randomly generated photovoltaic nodes is Npv (0 < Npv ≤ Nl oad), resulting in a
photovoltaic access position set of size WPV = {W1 , W2, . . . , WNl oad}.

(2) Determine the photovoltaic access locations. Based on the access quantity, randomly select Npv
elements from set WPV according to the diffusion probability, resulting in a combination of positions
wPV = {W1 , W2, . . . , WN pv}.

(3) Incremental capacity growth of each photovoltaic node. Each selected photovoltaic node will
increase its capacity annually according to the predicted future photovoltaic installed capacity for each
substation area, and the total installed capacity will be recorded after each increment.

(4) Power flow calculation. Calculate the power flow results for this consumption scheme year by year,
recording voltage data for each year, and determine whether the voltage at each substation meets the
voltage constraints.

Ui ≤ Umax (4)

where Ui is the voltage value at node i and Umax is the rated maximum operating voltage.
(5) Repeat steps (1) and (2). Multiple photovoltaic access schemes can be randomly generated, saving the

access locations, total installed capacity, and voltage results for each scheme.

3.3 Photovoltaic Consumption Capacity Assessment in Distribution Networks
This paper uses the voltage level of the distribution network and photovoltaic capacity limits as the main

criteria for approximate evaluation, analyzing the consumption capacity under different distributed photo-
voltaic access schemes. Fig. 2 shows the scatter plot of the photovoltaic consumption capacity assessment
for a distribution network, generated after the Monte Carlo sampling of photovoltaic access schemes. Each
“line” in the figure represents a unique random photovoltaic access scheme, indicated by different colors.
Based on the BASS diffusion model, the future photovoltaic access capacity for each substation area was
predicted, allowing the total photovoltaic access capacity to increase annually according to the forecasted
values, resulting in the scattered points on the “line”. Each point on a “line” represents the maximum voltage
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value of the distribution network and the total photovoltaic access capacity for a given access scheme in
different years. The horizontal axis indicates the total photovoltaic access capacity of the random access
schemes, while the vertical axis represents the maximum system voltage for each random scheme at different
access capacities. A vertical comparison shows significant differences in voltage levels among the schemes
at the same photovoltaic access capacity, highlighting the importance of studying the site selection and
configuration of photovoltaics in distribution networks.

Figure 2: Simulation results of photovoltaic random access scheme

In Fig. 2, the dashed line at a voltage of 1.05 pu represents the voltage constraint of the distribution
network. The intersections formed between the voltage constraint dashed line and the various “lines” indicate
several points of interest. The labeled intersection points M1 and M2 represent the approximate minimum
and maximum photovoltaic access capacities, respectively. The simulation results are divided into three
regions, denoted as A, B, C, based on the horizontal coordinates x1 and x2 of points M1 and M2.

The area to the left of the horizontal coordinate x1 of point M1 is referred to as Region A. The scattered
points in this area indicate that, regardless of the total photovoltaic capacity being below this threshold, the
distribution network can absorb the power without exceeding the voltage limits, regardless of the access
locations and quantities.

The area greater than x1 and less than x2 is referred to as Region B. The scattered points in this
area suggest that the number and location of photovoltaic connections significantly impact the voltage
levels. Therefore, it is necessary to plan the photovoltaic configuration rationally to effectively avoid
voltage violations.

The area greater than x2 is referred to as Region C. In this region, the total photovoltaic capacity is
relatively high, and any access configuration will lead to voltage violations. Reasonable planning solutions
are needed to address the absorption issues related to photovoltaic output.

The scheme near point M2 in area B is the target scheme, and the photovoltaic access scheme at this
point represents the photovoltaic configuration scenario under the maximum photovoltaic consumption
capacity of the distribution network. However, as can be seen from the figure, using Monte Carlo sampling
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results in fewer schemes near point M2 in the target area B, with a large difference in the capacities of the
available alternative consumption schemes, making it difficult to perform a comprehensive optimization.
The probability sampling method based on diffusion parameters can make the generated random schemes
more concentrated near points, making the approximate maximum absorption capacity of candidate
schemes close.

