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ABSTRACT: In the background of the low-carbon transformation of the energy structure, the problem of operational
uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy
systems (IES) is becoming increasingly obvious. In this case, to promote the low-carbon operation of IES and renewable
energy consumption, and to improve the IES anti-interference ability, this paper proposes an IES scheduling strategy
that considers CCS-P2G and concentrating solar power (CSP) station. Firstly, CSP station, gas hydrogen doping mode
and variable hydrogen doping ratio mode are applied to IES, and combined with CCS-P2G coupling model, the IES
low-carbon economic dispatch model is established. Secondly, the stepped carbon trading mechanism is applied, and
the sensitivity analysis of IES carbon trading is carried out. Finally, an IES optimal scheduling strategy based on fuzzy
opportunity constraints and an IES risk assessment strategy based on CVaR theory are established. The simulation
shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of
IES by 1.32% and 7.17%, and improves the carbon benefit by 5.73%; variable hydrogen doping ratio model reduces the
operating cost and carbon emission of IES by 3.75% and 1.70%, respectively; CSP stations reduce 19.64% and 38.52% of
the operating costs of IES and 1.03% and 1.80% of the carbon emissions of IES respectively compared to equal-capacity
photovoltaic and wind turbines; the baseline price of carbon trading of IES and its rate of change jointly affect the carbon
emissions of IES; evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting
coefficients, enabling IES to guarantee operation at the lowest cost.

KEYWORDS: Concentrating solar power station; CCS-P2G; stepped carbon trading mechanism; fuzzy opportunity
constraints; conditional value-at-risk theory

1 Introduction
An integrated energy system (IES) is characterized by the internal integration of multiple energy

sources, primarily gas flow and electric current. This system is further augmented by energy storage and
conversion equipment, facilitating the realization of multi-energy complementary coexistence, synergistic
optimization, and gradient utilization [1]. Given the intricate nature of IES architecture and the heterogeneity
of load profiles, an integrated energy system leveraging distributed renewable energy as its core component
can meet the demands of diverse load types, thereby enhancing the low-carbon efficiency of IES and the rate
of renewable energy consumption [2,3].
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Integrated Energy Systems (IESs) pursue decarbonized operation via two key technical routes: indirect
and direct emission reduction [4]. In the area of indirect emission cuts, the combined heat and power (CHP)
unit, a central power-generating element in IES, shows a distinct heat-power linkage, causing significant
carbon discharges. To address this, ramping up the use of renewable energy along with incorporating
energy storage systems is vital. These strategies facilitate a well-planned shift in energy consumption timing,
ultimately trimming the IES’s indirect carbon footprint [4,5].

For direct emission reduction, carbon sink measures and market trading policies present feasible
solutions. Carbon capture and storage (CCS) systems have been proven to perform large-scale, efficient
carbon capture [6]. Power-to-gas (P2G) technologies, which tap into leftover renewable energy, offer a
promising means to boost renewable energy utilization and lower emissions [7]. Multiple research efforts
have explored the carbon reduction benefits of CCS and P2G. For instance, reference [8] designed an all-
around coordinated optimization model for P2G-carbon capture power plants. Since gas-fired units are
major carbon emitters, treating their CO2-laden flue gas properly is indispensable. Reference [9] illustrated
how CO2 captured from gas-fired co-generation plants can be sent to electric-to-gas conversion gear for
gas synthesis and then recycled back, cutting carbon emissions, gas purchases, and wasted wind power
simultaneously. Reference [10] merged CCS with waste incineration power plant flue gas treatment for load
adjustment, relying on the integration of CCS and P2G to ease the impacts of renewable energy fluctuations.
Moreover, scholars in reference [11] paired P2G with CCS and extended this pairing to complex, multi-
energy-source IES. By contrast, reference works [12,13] separated CO2 capture and utilization processes by
connecting P2G and CCS via carbon storage devices. References [14,15] set up CCS setups with liquid storage
equipment, which disentangle carbon absorption and regeneration, providing broader output regulation
scope and more peaking flexibility. To tackle the high energy costs of carbon capture, reference [16] put
forward a flexible capture operation mode to modulate the capture degree of carbon capture equipment,
deferring the associated energy expenses over time. However, within the CCS-P2G coupled system, the
electro-hydrogen conversion process, other hydrogen application methods, and methanation inefficiencies
are often overlooked, and the combination with the carbon trading low-carbon mechanism has yet to
be considered.

As shown in reference [17], an optimal CHP model scheduling method based on CCS-P2G was
established, solving carbon source and emission issues for CHP unit output. Reference [18] built an integrated
wind-PV-hydrogen power system, facilitating renewable energy use and reliable H2 supply in IES. The CCS-
P2G coupling model turned carbon trading costs positive, promoting carbon sinks, cutting IES costs, and
increasing trading revenues. The Carbon Emission Trading (CET) mechanism [19,20] supports furthering
renewable energy consumption and IES low-carbon potential. Some literature, like reference [21], has
explored CET’s benefits in IES operations via a cross-regional optimal dispatch model integrating CET and
Green Certificate Trading. Reference [22] built an IES dispatch model using the stepped CET mechanism
and multi-energy response, showing 6.7% carbon and 9.21% cost reductions. Yet, existing literature has
limitations. It separately considers IES equipment’s carbon reduction potential and the trading market,
ignoring combined low-carbon tech-policy benefits. Also, the CCS-P2G model overlooks the power-to-
hydrogen stage and other hydrogen utilization paths. To fix this, this paper will propose a two-stage
P2G model and use gas doping to enhance hydrogen use, applying the stepped CET mechanism for IES
decarbonization research.

Concentrating solar power (CSP) is a new solar power generation mode, that integrates photothermal
conversion, thermal storage, and synchronous power generation. In integrated energy system research, many
scholars focus on CSP. Reference [22] pioneered in clarifying its basic features, laying the foundation for
later work. For power system optimal scheduling, reference [23] built a two-stage stochastic model for power
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systems with CSP, aiming to cut operating costs, highlighting CSP’s value in high-proportion new energy
grids. References [24,25] studied photovoltaic power plants in Gansu, Qinghai, etc., evaluating their power
generation and flexibility benefits. In grid scheduling, reference [26] proposed coordinating photovoltaic,
wind, and thermal power. Electric heating devices convert unused wind power to heat, store it in the
photovoltaic plant’s thermal storage, and reuse it, enhancing the plant’s value. References [27–29] adjusted
photovoltaic output and paired it with thermal storage operations to suppress wind-solar-storage power
fluctuations and promote joint frequency regulation, bringing economic and capacity benefits. To ensure
power system stability, reference [30] developed a wind-solar-photothermal combined power generation
system model, making grid-connected power match the dispatch curve, and strengthening operation
reliability. Reference [31] exploited the complementary regulation characteristics of thermal and photovoltaic
power to build a coordinated dispatch model, reducing abandoned new energy and dispatch costs.

Presently, the main analytical methods for uncertainty optimization are the fuzzy chance constraint,
robust optimization, and multi-scenario stochastic optimization [32]. Many studies use these to analyze
system source-load uncertainties. In reference [33], fuzzy chance constraints handle wind power and
load uncertainties, while optimization hierarchy analysis addresses multi-objective functions in a Regional
Integrated Energy System (RIES) with pumped storage, wind, hydro, and thermal power units. The model
boosts the RIES’s integrated performance. Another study focuses on a multi-timescale cross-provincial
grid scheduling strategy for PV-load uncertainties. A VAR model forecasts PV output [34]; multi-scenario
stochastic optimization analyzes day-ahead PV uncertainty; a trapezoidal fuzzy number equivalence model
examines intraday uncertainties. This strategy cut’s intraday fuzzy chance constraint complexity raises PV
cross-provincial consumption via pumped storage and optimizes PV output and load differences between
provinces. In reference [35], the multi-energy virtual power plant model, considering carbon capture and
storage, uses fuzzy numbers to study wind and load uncertainties’ impact on carbon capture. The model
reduces system carbon emissions. Reference [36] looks at a MEH energy scheduling scheme with carbon
emissions in mind, generating multiple scenarios via the probability density function to assess renewable
energy output uncertainties. Reference [37] explores a day-ahead optimal scheduling model with multi-
scenario analysis, using improved K-means clustering for scenario generation and reduction to shorten
computation time. Reference [38] studies an MMG two-tier scheduling strategy for wind-scenic cooperative
energy storage, establishing power balance constraints with uncertain parameters and introducing slack
power constraints to cut power supply-demand deviation. Finally, reference [39] examines a coupled
electricity-carbon MMG cooperative game optimization scheduling model with multiple uncertainties,
applying the opportunity constraint method to wind power output uncertainty and robust optimization to
tariff uncertainty.

In summary, although research on low-carbon operation of IES has made some progress, existing
studies have neglected the stability problem of renewable energy generation. In IES containing a high
proportion of renewable energy, the disturbance problems caused by the fluctuation and randomness of
renewable energy generation cannot be ignored. To promote the low-carbon operation of IES and improve
the disturbance-resistant capability of IES, this paper proposes a low-carbon economic dispatch study of IES
under uncertainty taking into account CCS-P2G and CSP station, with the following steps: (1) a low-carbon
dispatch model of IES based on CCS-P2G, CSP station and gas hydrogen doping unit is established, and the
effectiveness of the gas hydrogen doping and variable hydrogen doping ratio modes are analyzed; (2) the
ladder-type carbon trading mechanism into IES, and conducted sensitivity analysis of the carbon trading
benchmark price of IES and its growth rate; (3) used trapezoidal fuzzy numbers to relax the IES power balance
constraints and transform them into clear equivalence classes, and established the IES optimal scheduling
strategy based on the fuzzy opportunity constraints; (4) used weight coefficients as the risk assessment



1534 Energy Eng. 2025;122(4)

indexes, and established the IES risk assessment based on the CVaR strategy. Finally, the simulation example
shows that the proposed strategy effectively reduces the operation cost and carbon emission of IES, the
carbon trading base price of IES and its growth rate jointly decide the carbon emission of IES, and the
anti-disturbance ability of IES is evaluated by the trapezoidal fuzzy number and CVaR.

2 IES Model with CCS-P2G, Gas-Fired Hydrogen-Doped Units and CSP
The IES in this paper consist of a thermal unit (TU), gas turbine (GT), gas boiler (GB), P2G, CSP power

plant, wind turbine (WT), CCS and electric energy storage, and the load consists of electric and thermal
loads. The structure of IES in this paper is shown in Fig. 1:
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Figure 1: IES structure diagram

2.1 Mechanisms and Models for Coupled CCS-P2G Operation
2.1.1 Mechanisms and Models of CCS Operation

The introduction of a flue gas diverter system and liquid storage vessel in CCS forms an integrated and
flexible operation mode of CCS [40], which improves the flexibility of its operation in conjunction with P2G.
Gas boilers, gas turbines, and thermal power units all generate CO2 during operation, and in the CCS-P2G
coupled operation mode proposed in this paper, the CCS collects the captured CO2 and transports it to the
methane reactor (MR) for methanation, which reduces the cost and carbon emission of purchasing CO2 from
external sources by the IES and avoids the leakage of CO2 during the transportation to the CCS or CCUS.
It also avoids the leakage of CO2 during transportation to CCS or CCUS, which may cause environmental
pollution [41]. Fig. 2 shows the energy flow diagram of the coupled CCS-P2G operation mode:

The actual capture energy consumption of CCS in the time t PCCS
t consists of the operational energy

consumption PCCS
t ,b and the stationary energy consumption PCCS

t ,d [42]:

⎧⎪⎪⎨⎪⎪⎩

PCCS
t = PCCS

t ,b + PCCS
t ,d

PCCS
t ,b = ωCCSPCCS,m

t ,CO2

(1)
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where ωCCS is the energy consumption per unit mass of CO2 captured by CCS, taken as 0.269 MW ⋅ h/t;
PCCS,m

t ,CO2
is the mass of CO2 captured by the CCS regeneration tower during the time t.
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Figure 2: Energy flow diagram of CCS-P2G coupled gas hydrogen doping system

The CCS contains a flue gas splitter system that increases CCS operational flexibility and reduces energy
consumption by actively venting CO2 into the atmosphere as required by the IES:

PIES
t ,CO2

= PCCS
t ,CO2

+ Pair
t ,1 (2)

where PIES
t ,CO2

is the total amount of CO2 emitted by the IES during the time t; PCCS
t ,CO2

is the amount of CO2
absorbed by the CCS during the time t; Pair

t ,1 is the amount of CO2 discharged from the CCS to the atmosphere
via the flue gas splitter system during the time t.

The decoupling of the CO2 absorption and regeneration processes is realized by installing a liquid
storage vessel between the absorption and regeneration towers and transferring the CCS energy consumption
by adjusting the liquid storage volume of the vessel. The CCS energy consumption is reduced when the
liquid-rich unit has more liquid storage and the liquid-poor unit has less liquid storage and vice versa, which
is modelled as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V F
t = V F

t−1 + V F
t ,in − V F

t ,out

V P
t = V P

t−1 + V P
t ,in − V P

t ,out

V F
t ,in = V P

t ,out

V F
t ,out = V P

t ,in

(3)

where V F
t and V P

t are the volume of liquid storage in the liquid-rich vessel and the liquid-poor vessel in the
time t, respectively; V F

t ,in and V F
t ,out are the volume of inflow and outflow from the liquid-rich vessel in

the time t, respectively; V P
t ,in and V P

t ,out are the volume of inflow and outflow from the liquid-poor vessel in
the time t, respectively.

In this paper, we use the form of the volumetric amount of solution instead of a CO2 amount, if a unit
volume of enriched liquid absorbs 20 times the volume of CO2:

⎧⎪⎪⎨⎪⎪⎩

20V F
t ,in = ηCCSPCCS

t ,CO2
/ρCO2

20V P
t ,out = ηCCS (PCCS

t ,MR + PCCS
t ,storage)/ρCO2

(4)



1536 Energy Eng. 2025;122(4)

where ηCCS is the CCS capture efficiency, taken as 95%; ρCO2 is the CO2 gaseous density, assuming a
temperature of 20○C, ρCO2 = 770 kg/m3.

The regenerated CO2 is transported to the MR or sequestered, and some is discharged to the atmosphere:

PCCS
t ,out = PCCS

t ,storage + PCCS
t ,MR + PCCS

t ,air (5)

where PCCS
t ,out is the amount of CO2 produced by CCS in the time t; PCCS

t ,MR is the amount of CO2 sequestered at
in the time t; PCCS

t ,air is the amount of CO2 emitted to the atmosphere after regeneration of CCS in the time t.

2.1.2 Mechanisms and Models for the Two-phase Operation of the P2G
The P2G operation process is divided into two stages: P2H and hydrogen to gas (H2G). In the first

stage, the electrolytic (EL) electrolyzes water, realizing the conversion of “electricity-hydrogen energy”; in the
second stage, the EL delivers the hydrogen energy to MR, GT, and GB, respectively. Fig. 3 shows the process
diagram of the two stages of P2G:

Figure 3: Two-stage operational process of P2G

The MR is mechanized to produce CH4, which can be supplied directly to the gas load or delivered to
the CHP or GB to produce electricity/thermal energy. The raw materials consumed by the GT and GB consist
of the hydrogen generated by the P2G and natural gas, as well as the gas purchased from an external gas grid.
This P2G two-stage model also reduces carbon emissions and improves the efficiency of P2G operation by
operating GT and GB with gas-doped hydrogen compared to the conventional P2G model.

The P2G model is as follows:

PEL
t ,H2
= ηELPP2G

t (6)

where PP2G
t is the P2G power consumption in the time t; PEL

t ,H2
is the EL hydrogen production power in the

time t; ηEL is the P2H conversion efficiency.

PMR
t ,CH4

= ηMRPMR
t ,H2

(7)
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where PMR
t ,H2

and PMR
t ,CH4

are the hydrogen consumption power and gas production power of MR at the time t;
ηMR is the MR conversion efficiency.

P2G generates CH4 by a volume equal to the volume of CO2 consumed:

V MR
t ,CH4

= PCCS
t ,MR/ρCO2 (8)

P2G generates CH4 volume V MR
t ,CH4

vs. power consumption PP2G
t at the t time slot:

V MR
t ,CH4

= ηMRPMR
t ,H2

LH2/ρCH4 LCH4 (9)

where LH2 and LCH4 are the calorific values of H2 and CH4, respectively.