4 Comprehensive Selection of Photovoltaic Consumption Schemes Based on TOPSIS
In the B region, although the photovoltaic access schemes near point M2 have similar photovoltaic

access capacities, there are significant differences in the number of photovoltaic connections and their
locations across the various schemes. To ensure the economic efficiency and reliability of the distribution
network with distributed photovoltaic access, this section comprehensively selects the candidate schemes
based on three indicators: voltage quality, annual investment costs, and total photovoltaic capacity.

4.1 Voltage Quality Model
Good voltage quality is essential for the stable operation of power systems and the normal functioning

of equipment. This paper uses the level exceeding the upper voltage constraint as an evaluation metric and
establishes a voltage deviation model to assess the voltage quality of photovoltaic access schemes.

f1 (i) = {
Umax−max(Ui(t))

Umax−Umin
, max (Ui (t)) > Umax

0, max (Ui (t)) ≤ Umin
(5)

In the equation, f1 (i) represents the voltage deviation value of the consumption scheme i; Umax and
Umin are the upper and lower voltage limits of the distribution network system; and max (Ui (t)) is the
maximum voltage value at the node when the consumption scheme i is connected at its maximum capacity.

4.2 Annual Investment Cost Model
The initial investment for distributed photovoltaic (PV) integration mainly relates to the installation of

inverters and PV modules. The mid-term costs primarily include the purchase costs of electricity from higher
levels, while the later stage mainly involves the operation and maintenance (O&M) costs of PV generation.
This paper establishes an investment cost model for distributed PV integration around these three indicators.
The investment cost model for distributed PV is as follows:

f2 (i) = Cinv + C f ee + Cm (6)

In the formula, Cinv represents the initial investment cost of distributed photovoltaic integration, and
C f ee indicates the electricity purchase cost for the distribution network.

The formula for the initial investment cost of distributed PV integration is as follows:

Cinv = λ0 + λ1

N
∑
n=1

xDG Pn
DG + λ2

N
∑
n=1

xDG Pn
DG (7)

In the formula, λ0 and λ1 represent the fixed investment cost and unit capacity cost of the photovoltaic
inverter, respectively. xDG is a binary variable, where xDG = 0 indicates that distributed photovoltaic is not
integrated at the n node, and xDG = 1 indicates that distributed photovoltaic is integrated at the n node. Pn

DG
denotes the photovoltaic capacity connected at the n node, while λ2 represents the fixed investment cost of
the photovoltaic modules. N is the total number of nodes.
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The formula for the higher-level electricity purchase costs is as follows:

C f ee = λ3 (t)4

8760
∑
t=1

N
∑
n=1

xDG (Pn
l oad − Pn

DG) (8)

In the equation, λ3 (t) represents the time-of-use electricity price for a given day; Pn
l oad is the load power

at node n.
Finally, the post-investment primarily consists of the operational and maintenance costs for the

equipment, which can be expressed as:

Cm = λ4

8760
∑
t=1

N
∑
n=1

xDG Pn
DG (9)

In the equation, λ4 represents the unit operational and maintenance cost of the photovoltaic system.

4.3 Comprehensive Selection of Schemes Based on TOPSIS
After determining the candidate consumption schemes and calculating the voltage deviation and

investment costs for each scheme, this paper employs the TOPSIS method based on the entropy weighting
approach to conduct a comprehensive evaluation of consumption capacity, voltage quality, and investment
costs, thereby selecting the optimal consumption scheme. The TOPSIS method [22], also known as the
Technique for Order of Preference by Similarity to Ideal Solution, is a multi-attribute decision-making
method used to assess the merits of alternative schemes. The entropy weighting method can better reflect
the correlation among attributes and the uncertainty of their weights. The steps for selecting the optimal
consumption scheme using the entropy-weighted TOPSIS method are as follows:

(1) Select n candidate schemes based on the approximate evaluation results of the consumption capacity,
which serve as the n evaluation objects.