2.2 Operational Modelling of Hydrogen Doping in Gas Turbines and Gas Boilers
2.2.1 Hydrogen-Doped Gas Turbine Model

The standard hydrogen-doped gas turbine can maintain safe operation in the range of 0%~30%
hydrogen-doping ratio, beyond which the standard hydrogen-doped gas turbine needs to be improved, which
increases the investment cost [43]. Therefore, in this paper, the gas turbine with a hydrogen doping ratio of
10%~20% is selected and modelled as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PGT
t ,e = ηGT

e PGT
t ,mix

PGT
t ,h = ηGT

h PGT
t ,mix

PGT
t ,mix = εv

CH4
V GT

t ,CH4
+ εm

H2
PGT

t ,H2

λGT
t ,H2
= (PGT

t ,H2
/ρH2)/[V GT

t ,CH4
+ (PGT

t ,H2
/ρH2)]

(10)

where PGT
t ,mix is the GT mixed gas input power at time t; PGT

t ,e and PGT
t ,h are the GT power and thermal

generation power at time t; ηGT
e and ηGT

h are the GT power and thermal generation efficiencies; εv
CH4

is the
volumetric power conversion factor of CH4; εm

H2
is the mass power conversion factor of H2; V GT

t ,CH4
and PGT

t ,H2

are the GT gas and hydrogen consumption at time t; ρH2 is the density of H2.

2.2.2 Modeling of Hydrogen-Doped Gas Boilers
GB can also be doped with a certain amount of H2 operation is modeled as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

PGB
t = ηGBPGB

t ,mix

PGB
t ,mix = εv

CH4
V GB

t ,CH4
+ εm

H2
PGB

t ,H2

λGB
t ,H2
= (PGB

t ,H2
/ρH2)/[(PGB

t ,H2
/ρH2) + V GB

t ,CH4
]

(11)

where PGB
t ,mix is the gas input power of GB at time t; PGB

t is the heating power of GB at the time t; ηGB is the
heating efficiency of GB; V GB

t ,CH4
and PGB

t ,H2
are the gas consumption and hydrogen consumption of GB at the

time t, respectively; λGB
t ,H2

is the hydrogen doping ratio of GB at the time t.

2.3 CSP Plant Model
The CSP station is divided into a concentrating solar collector link, thermal energy storage link and

power generation link. The solar field (SF) of the CSP station absorbs solar energy into the collector,
and produces high-pressure steam through the heat exchanger to the turbine generator (TG) for power
generation, and the remaining thermal energy is stored in the TES, which can be transferred to the TG for
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power generation or directly supplied to the thermal load when the light intensity is weak or no light is
available. The remaining thermal energy is stored in the TES, which can be transferred to the TG for power
generation or directly supplied to the thermal load when the solar irradiance is weak. The CSP station will
produce light and thermal energy loss during operation, and the degree of loss is related to the material of
the TES and the external environment, etc. The CSP station can also be used as a solar energy storage system.

2.3.1 Concentration of Solar and Thermal Collection Links

PSF
t = ηSFSSFDt (12)

where PSF
t is the absorbed thermal power of the SF at the time t; ηSF is the photothermal conversion rate of

the SF; SSF is the area of the SF; Dt is the direct normal irradiance (DNI) of the solar energy at time t, w/m2.

2.3.2 Thermal Storage
The thermal power ETES

t ,SF supplied to the TES by the SF at time t is:

PTES
t ,SF = (1 − μSF

non) (PSF
t − PTG

t ,SF) (13)

where μSF
non is the thermal loss rate of the SF; PTG

t ,SF is the power supplied by the SF to the generator at time t.
The following constraints need to be met for the thermal storage segment of a CSP station:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

PTES
1 = PTES

T

PTES
t = (1 − ηTES

non)PTES
t−1 + ηTES

c PTES
t ,c − PTES

t ,d /ηTES
d

PTES
t ,c PTES

t ,d = 0

(14)

where PTES
1 and PTES

T are the thermal storage capacity at the beginning and end of a TES scheduling cycle;
PTES

t is the thermal storage capacity of TES at time t; ηTES
non is the self-loss rate of TES; ηTES

c and ηTES
d are the

TES charging and discharging efficiencies; PTES
t ,c and PTES

t ,d are the TES charging and discharging power at
time t.

TES stored thermal can be used for direct heat loads or for TG generation:

PTES
t ,d = PTG

t ,TES + PL
t ,TES (15)

where PTG
t ,TES and PL

t ,TES are the thermal power output from TES to TG and thermal loads respectively at
time t.

2.3.3 Power Generation
The output electric power PCSP

t of the CSP plant at time t is:

PCSP
t = ηCSP

rd (PTG
t ,SF + PTG

t ,TES) (16)

where PTG
t ,SF is the thermal power output from SF to the TG; ηCSP

rd is the thermoelectric conversion rate of the
CSP station.

2.4 Electrically Heated Models

PEH
t ,h = nEHPEH

t ,e (17)
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where PEH
t ,e and PEH

t ,h are the electrical power input and thermal power output of the electric heating at time
t, respectively; nEH is the electrical-to-thermal conversion rate.

2.5 Energy Storage Modeling
The CSP station thermal storage system model is shown in Eqs. (13)–(15), and the electrical storage

station (ESS) model is as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PESS
t = (1 − ηESS

non)PESS
t−1 + ηESS

c PESS
t ,c − PESS

t ,f /ηESS
f

0 ≤ uESS
t ,c PESS

t ,c ≤ PESS
max ,c

0 ≤ uESS
t ,f PESS

t ,f ≤ PESS
max ,f

uESS
t ,c uESS

t ,f = 0

PESS
t ,min ≤ EESS

t ≤ PESS
t ,max

(18)

where PESS
t is the ESS storage capacity at time t; ηESS

c and ηESS
f are the ESS charging and discharging

efficiencies; ηESS
non is the ESS self-damage rate; PESS

t ,c and PESS
t ,f are the ESS charging and discharging powers at

time t; uESS
t ,c and uESS

t ,f are the ESS charging and discharging status bits, which are 0–1 variables, with 1 being
the action, and vice versa, with 0; PESS

t ,min and PESS
t ,max are the ESS storage capacity lower and upper limits.

3 Stepped Carbon Trading Mechanism
The carbon trading mechanism renders carbon emissions tradable in the market, enabling parties

to trade for emission control. Carbon emission quotas are assigned to IES emitters. If actual emissions
exceed the allocated amount, extra quotas must be bought from the market; surplus ones can be sold for
income. The stepped carbon trading mechanism consists mainly of the quota, actual emission, and stepped
trading models.

3.1 IES Emission Right Quota Model
This paper adopts the baseline method as the indicator of the gratuitous quota model for allocation, this

paper IES carbon emission sources are GB, GT and external power purchase, and it is considered that the
external power purchase comes from thermal power unit generation. In this paper, IES carbon credits are
modeled as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EIES = EGT + EGB + Eth

EGT = γh
T
∑
t=1
(χe−hPGT

t ,e + PGT
t ,h )

EGB = γhPGB
t

Eth = γthPth
t

(19)

where EIES, EGT, EGB and Eth are the carbon credits allocated to IES, GT, GB, and TU, respectively; γe is
the intensity of carbon credits per unit of electricity output of GT; χe−h is the electricity-thermal conversion
factor of GT; γh is the intensity of carbon credits per unit of thermal power output; γth is the intensity of
carbon credits per unit of electricity output of thermal power units.
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3.2 IES Actual Carbon Emission Model
In this paper, the actual carbon emissions from the IES are the amount of generated CO2 minus the

amount of CO2 utilized by P2G and the amount of CO2 sequestered. The amount of CO2 Pair
t discharged into

the atmosphere by IES at time t is divided into the amount of CO2 discharged into the atmosphere through
the flue gas splitter system, Pair

t ,1 and the amount of CO2 that is not utilized by the CCS, Pair
t ,2 .

⎧⎪⎪⎨⎪⎪⎩

Pair
t = Pair

t ,1 + Pair
t ,2

Pair
t ,2 = (1 − ηG)Ec

t
(20)

The actual amount of CO2 generated by the IES Ec
t ,IES is:

Ec
t ,IES = δc (EGB

t ,CH4
+ EGT

t ,CH4
) + δthPth

t (21)

where δc is the carbon intensity per unit of CH4 consumed; δth is the carbon intensity per unit of the power
output of thermal power units; EGB

t ,CH4
and EGT

t ,CH4
are the power consumption per unit of CH4 consumed by

GB and GT respectively at time t.

3.3 IES Ladder-Type Carbon Trading Mechanism Model
By solving for the IES carbon allocation Et ,IES and the IES actual carbon emission Ec

t ,IES in time period
t, the IES carbon trading amount E jt

t ,IES can be obtained:

E jt
t ,IES = Ec

t ,IES − Et ,IES (22)

To impose further limitations on IES carbon emissions, this paper employs a stepped carbon trading
model. In contrast to the conventional carbon trading pricing model, this model employs distinct carbon
trading prices across various carbon emission intervals. The magnitude of the carbon trading price within
a specific interval is directly proportional to the quantity of carbon emission rights allocated. The specific
structure of the stepped carbon trading model is outlined as follows:

ft ,CO2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λE jt
t ,IES, E jt

t ,IES ≤ l

λ (1 + α) (E jt
t ,IES − l) + λl , l < E jt

t ,IES ≤ 2l

λ (1 + 2α) (E jt
t ,IES − 2l) + (2 + α) λl , 2l < E jt

t ,IES ≤ 3l

λ (1 + 3α) (E jt
t ,IES − 3l) + (3 + 3α) λl , 3l < E jt

t ,IES ≤ 4l

λ (1 + 4α) (E jt
t ,IES − 4l) + (4 + 6α) λl , 4l < E jt

t ,IES

(23)

where ft ,CO2 is the cost of carbon trading at time t; λ is the base price of carbon trading; l is the length of the
carbon emission interval; α is the increase in the price of carbon trading.

4 IES Optimized Scheduling Model

4.1 IES Low Carbon Economics Scheduling Model
The goal of the IES low carbon economics scheduling in this paper is to minimize the IES operating

costs F1:

min F1 = fCO2 + ff + fg + f 1
th + f 2

th + fyw (24)
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where fCO2 , ff , fg, f 1
th, f 2

th and fyw are the carbon trading cost, carbon sequestration cost, gas purchase cost,
thermal power unit start-up, shut-down cost, thermal power unit coal consumption cost, and operation and
maintenance cost of each unit of IES, respectively.

fCO2 =
T
∑
t=1

ft ,CO2 (25)

ff = cf

T
∑
t=1

PCCS
t ,storage (26)

fg = cg

T
∑
t=1

Pg
t ,b (27)

f 1
th = sth

T
∑
t=2
[uth

t (1 − uth
t−1) + uth

t−1 (1 − uth
t )] (28)

f 2
th =

T
∑
t=2
[ath (Pth

t )
2 + bthPth

t + cth] (29)

fyw =
T
∑
t=1
(cWT

yw PWT
t + SCSP

t ,yw + cEH
yw PEH

t ,e + cP2G
yw PP2G

t + cCCS
yw PCCS

t + SGT
t + cGB

yw PGB
t + cESS

yw PESS
t ) (30)

SCSP
t ,yw = cCSP

yw,ePCSP
t + cCSP

yw,h (PTES
t ,c + PTES

t ,d ) (31)

SGT
t = uGT

t (sGT
yw,ePGT

t ,e + sGT
yw,hPGT

t ,h ) (32)

where cf is the sequestration cost per unit mass of CO2; cg is the unit price of natural gas; Pg
t ,b is the purchased

power of IES at time t; sth is the thermal unit start/stop cost coefficient; uth
t is the thermal unit start/stop

status bit, a 0–1 variable; ath, bth, and cth are the cost factors of coal consumption of thermal units; cWT
yw ,

cEH
yw , cP2G

yw , cCCS
yw , cGB

yw , and cESS
yw are the operation and maintenance (O&M) costs factors at time t of WT, EH,

P2G, CCS, GB, and ESS, respectively; SCSP
t ,yw, SGT

t are the O&M cost factors of the CSP plant and GT at time t,
respectively; cCSP

yw,e and cCSP
yw,h are the O&M cost coefficients for CSP power generation and storage-exchange

thermal, respectively; sGT
yw,e and sGT

yw,h are the O&M cost coefficients for GT power generation and thermal
generation, respectively; uGT

t is the GT start-stop status bit, which is a 0–1 variable.

4.2 IES Optimal Scheduling Model Based on Fuzzy Chance Constraints
The notion of opportunity constraints has the capacity to articulate the confidence level of the system.

Moreover, the decision scheme can incorporate risk and cost in an uncertain environment. However, it
is imperative to acknowledge that the reasonable measurement function exerts a direct influence on the
expression of the confidence level. Consequently, the selection of this function must be endowed with a
clear physical meaning and practical value. Conventional chance-constrained planning is exclusively for
stochastic environments; however, the absence of the row-medium law signifies that wind power also
possesses considerable ambiguity [44–46].

Decision-making processes based on fuzzy sets permit adjustments within a specific fuzzy range. Con-
fronted with the inherent uncertainty associated with wind power, decisions pertaining to grid scheduling
and energy storage allocation can be made without being constrained by predetermined thresholds. In
circumstances where extreme weather events, characterized by their rarity but severe consequences, are
difficult to predict with accuracy, the employment of fuzzy decision rules facilitates a swift response, thereby
mitigating the potential for complete cessation of energy supply. This approach deviates from conventional
deterministic or random strategies by employing a more adaptable and agile decision-making process.
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Compared with complex probabilistic statistical analysis, fuzzy set operations rely on the affiliation
function and the rules are relatively simple. In the context of large-scale wind power integration into the
power system, the fuzzy set method has been shown to have a low computational demand and to facilitate
rapid decision-making, thereby assisting dispatchers and maintenance personnel in responding in a timely
manner and enhancing system control efficiency. In this section, we propose a methodology that utilizes
fuzzy opportunity constraints to relax IES power balance constraints, and trapezoidal fuzzy numbers to
convert these constraints into clear equivalence classes. The utilization of fuzzy chance constraints stipulates
that the feasibility of the decision outcome satisfying the constraints is not less than the specified confidence
level. In the absence of light, the thermal storage system of the CSP plant can maintain stable power
generation for an extended period, thereby mitigating the impact of weather uncertainty [47]. This section
focuses exclusively on wind power output and load, both of which are subject to uncertainty.

4.2.1 Trapezoidal Fuzzy Numbers
This chapter uses trapezoidal fuzzy numbers for fuzzy planning, which is modeled as follows

[34]:

S (ϖ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϖ − r1

r2 − r1
, r1 ≤ ϖ ≤ r2

1, r2 ≤ r3

ϖ − r3

r3 − r4
, r3 ≤ ϖ ≤ r4

0, other

(33)

where S (ϖ) is the fuzzy affiliation function; ϖ is the fuzzy parameter; r1, r2, r3 and r4 are the fuzzy affiliation
parameters, r1 ≤ r2 ≤ r3 ≤ r4.

Trapezoidal fuzzy number characterization using quaternions:

I = (r1 , r2, r3, r4) = Ppre ( j1 , j2, j3, j4)

where I is the trapezoidal fuzzy array; Ppre is the predicted value; j1, j2, j3 and j4 are the scaling coefficients;
all belong to [0, 1].

4.2.2 Clear Equivalence Class Modeling
Since the trapezoidal fuzzy array characterized by the quaternion cannot be solved linearly, the

transformation method of the reference [34] is used to separate the fuzzy variables from the decision variables
and to prove that there is a linear relationship between the two, as described in the reference [34].

Set the confidence level to α, and the clear equivalence class is modeled as:

E [P] = 1 − α
2
(r1 + r2) +

α
2
(r3 + r4) (34)

Therefore, the clear equivalence model for wind power and load in this paper is:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E [PWT
t ,pre] =

1 − α
2
(rWT

1 + rWT
2 ) +

α
2
(rWT

3 + rWT
4 )

E [PL
t ] =

1 − α
2
(rL

1 + rL
2) +

α
2
(rL

3 + rL
4)

(35)

rWT
i = ji PWT

t ,pre , i ∈ [1, 4] (36)
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rL
i = ji PL

t , i ∈ [1, 4] (37)

where rWT
1 , rWT

2 , rWT
3 and rWT

4 are wind power output trapezoidal fuzzy numbers; rL
1 , rL

2 , rL
3 and rL

4 are
load trapezoidal fuzzy numbers. Eq. (35) is brought into Eqs. (41) and (42) and relaxed to determine the
equivalence constraints.