(2) Calculate the evaluation indicators for each object: total consumption capacity, voltage deviation, and
investment cost. Establish the initial multi-objective matrix X = (xi j)3×n, and perform normalization
on the result values to obtain the standardized multi-objective matrix.

zi j = xi j/
�
��

n
∑
i=1

x2
i j (10)

(3) Determine the entropy weights for each indicator. Calculate the probability matrix pi j, information
entropy e j, and information utility values d j of the multi-objective matrix, and finally compute the
entropy weights.

w j =
d j

3
∑
j=1

d j

(11)

(4) Calculate the positive and negative ideal solutions Z+ and Z− for the evaluation indicators, and assess
the distances between each evaluation object’s indicators and the ideal solutions, denoted as D+i and
D−i .

{ Z+ = (z+i1 , z+i2, z+i3) = (max zi1 , max zi2, max zi3)
Z− = (z−i1 , z−i2, z−i3) = (min zi1 , min zi2, min zi3)

(12)
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D+i =
�
�� 3
∑
j=1

Wj × (Z+j − zi j)
2
, i = 1, 2, . . . , n

D−i =
√

−

∑
j=1

Wj × (Z+j − zi j)
2
, i = 1, 2, . . . , n

(13)

(5) Calculate the proximity of each evaluation object to the ideal solution, resulting in a final score.
Normalize the scores to rank the schemes and select the scheme with the maximum score as the optimal
consumption scheme.

5 Example Analysis

5.1 Example Introduction
This study uses the IEEE 33-node distribution network system for simulation, which is divided into four

areas: commercial, industrial, residential, and mixed-use zones. The network topology is shown in Fig. 3. The
system operates at a voltage level of 12.66 kV, with a base power of 10 MVA and voltage limits set at 1.05 and
0.95 pu. The total system power is 3.175 MW + 2.3 MVar, with node 1 serving as the balancing node, set at a
voltage of 1.0 pu, while the remaining 32 nodes are load nodes capable of integrating photovoltaic systems.
The residential area includes nodes 1 to 13, represented in green; the mixed-use area consists of nodes 14 to
18, shown in gray; the commercial area encompasses nodes 19 to 25, depicted in blue; and the industrial area
includes nodes 26 to 33, illustrated in orange.

Figure 3: IEEE 33 node distribution network system topology diagram

The photovoltaic capacity estimation for the IEEE 33-node system is conducted by region. Since 2013,
the National Energy Administration has published annual data on distributed photovoltaic installed capacity
nationwide. The parameters for the Bass diffusion model in this study are derived from the distributed
photovoltaic installed capacity data spanning a decade from 2013 to 2022, predicting the future photovoltaic
capacity for each area from 2023 to 2055 over the next 33 years. However, the total photovoltaic area will
change with urban development. To simulate this incremental change, different areas will see varying total
rooftop area increases in different years, as detailed in Table 1. This approach provides a more realistic
capacity forecast, ultimately yielding the predicted results for the 33 areas, with a specific area’s prediction
illustrated in Fig. 4. In the figure, the blue squares represent historical photovoltaic installed capacity data,
while the red curve is the fitted curve of the future photovoltaic installed capacity for each year, showing the
trend of photovoltaic capacity changes in the region.
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Table 1: Newly added rooftop area for photovoltaics in various regions

Substation type New rooftop area/m2 Year of new rooftop
Residential area 500 2050

Commercial area 1000 2044
Industrial area 1000 2040
Mixed-use area 750 2048

Figure 4: Forecast of distributed photovoltaic installed capacity in a certain district

After reviewing the data, the fixed investment cost for distributed photovoltaic modules is 6 ¥/W; the
fixed investment cost and unit capacity cost for photovoltaic inverters are 805.85 yuan and 422 ¥/kW, respec-
tively. The peak, valley, and flat electricity prices for purchased power are 0.904, 0.312, and 0.600 ¥/(kW⋅h).
The unit operation and maintenance cost for distributed photovoltaic systems is 0.1 ¥/(kW⋅h). Data for solar
radiation intensity and load from a city in China is selected, with the corresponding normalized values shown
in Fig. 5, illustrating the variation in solar radiation intensity and load over the course of the year (365 days).