4.3 IES Risk Assessment Model Based on Conditional Value-at-Risk Theory
In this paper, the IES presents a high proportion of renewable energy characteristics. However, due to

the volatility and stochasticity of renewable energy output, there is a risk in optimizing dispatch based on
forecast data. To enhance the IES’s capacity to manage uncertainties, a risk assessment model is developed
in this section. This model is based on conditional value-at-risk (CVaR) theory.

VaR cost fVaR and CVaR cost fCVaR for:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

fVaR (x) =min{y ∈ R∶ δ (x , y) ≥ α}

fCVaR (x) = [∫ f (x , y)≥ fVaR(x) f (x , y) P (y) d y] /1 − α
(38)

where x and y are the decision variables and random variables, respectively; α is the confidence level, which
characterizes the IES decision maker’s liking or disliking of risk; P (y) is the continuous probability density
function; and δ (x , y) is the distribution function of f (x , y) which is smaller than the boundary value.

Discretization of Eq. (35):

min F2 = fVaR +

N
∑
n=1

zn max [0, f (x , yn) − fVaR]

1 − α
(39)

where fVaR is the VaR cost; α is the confidence level; n is the number of cases; zn is the probability of case
n occurrence.

Modeling CVaR-based IES risk assessment:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min F2 = φ fE + (1 − φ) fCVaR (x , fVaR)

fE =
T
∑
t=1

N
∑
n

znFn
1

(40)

where F2 is the total IES operating cost based on CVaR; φ is the weighting factor; fE is the IES expected
operating cost; and Fn

1 is the total IES operating cost under case n.
In this article, the weight coefficients are set using a subjective method. In practical applications, the

weight coefficients represent the degree of aversion to risks in the project. Since the judgment criteria for
risks vary in actual systems and are difficult to quantify through objective methods, the setting method we
adopt can also intuitively reflect the effectiveness of this risk assessment system. In this paper, we ignore the
effect of solar variations on the output of CSP plants [29], only the effect of uncertainty factors on WT output
is considered.
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4.4 Constraints
4.4.1 Power Balance Constraints

The IES is internally coupled with electrical, thermal, gas, and hydrogen energy and is constrained to
maintain a balance of load and equipment supply:

PGT
t ,e + PWT

t + PCSP
t + PESS

t ,c + Pth
t = PP2G

t + PEH
t ,e + PL

t ,e + PESS
t ,d + PCCS

t (41)
PGT

t ,h + PGB
t + PTES

t ,c + PEH
t ,h = PTES

t ,d + PL
t ,h (42)

PGT
t ,CH4

+ PGB
t ,CH4

= PCCS
t ,out + Pg

t ,b (43)
PGT

t ,H2
+ PGB

t ,H2
+ PMR

t ,H2
= PEL

t ,H2
(44)

where PWT
t is the WT output power at time t; PL

t ,e and PL
t ,h are the IES electrical and thermal loads at time

t, respectively.

4.4.2 IES Device Constraints
1) WT and CSP plant output constraints:

⎧⎪⎪⎨⎪⎪⎩

0 ≤ PWT
t ≤ PWT

t ,pre

0 ≤ PCSP
t ≤ PCSP

t ,pre
(45)

where PWT
t ,pre and PCSP

t ,pre are the predicted values of WT and CSP at time t, respectively.

2) Gas turbine and gas boiler output and climb constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PGT
t ,e,min ≤ PGT

t ,e ≤ PGT
t ,e,max

PGT
t ,h,min ≤ PGT

t ,h ≤ PGT
t ,h,max

ΔPGT
e,min ≤ PGT

t ,e − PGT
t−1,e ≤ ΔPGT

e,max

ΔPGT
h,min ≤ PGT

t ,h − PGT
t−1,h ≤ ΔPGT

h,max

(46)

where PGT
t ,e,max and PGT

t ,e,min are the upper and lower limits of GT output electric power; PGT
t ,h,max and PGT

t ,h,min
are the upper and lower limits of GT output thermal power at time t; ΔPGT

e,min and ΔPGT
e,max are the upper and

lower limits of GT output electric power creep; ΔPGT
h,min and ΔPGT

h,max are the upper and lower limits of GT
output thermal power creep, respectively.

⎧⎪⎪⎨⎪⎪⎩

PGB
min ≤ PGB

t ≤ PGB
max

ΔPGB
min ≤ PGB

t − PGB
t−1 ≤ ΔPGB

max
(47)

where PGB
max and PGB

min are the upper and lower limits of GB output thermal power for the t time slot; ΔPGB
max

and ΔPGB
min are the upper and lower limits of GB output thermal power creep, respectively.

3) Electrically heated restraints:
⎧⎪⎪⎨⎪⎪⎩

PEH
h,min ≤ PEH

t ,h ≤ PEH
h,max

ΔPEH
h,min ≤ PEH

t − PEH
t−1 ≤ ΔPEH

h,max

(48)

where PEH
h,max and PEH

h,min are the upper and lower limits of EH output thermal power; ΔPEH
h,max and ΔPEH

h,min
are the upper and lower limits of EH output thermal power creep, respectively.
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4) Thermal unit constraints:
⎧⎪⎪⎨⎪⎪⎩

uth
t Pth

min ≤ Pth
t ≤ uth

t Pth
min

ΔPth
min ≤ Pth

t − Pth
t−1 ≤ ΔPth

max
(49)

where Pth
max and Pth

min are the upper and lower limits of the output power of thermal power units; ΔPth
max and

ΔPth
min are the upper and lower limits of the output power of thermal power units, respectively.

5) Carbon capture constraints:
CCS operation cannot exceed the maximum operating power PCCS

t ,max:

0 ≤ PCCS
t ≤ PCCS

t ,max (50)

The CCS reservoir vessel is required to meet the following constraints:

⎧⎪⎪⎨⎪⎪⎩

V F
min ≤ V F

t ≤ V F
max

V P
min ≤ V P

t ≤ V P
max

(51)

where V F
max and V F

min are the upper and lower limits of the storage capacity of the liquid-rich container; V P
max

and V P
min are the upper and lower limits of the storage capacity of the liquid-poor container; V F

0 and V F
T are

the beginning and end storage capacity of the liquid-rich container; V P
0 and V P

T are the beginning and end
storage capacity of the liquid-poor container, respectively.

The CCS storage vessel has the same storage capacity at the beginning and end of a dispatch cycle:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T
∑
t=1
(V F

t ,in − V P
t ,out) = 0

T
∑
t=1
(V P

t ,in − V P
t ,out) = 0

(52)

6) P2G constraints:
⎧⎪⎪⎨⎪⎪⎩

PP2G
min ≤ PP2G

t ≤ PP2G
max

ΔPP2G
min ≤ PP2G

t ≤ ΔPP2G
max

(53)

where PP2G
max and PP2G

min are the upper and lower limits of P2G power consumption; ΔPP2G
max and ΔPP2G

min are the
upper and lower limits of P2G power climb, respectively.
7) Remaining constraints:

The CSP plant thermal storage system cannot operate at full capacity 24 h:

0 ≤ PTES
t ≤ tmaxPCSP

t /ηCSP
rd (54)

where tmax is the maximum number of hours of full-load operation of the thermal storage system of the
CSP plant.

4.5 Model Solving
The IES low-carbon optimal dispatch model in this paper, considering CCS-P2G and concentrating

solar power plants under the stepped carbon trading system, is a mixed-integer nonlinear one. We use the
segmental linearization method to turn it into a mixed-integer linear model, then solve it with the CPLEX
commercial solver. The specific linearization process is detailed in Appendix A.
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5 Example Analysis

5.1 Parameters of the Algorithm
The internal structure of IES in this paper is shown in Fig. 1, containing 1 WT, 1 CSP station, 1 GB, 1 GT,

1 P2G, 1 CCS, 1 EH, 1 TU, and 1 ESS. The carbon trading in the IES has a base price of 200 yuan per ton, an
interval of 50 tons, and a growth rate of 25%. The price of natural gas is set at 3.2 yuan per cubic meter, while
the price of coal for the thermal power unit is 500 yuan per ton. the mass of CH in 1 m is 0.715 kg; the mass
of CO in 1 m is 1.95 kg; the mass of H unit coal price is 500 yuan/t; 1 m3 of CH4 mass of 0.715 kg; 1 m3 of CO2
mass of 1.95 kg; 1 m3 of H2 mass of 0.09 kg; 1 kw ⋅ h consumes 0.3 kg of coal and produces 0.795 kg of CO2. It
is postulated herein that the IES operates independently, without interaction with the external power grid.
The equipment parameters of the IES are presented in Table A1, the operational parameters of the CSP plant
are in Table A2, and the remaining parameters can be found in Table A3. Fig. A1 showcases the predicted
values of electric and thermal loads, wind power, and direct normal irradiance (DNI).

5.2 IES Power Balance Analysis
As Fig. 4 shows, IES power goes mainly to electric loads, heating, ESS charging, CCS, and P2H. At night,

when the wind is strong, the WT and gas turbine power the IES, and the ESS stores spare wind power. After
6:00, as solar intensity rises, the CSP plant starts generating, peaking from 11:00 to 13:00. This peak load time
makes thermal units emit more carbon. So, the CCS captures carbon, and the ESS discharges to add power.
Between 18:00 and 21:00, the IES mainly powers the CSP’s thermal storage, cutting thermal unit output.
During dispatch, the CSP plant provides stable power at peaks and low-solar times, keeping the IES stable.
High thermal output triggers CCS to capture carbon for the IES cycle. The ESS quickly stores/discharges to
shift electric power. IES thermal energy goes to loads and the CSP’s thermal storage. At night’s peak, the
storage releases heat; in the morning, it stores heat, using its fast heat shift to exploit the CSP’s flexibility. The
CO2 balance is in Fig. A2a, and the CCS power balance in Fig. A2b.
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Figure 4: IES power balance
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5.3 Analysis of Gas Hydrogen Doping Models
5.3.1 Analysis of the Effectiveness of the Gas Hydrogen Doping Model

To verify the effectiveness of the gas-hydrogen doping mode proposed in this paper, based on Case
3 (i.e., the scheme proposed in this paper), Case 4 without hydrogen doping mode is set for comparative
analysis. Table 1 shows the IES optimization scheduling results for Cases 3 and 4:

Table 1: IES optimized scheduling results for Cases 3 and 4

Case Cost/ten thousand yuan Carbon
emissions/t

Carbon
trade

Carbon
purchase

Carbon
storage

Gas
purchase

Start/
/end

Operation/
/maintenance

Coal
consumption

Total
cost

3 −107.1 0 42.60 391.57 0.15 24.48 19.14 370.84 2761.65
4 −101.3 0 43.40 389.21 0.15 24.87 19.47 375.80 2974.93

As shown in Table 1, compared to Case 4, Case 3 sees a 49,600-yuan reduction in IES operation cost. The
gas purchase cost climbs by 23,600 yuan, while the coal consumption cost rises by just 3300 yuan. Operating
in the hydrogen doping mode requires copious amounts of H2. Thus, to meet the demand, the electric load
drives higher power output for H2 production, escalating overall power consumption. The IES chooses the
lower-emission hydrogen-doped gas unit over the thermal unit, which hikes gas purchase costs but leaves
coal costs nearly static. Between Case 3 and Case 4, carbon emissions declined by 213.28 t. Even though
the hydrogen-doped gas turbine’s output in the IES increases, its per-unit electricity CO2 emission is lower.
Thanks to the strong thermoelectric coupling and fixed thermal load, the hydrogen-doped gas turbine’s
thermal output rises, the gas boiler’s thermal output drops, and the gas boiler emits less CO2 per unit of power.

5.3.2 Analysis of Hydrogen Doping Ratio Effectiveness
To further investigate the hydrogen doping ratio benefits, in this section, the hydrogen doping ratios

were varied by changing the hydrogen doping ratio for gas turbines (HDR-GT) and gas boilers (HDR-GB)
by setting the hydrogen doping ratios to 2%, 6%, 10%, 12%, and 16%, respectively. The hydrogen doping ratios
were set to 2%, 6%, 10%, 12% and 16%, respectively. The relationship between CO2 emission and the total
cost of IES for gas turbines and gas boilers with different hydrogen doping ratios is shown in Fig. 5.

As shown in Fig. 5a, when HDR-GT is fixed at 20% and HDR-GB at 16% and 2%, the IES’s total operating
cost drops by 1%. With fixed HDR-GT, a rising HDR-GB leads to a decreasing cost of IES. When HDR-GB
is fixed, increasing HDR-GT also reduces the IES cost, which levels off upon reaching 20%. In Fig. 5b, IES
carbon emissions decline with growing HDR-GT, stabilizing at 18% or above. At HDR-GT of 15% and up,
differences in emissions under various HDR-GB values shrink. Overall, the gas hydrogen doping mode cuts
IES operation costs and emissions, enabling low-carbon operation. Properly setting HDR-GT and HDR-GB
ratios can control these factors effectively.

5.3.3 Analysis of the Effectiveness of Variable Hydrogen Doping Ratios
Due to the electric-hydrogen strong coupling of EL (analogous to the gas turbine electric-thermal

coupling), EL is forced to electrolyze H2 to satisfy the demand of H2 in the hydrogen doping mode, which
generates a waste of electric energy. In this section, a comparative analysis of varying hydrogen doping ratios
and fixed hydrogen doping ratios is used, and Case 5 is set as the variable hydrogen doping ratio mode. The
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hydrogen doping ratios of the gas turbine and gas boiler are shown in Fig. 6a, and the relationship between
the unit’s hydrogen consumption power and net electric load in the two hydrogen doping modes is shown
in Fig. 6b, and the results of IES optimal scheduling for Cases 3 and 5 are shown in Table 2.

5 10 15 20
486

488

490

492

494

496

498

T
ot

al
 c

os
t o

f I
E

S/
T

en
 th

ou
sa

nd
Y

ua
n

Hydrogen doping ratio for GT/%

(a)

5 10 15 20
2000

2010

2020

2030

2040

2050

C
ar

bo
n 

em
is

si
on

/t

Hydrogen doping ratio for GT/%

(b)

6%
10%
12%
16%

2%
Hydrogen doping ratio for GB Hydrogen doping ratio for GB

6%
10%
12%
16%

2%

Figure 5: Relationship between the total cost of IES and CO2 emission for different hydrogen doping ratios

0 5 10 15 20 25
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

H
y

d
ro

g
e
n

-d
o
p

in
g

 r
a
ti

o
(H

D
R

)

v HDR-GT
HDR-GB

Net electrical load

Variable HDR

0 5 10 15 20 25
-200

-100

0

100

200

300

400

20

25

30

35

40

45

50

55

60

N
e
t 

e
le

c
tr

ic
a
l 

lo
a
d

/M
W

Fixed HDR

H
y
d

ro
g

e
n
 c

o
n

su
m

p
ti

o
n

/M
W

Time/h
(a)

Time/h
(b)

Figure 6: Relationship between IES hydrogen consumption power and net electrical load in two hydrogen doping
modes

Table 2: IES optimized scheduling results for Cases 3 and 4

Case Cost/ten thousand yuan Carbon
emissions/t

Carbon
trade

Carbon
purchase

Carbon
storage

Gas
purchase

Start/
/end

Operation/
/maintenance

Coal
consumption

Total
cost

3 −107.1 0 42.60 391.57 0.15 24.48 19.14 370.84 2761.65
5 −102.5 0 42.74 384.42 0.15 23.11 19.16 367.09 2714.71

As illustrated in Fig. 6, the hydrogen power consumption in the variable doping ratio mode is equivalent
to or lower than the hydrogen power consumption in the fixed doping ratio mode. Furthermore, the
hydrogen power consumption in the variable doping ratio mode exhibits a substantial decrease during the
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peak net electricity load period. As demonstrated in Table 3, in comparison with Case 3, Case 5 results in a
reduction of the purchased gas cost by 7.15 ten thousand yuan. Despite an increase in carbon trading costs
of 4.61 ten thousand yuan, the total cost is reduced by 3.75 ten thousand yuan, accompanied by a decrease
in carbon emissions of 46.94 t. In summary, the IES modifies the power output of the gas turbine and
the gas boiler by decreasing the amount of hydrogen doping, thereby reducing both the total cost and the
carbon emission.