Figure 5: (Continued)
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Figure 5: Light radiation intensity and load power per unit value

5.2 Example Simulation
Based on the annual solar radiation intensity and load data, K-means clustering was performed to

identify a typical day that represents the most common combination of solar radiation and load throughout
the year, as shown in Fig. 6. According to the method described in Section 3.1, the minimum load-solar
radiation difference for the typical day is 0.2693, occurring at 14:00. This moment is designated as the typical
time, with a normalized solar radiation intensity value of 0.5018 and a normalized load value of 0.7712.

Figure 6: Typical solar radiation and load changes

At this typical time, random simulations of photovoltaic consumption schemes and approximate
evaluations of consumption capacity were conducted following the methods outlined in Sections 3.2 and 3.3.
First, the weight coefficients of the diffusion parameters were defined as 0.4, 0.3, and 0.3, which provided
the sampling probabilities for each feeder node. Based on these diffusion probabilities, 1000 random samples
were generated, resulting in 1000 random access schemes. The maximum normalized voltage values and
total photovoltaic capacities for each scheme were recorded, as shown in Fig. 7. The approximate maximum
consumption capacity for this distribution network system was determined to be 13.61416 MW, with the
horizontal coordinates of M1 and M2 being 2.6597 and 14.5692 MW, respectively.

Compared to Fig. 2, the use of the diffusion probability-based sampling method resulted in a denser
distribution of the generated random access schemes between M1 and M2. In Fig. 2, the schemes near
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M2 were more sparse, leading to significant differences in the maximum photovoltaic capacities of the
final candidate schemes. Fig. 7, in contrast to Fig. 2, shows a closer approximation, enhancing the sampling
accuracy and concentrating the necessary “rays”, thereby making the simulation results more effective.

Figure 7: Simulation results of photovoltaic random access scheme

The maximum consumption capacities of the various schemes were ranked, and the top 10 capacity
schemes were selected as candidates for evaluation. The scoring results are presented in descending order
in Table 2.

Table 2: Newly added rooftop area for photovoltaics in various regions

Scheme
number

Final score Voltage deviation
f1 (i)

Investment cost
f2 (i)/¥10,000

Total photovoltaic
capacity f3 (i)/MW

1 0.1973 0.1012 9617.73 12.48731
2 0.1801 0.1081 9294.35 12.13905
3 0.1267 0.1299 9084.71 11.81966
4 0.1245 0.133 9579.26 12.38495
5 0.1070 0.1370 9058.04 11.18827
6 0.0918 0.1582 10,147.0 13.61416
7 0.0741 0.1338 9569.82 12.34055
8 0.0491 0.1648 9349.99 12.20542
9 0.0283 0.1081 9181.07 11.87682
10 0.0211 0.2062 9143.85 11.86555

As shown in Table 2, the highest-scoring Scheme 1 has a score of 0.1973, making it the optimal
photovoltaic consumption scheme when considering the comprehensive factors of consumption capacity,
investment benefits, and voltage quality. Compared to Schemes 2 and 3, although Scheme 1 incurs higher
investment costs, it can accommodate more photovoltaic capacity without exceeding voltage limits, while
also maintaining a lower voltage deviation during continuous PV integration. The method presented in
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this paper enables the distribution network to maximize consumption with minimal investment under
substantial distributed photovoltaic integration, while ensuring stable voltage quality.

The configuration of distributed photovoltaic integration for Scheme 1 is illustrated in Fig. 8. To validate
the rationality of the scheme, it was tested under the most extreme scenario of the year, specifically at
the moment when the solar load ratio is maximized, using annual operational data. The results are shown
in Fig. 9.

Figure 8: Optimal consumption plan for photovoltaic access configuration
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Figure 9: Voltage verification diagram based on annual operating data
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As seen in Fig. 9, this integration scheme experiences voltage violations for 8 h during the extreme
typical scenario within the annual operational cycle, with minimal violation levels. This indicates the
representativeness of the selected typical moment and the rationality of the integration scheme.

Using the improved particle swarm optimization algorithm method from literature [15], this paper
solves the example with the objectives of system consumption capacity, voltage deviation, and investment
costs. The maximum photovoltaic consumption scheme configuration for the IEEE 33-node system is
obtained, as illustrated in Fig. 10.