Table 3: Optimized scheduling results of IES under different cases with the introduction of CSP plants

Case Cost/ten thousand yuan Carbon
emissions/t

Carbon
trade

Carbon
purchase

Carbon
storage

Gas
purchase

Start/
/end

Operation/
/maintenance

Coal
consumption

Total
cost

1 −72.81 2.19 36.32 401.24 0.86 21.78 20.88 410.46 2790.36
2 6.75 9.52 51.34 423.63 3.57 20.35 18.72 533.88 2812.40
3 −107.1 0 42.60 391.57 0.15 24.48 19.14 328.24 2761.65

5.4 Analysis of the Effectiveness of CSP Plants
To verify the effectiveness of this paper’s IES introducing CSP plant, based on Case 3 in Section 4.2, this

section sets three cases for comparative analysis: (1) using equal capacity PV units to replace the CSP plant
to participate in the IES operation; (2) using the gas turbine with the same upper output limit and climbing
power to replace the CSP plant to participate in the IES operation; and (3) the cases proposed in this paper.
The results of IES optimal scheduling for the three cases are shown in Table 3.

As Table 3 shows, Case 3’s total cost drops by 19.64% compared to Case 1 and 38.52% against Case 2,
proving the CSP plant’s good economic impact on IES optimal operation. Comparing Case 3 with Case 2,
the carbon trading cost falls by 113.85 × 104 yuan, but the gas purchase cost rises by 32.06 × 104 yuan. Since
the gas turbine, replacing the CSP plant, has a “thermal to set electricity” constraint, during electricity-heat
load mismatches, it must increase output, hiking gas and carbon trading costs. Case 1, Case 3 uses PV units
instead of CSP plants. Without sunlight, PV units need external gas and coal, raising gas turbine and thermal
unit outputs. Case 3’s O&M cost is 12.40% higher than Case 1’s because CSP plant O&M involves thermal
storage and power generation, so its unit power O&M cost is greater.

5.5 Sensitivity Analysis of Carbon Trading Mechanisms
In the Integrated Energy System (IES), the differences in stepped carbon trading parameters directly

and significantly affect IES dispatching results. The carbon trading base price is a key parameter for in-depth
study. In this research’s scheduling model, the amount of carbon emission allowances is much higher than
the system’s actual emissions. As Fig. 7 shows, when the carbon trading base price is below 90 RMB, the
system’s carbon emissions steadily decrease as the base price rises. This is because a higher base price strongly
motivates the system to cut carbon emissions, enabling it to get more tradeable allowances and gain extra
economic benefits. However, when the base price exceeds 90 RMB, the system’s carbon emissions stabilize,
with few further fluctuations.

Secondly, we consider the sensitivity of the carbon trading mechanism to the growth rate of the carbon
trading price. With a baseline carbon trading base price of 90 yuan, as shown in Fig. 8, when the growth
rate of the carbon trading price is in the range of [0, 0.2), carbon emissions show a downward trend. This
is because a higher growth rate provides stronger incentives for the system to cut emissions, prompting a
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change in the unit output pattern and thus reducing carbon emissions. Fewer emissions mean the system
can supply more carbon allowances, boosting revenue and cutting total costs. However, when the carbon
trading price growth rate exceeds 0.2, the system’s ability to affect each unit’s output is nearly zero, and carbon
emissions remain unchanged.
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Figure 7: Sensitivity of carbon trading mechanisms to carbon trading base prices
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Figure 8: Sensitivity of carbon trading mechanisms to the magnitude of carbon trading price increases

It’s also remarkable that the total cost of the IES declines even as the carbon trading price goes up. To
show how the carbon base price and its growth rate jointly affect the system’s carbon emissions, look at Fig. 9.
Generally, a lower carbon base price along with a smaller increment in the carbon price correlates with higher
overall carbon emissions in the system. Specifically, when the carbon trading base price is between 40 yuan
and 120 yuan, the system displays different levels of sensitivity to various increases in the carbon trading
price. However, once the carbon trading base price exceeds 120 yuan, changes in the carbon trading price no
longer have an impact on the system’s carbon emissions.
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Figure 9: Carbon emissions under varying carbon trading base prices and increments in carbon trading prices

5.6 Analysis of Fuzzy Affiliation Parameters
The selection of fuzzy affiliation parameters will have an impact on the optimal operation of IES. To

study the impact of wind power output and load uncertainty on the total cost and carbon emission of IES,
based on Case 3, set the confidence level as 0.98, and select different fuzzy affiliation parameter schemes
shown in Table 4 for comparative validation, in which fuzzy degree 1 is the deterministic case, and get the
relationship curves of the total cost and carbon emission of IES under the different fuzzy affiliation parameter
shown in Fig. 7.

Table 4: Fuzzy affiliation parameter scheme selection

Ambiguity Fuzzy variable Fuzzy affiliation parameter

r1 r2 r3 r4

1 WT 1.0 1.0 1.0 1.0
Loads 1.0 1.0 1.0 1.0

2 WT 0.9 0.95 1 1.05
Loads 0.9 0.95 1.05 1.1

3 WT 0.85 0.95 0.95 1.05
Loads 0.8 1.0 1.0 1.2

4 WT 0.85 0.9 1.1 1.05
Loads 0.85 0.9 1.1 1.2

As can be seen in Fig. 10, with the same confidence level, the total IES cost, and carbon emissions
increase as the level of ambiguity increases. Cases 2, 3, and 4 increase the total IES cost by 46.58%, 71.21%,
and 82.10%, and the carbon emission by 19.13%, 25.29%, and 27.46%, respectively, compared to Case 1. The
reason is that as the degree of ambiguity increases, the uncertainty of IES source load increases and faces
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higher operational risks, IES chooses to increase the purchased gas cost and gas unit output to cope with
the risks, and the carbon emissions increase accordingly. Among them, the growth rate of carbon emissions
is gradually smaller than the growth rate of the total cost of IES, because, under the CET mechanism, the
price of carbon emission rights increases more and more, the cost of purchasing carbon emission allowances
gradually increases, and IES chooses to purchase gas to cope with the risk of uncertainty.
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Figure 10: Relationship between the total cost of IES and carbon emissions under different fuzzy affiliation parameters

5.7 Analysis of Weighting Factors
The CVaR weighting coefficients reflect the decision maker’s level of risk aversion caused by the

uncertainty faced by the IES. To study the impact caused by the weighting coefficients on the optimal
operation of IES, the CVaR confidence level is set to 0.98 based on Case 3 in Section 4.2, and the relationship
curves between the total cost of IES and CVaR under different weighting coefficients are obtained as shown
in Fig. 11:
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As shown in Fig. 11, the total IES cost and CVaR are 369.12 ten thousand yuan and 455.3 ten thousand
yuan at φ = 1.0, and 357.96 ten thousand yuan and 58.1 ten thousand yuan at φ = 0.1, which is a decrease of
3.02% and an increase of 27.6%, respectively. As the weighting coefficient φ increases, the total cost of IES
increases and CVaR decreases, and the larger the weighting coefficient, the larger the growth rate of the total
cost of IES. The reason is that the larger the weight coefficient φ is, the more risk averse the decision maker
is, and he chooses to increase the operation cost to avoid the risk; the smaller the weight coefficient φ is, the
more risk-tolerant the decision maker is, and he chooses to take the risk to get the lower cost to guarantee
the operation economics.

6 Conclusion
In this paper, in the background of IES containing a high proportion of renewable energy, CSP station

is introduced in IES as renewable energy generation and storage, and the uncertainty analysis of renewable
energy generation and load is carried out; gas hydrogen doping model is introduced on the basis of CCS-
P2G coupled model, and carbon trading sensitivity analysis is carried out in combination with the stepped
carbon trading mechanism, and the comparative study in different cases is conducted to get the following
conclusions:

1. The coupled CCS-P2G model with gas hydrogen doping unit reduces 1.32% operating cost and 7.17%
carbon emission of IES and improves 5.73% carbon benefit.

2. The variable hydrogen doping ratio model of EL reduces 3.75% operating cost and 1.70% carbon
emission of IES and realizes the decoupling of EL electric-hydrogen strong coupling.

3. CSP station involved in IES optimized operation reduced IES operating costs by 19.64% and 38.52%,
and IES carbon emissions by 1.03% and 1.80%, respectively, compared with equivalent capacity PV and
wind turbines.