Figure 10: Mathematical optimization algorithm for maximum photovoltaic consumption and access configuration

As shown in this figure, the photovoltaic configuration scenarios obtained in reference [15] are nodes
3, 6, 9, 10, 12, 15, 20, 22, 26, 28, 29, and 32, with a total photovoltaic capacity of 13.89 MW. Although this is
higher than the 12.48 MW result obtained by the method in this paper, the photovoltaic capacity at node 22
reaches 2.8001 MW, exceeding its rooftop area limit of 2.5035 MW, which does not comply with practical
constraints. In addition, the consumption assessment method based on the improved particle swarm
optimization not only fails to provide annual consumption evaluation results but also cannot simulate and
compare various photovoltaic integration scenarios, thus failing to reflect the comprehensive photovoltaic
consumption capacity of the distribution network. In contrast, the consumption assessment method based
on the improved stochastic scenario simulation in this paper simulates various photovoltaic integration
scenarios and conducts extensive simulation sampling to reflect the actual consumption capacity of the
distribution network.

6 Conclusion
This study presents an evaluation method for optimizing photovoltaic consumption schemes in distri-

bution networks based on BASS model predictions of installed PV capacity. The method aims to reasonably
evaluate the photovoltaic consumption capacity of distribution networks under the considerations of
economic efficiency and reliability. The research leads to the following conclusions:
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(1) A method based on the BASS diffusion model predicts the future photovoltaic capacity of the
distribution network. This approach incorporates both objective and subjective factors to forecast the
development trend of photovoltaic installed capacity, ensuring that the predictions align with reality.

(2) A photovoltaic consumption evaluation method is proposed, which uses a photovoltaic random
scenario method based on diffusion probabilities to generate photovoltaic access schemes and assess
the consumption capacity of these schemes.

(3) The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is used
to evaluate the economic efficiency and reliability of the scheme with the maximum consumption
capacity, making the final consumption scheme more reasonable and providing valuable reference
for professionals.

In future assessments of the photovoltaic consumption capacity in distribution networks, additional
factors such as the integration of solar energy and storage systems (solar-storage synergy), intelligent
optimization scheduling, and further refinement of regional differences in consumption capacity should also
be considered.
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Nomenclature
nt The installed capacity of distributed photovoltaics at time t
Nt The cumulative purchased capacity of distributed photovoltaics
M The installation potential of distributed photovoltaics
p The innovation coefficient p ∈ [0, 1]
q Denotes the imitation coefficient q ∈ [0, 1]
αPV (t) The load-photovoltaic difference, indicating the disparity between the absolute value of photovoltaic

output and the absolute value of load at time t
T The moment when this difference reaches its minimum is defined as the typical moment
Ppv (t) The photovoltaic output of the distribution network at time t
Pl oad (t) The active power values of the distribution network at time t
Ui The voltage value at node i
Umax The rated maximum operating voltage
Umin The lower voltage limits of the distribution network system
P The sampling probability value for the substation area
i Represents the substation number
αi The weight coefficients
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p1 , q1 The innovation coefficient and imitation coefficient of the BASS model before the addition of new
rooftop area

p2 , q2 The innovation coefficient and imitation coefficient of the BASS model after the addition of new
rooftop area

nt1 The distributed photovoltaic installation capacities at moments before t2 the addition of rooftops
nt2 The distributed photovoltaic installation capacities at moments after t1 the addition of rooftops
f1 (i) The voltage deviation value of the consumption scheme i
max (Ui (t)) The maximum voltage value at the node when the consumption scheme i is connected at its maxi-

mum capacity
Cinv The initial investment cost of distributed photovoltaic integration
C f ee The electricity purchase cost for the distribution network
λ0 The fixed investment cost of the photovoltaic inverter
λ1 The unit capacity cost of the photovoltaic inverter
xDG A binary variable, where xDG = 0 indicates that distributed photovoltaic is not integrated at the n node,

and xDG = 1 indicates that distributed photovoltaic is integrated at the n node
Pn

DG The photovoltaic capacity connected at the n node
N The total number of nodes
λ3 (t) The time-of-use electricity price for a given day
Pn

l oad The load power at node n
λ4 The unit operational and maintenance cost of the photovoltaic system
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