4. Sensitivity analysis of the carbon trading base price and its growth rate is carried out. When the base
price is lower than 90 yuan, the carbon emission of IES decreases as the price rises, and when the base
price is higher than 90 yuan, the carbon emission of IES tends to stabilize. When the price growth rate
is in the interval of [0, 0.2], the carbon emission of IES decreases; when the price growth rate is in the
interval of (0.2,+∞), the carbon emission of IES tends to stabilize.

5. The carbon trading base price and its growth rate together affect the IES carbon emissions. The lower
the base price is, the lower the price growth rate is, and the higher the IES carbon emissions are; when
the base price is in the range of [40, 120], the IES shows different sensitivities to the price growth rate;
when the base price is more than $120, the price growth rate has no impact on the IES carbon emissions.

6. The sum of changes in the fuzzy affiliation parameter r1 for wind and load of 0.2, 0.25 and 0.3 increased
the IES operating costs by 46.58%, 71.21% and 82.10% and the IES carbon emissions by 19.13%, 25.29%
and 27.46%, respectively.

7. The confidence level is fixed at 0.98 and the weighting coefficient φ is reduced from 1.0 to 0.1 in steps
of 0.1, which reduces the IES operating cost by 3.02% and increases the CVaR cost by 27.6%. Decision
makers need to make a balance among the weighting factor, total cost and CVaR, and select the optimal
weighting factor to rationally avoid the risk by minimizing the cost.

This study has limitations in IES scheduling optimization. Currently, it relies only on forecast data,
ignoring complex real-time power system conditions and intraday scheduling. In the future, adding an
intraday rolling optimization scheduling link will enable the plan to adapt to real-time data, meeting IES
optimization needs across time scales and following power system dynamics.
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Nomenclature
PCCS

t The actual capture energy consumption at time t
PCCS

t ,b The operational energy consumption at time t
PCCS

t ,d The stationary energy consumption at time t
ωCCS The energy consumption corresponding to each unit mass of CO2 captured

with CCS
PCCS,m

t ,CO2
The mass of CO2 captured by the CCS regeneration tower at time t

PIES
t ,CO2

The total amount of CO2 emitted by the IES at time t
PCCS

t ,CO2
The amount of CO2 absorbed by the CCS at time t

Pair
t ,1 The volume of CO2 released from the CCS into the atmosphere via the flue gas

splitter system at time t
V F

t , V P
t The volume of liquid stored in the liquid-rich and liquid-poor vessels over time

V F
t ,in , V F

t ,out The volume of liquid inflows to and outflows from the liquid-rich vessel over time
V P

t ,in , V P
t ,out The volume of liquid inflow and outflow in the liquid-poor vessel at time t

ρCO2 The CO2 gaseous density
PCCS

t ,out The amount of CO2 produced by CCS at time t
PCCS

t ,MR The amount of CO2 sequestered at time t
ηEL The P2H conversion efficiency
PMR

t ,H2
, PMR

t ,CH4
The hydrogen-consuming power and gas-producing power of the Membrane
Reactor (MR) at time t

ηMR The MR conversion efficiency
ηGT

e , ηGT
h The GT power and thermal generation efficiencies

εv
CH4

The volumetric power conversion factor of CH4
εm

H2
The mass power conversion factor of H2

V GT
t ,CH4

, PGT
t ,H2

The GT gas and hydrogen consumption at time t
ρH2 The density of H2
γe The intensity of carbon credits per unit of electricity output of GT
χe−h The electricity-thermal conversion factor of GT
γh The intensity of carbon credits per unit of thermal power output
γth The intensity of carbon credits per unit of electricity output of thermal power units
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λ The base price of carbon trading
l The length of the carbon-emitting interval
α The increase in the price of carbon trading
cWT

yw , cEH
yw , cP2G

yw , cCCS
yw , cGB

yw , cESS
yw The operation and maintenance (O&M) costs factors at time t of WT, EH, P2G,

CCS, GB, and ESS
cCSP

yw,e , cCSP
yw,h The O&M cost coefficients for CSP power generation and storage-exchange ther-

mal
sGT

yw,e , sGT
yw,h The O&M cost coefficients for GT power generation and thermal generation

γe The intensity of carbon credits per unit of electricity output of GT
χe−h The electricity-thermal conversion factor of GT
ηGB The heating efficiency of GB
V GB

t ,CH4
, PGB

t ,H2
The gas consumption and hydrogen consumption of GB at the time

ηSF The photothermal conversion rate of the SF
μSF

non The thermal loss rate of the SF
nEH The electrical-to-thermal conversion rate
ηESS

c ηESS
f The ESS charging and discharging efficiencies

ηESS
non The ESS self-damage rate

uESS
t ,c , uESS

t ,f The ESS charging and discharging status bits
ηGB The heating efficiency of GB
V GB

t ,CH4
, PGB

t ,H2
The gas consumption and hydrogen consumption of GB at time t

Appendix A
Eq. (31) contains the square term, for which the segmented linearization method is used in the

following procedure:
Step 1: Take M + 1 segmentation points [l1 , l2, ⋅ ⋅ ⋅ , lM+1] and divide the original equation into M

intervals.
Step 2: Add M + 1 continuous auxiliary variable [r1 , r2, ⋅ ⋅ ⋅ , rM+1], M binary auxiliary variable

[k1 , k2, ⋅ ⋅ ⋅ , kM]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 + r2 + ⋅ ⋅ ⋅ + rM+1 = 1

k1 + k2 + ⋅ ⋅ ⋅ + kM = 1

r1 ≥ 0, r2 ≥ 0, ⋅ ⋅ ⋅ , rM+1 ≥ 0

r1 ≤ k1 , r2 ≤ k1 + k2, ⋅ ⋅ ⋅ , rM+1 ≤ kM

(A1)

Step 3: Replace the nonlinear expression with Eq. (A2):

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Pth
t =

M+1
∑

m=1
rm lm

fth =
M+1
∑

m=1
rm fth (lm)

(A2)

For Eq. (25), linearization is performed using steps 2 and 3.
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Appendix B

Table A1: Operational parameters and O&M costs for each IES device

Installations Operating parameter Numerical
value

O&M factor
($/kW-h)

GT Rated output power/MW 350 0.18
Climbing power upper/lower limit/(MW-h) 100/−100
Electricity production/thermal efficiency/% 40/35

HE Rated output power/MW 80 0.15
Climbing power upper/lower limit/(MW-h) 20/20

Heating efficiency/% 92

GB Rated output power/MW 50 0.2
Climbing power upper/lower limit/(MW-h) 15/15

Heating efficiency/% 95

CCS Rated energy consumption power/MW 150
Upper limit of storage capacity of rich/poor liquid containers/m3 29500 0.15

Initial storage capacity of liquid-rich containers/m3 14250

P2G Rated energy consumption power/MW 120
Methanation efficiency/% 70 0.15

Hydrogen production efficiency/% 90

TH Rated output power upper/lower limit/MW 150/50 0.25
Climbing power upper/lower limit (MW-h) 100/−100

ESS Charging power upper/lower limit/MW 200/−200
Initial capacity/(MW-h) 100 0.12

Charge/discharge efficiency/% 90

Table A2: Operational parameters of the CSP station

Operating parameter Numerical value
Rated output power/MW 150

Minimum output power during operation/MW 10
Climbing power upper/lower limit/MW 40

Thermoelectric conversion/% 40
Photothermal conversion rate/% 55

TES heating efficiency/% 97
TES exothermic efficiency/% 97

TES Maximum thermal storage capacity/(MW-h) 400
Initial value of TES thermal storage capacity/(MW-h) 100

TES thermal loss rate/% 3%
TES full load operating hours/h 6

CSP O&M coefficient per unit of generation/($/kW-h)) 0.2

(Continued)
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Table A2 (continued)

Operating parameter Numerical value
CSP charging and discharging thermal O&M

coefficient/(yuan/kW-h)
0.15

Table A3: Remaining IES parameters

Operating parameter Numerical value
Natural gas low calorific value 9.7

MGT carbon emission allocation per unit power/(kW-h/m)3 0.55
Carbon emission allocation per unit of GB power/(kg/kW-h) 0.50

MGT carbon intensity per unit power/(kg/kW-h) 0.798
Carbon Emission Intensity per Unit Power of GB/(kg/kW-h) 0.798
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Figure A1: IES Forecasts for electric thermal load, wind power and DNI
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