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ABSTRACT: This research presents a new method to boost the efficiency of evaporative coolers by integrating
magnetized water and a heat exchanger. Magnetized water, known for its high evaporation rate and reduced surface
tension, offers a promising way to enhance air cooler performance. Additionally, the advanced heat exchanger both
improves air cooling capacity and controls humidity levels. Aloni 100 L, a locally manufactured evaporative cooling
system, and tap water were used in experiments. Tap water was magnetized using recycled magnets extracted from
computer hard drives. Twenty-six magnets meticulously arranged within rectangular grooves, each with a minimum
strength of 0.5 to 1 T, were used to magnetize tap water. Our experiments show a significant rise in cooling efficiency, with
magnetized water increasing from 70.62% to 91.43%. In a similar vein, adding the heat exchanger leads to a significant
improvement, raising the cooling efficiency from 69.44% to 93.96%. Furthermore, the combined use of magnetized
water and a heat exchanger results in exceptional performance, increasing cooling efficiencies by 29.5% and 35.3%
compared to using only magnetized water or only a heat exchanger, respectively. This study also explores the largely
untapped potential of magnetized water, providing valuable insights into its effects on water properties and its broader
applications in various fields. These findings represent a significant advancement in air cooling technology and pave
the way for more energy-efficient and sustainable solutions.
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1 Introduction
In the 21st century, tropical nations have seen a significant rise in air conditioning usage, bringing much-

needed relief to billions of people and acting as a key driver for human prosperity. appliances currently
account for nearly 20% of global electricity use by buildings, and this proportion is expected to grow
substantially by 2050. The building sector represents 30% of global final energy consumption and causes 26%
of global energy sector carbon dioxide (CO2) emissions. As global temperatures rise and socio-demographic
changes continue, residential air conditioning (AC) usage is projected to increase significantly, potentially
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doubling global residential cooling electricity consumption to between 1590 and 2377 terawatt-hours per
year by mid-century. This surge in electricity use is estimated to result in additional 590 to 1365 million
tons of carbon dioxide equivalent (MtCO2e) emissions annually, which will have a direct impact on climate
change [1].

The Earth’s magnetic field has been a constant element of the environment throughout the evolution
of life. Nowadays, artificial magnetic fields can be found in electronic devices, power grids, and electric
vehicles. Water becomes magnetized (MW) when it flows through a magnetic field. This process changes
many properties of the water, such as surface tension, electrical conductivity, pH, and viscosity [2]. This
technology can help mitigate the impacts of climate change on plant productivity and address soil and water
contamination [3,4]. Comparing regular water to magnetized water shows significant differences in surface
tension and evaporation rates, favouring magnetized water. Hence, air cooling systems can be enhanced by
utilizing magnetized water [4].

Experiments have shown that magnetized water has a faster evaporation rate compared to regular
water [5]. This phenomenon occurs due to the influence of the magnetic field on the hydrogen bonds in the
water, which makes them weaker and thus accelerates the evaporation process [6]. These effects are defined
and analyzed in terms of the kinetic energy of water molecules and the Lorentz force acting on these moving
charged molecules at the interface, which weakens or breaks hydrogen bonds [7]. Fig. 1 shows hydrogen
bonding in the water-air interface structure.

Figure 1: Structure of the water-air interface showing hydrogen bonds with dangling bonds in the air above the
interface. Large and small spheres represent oxygen and hydrogen atoms, respectively [7]

Magnetized water (MW) and magnetic nanofluids (MNFs) are distinct but related concepts. Magnetized
water (MW) can be obtained by subjecting the water to a magnetic field, causing changes in its hydrogen
bonding structure and, consequently, in its physicochemical properties [8]. Conversely, magnetic nanofluids
(MNFs) are composed of magnetic nanoparticles dispersed in a base fluid, enabling adjustable heat transfer
and flow properties by varying particle size, concentration, and type [9]. MNFs excel in heat transfer
applications, especially in automotive and industrial cooling systems where magnetically driven thermal



Energy Eng. 2025;122(4) 1361

performance improvements are key [10]. Furthermore, MNFs have demonstrated high thermal conductivity
enhancements under certain conditions, including the presence of external magnetic fields that align
nanoparticles and promote more efficient heat dissipation [11]. Ultimately, the main distinction between
MW and MNFs lies in their magnetic mechanisms: MW depends on structural changes of water molecules,
whereas MNFs rely on the magnetic response of suspended nanoparticles. This difference is critical when
selecting which fluid to use for specific applications, whether in environmental, biomedical, or engineering
scenarios. Key distinctions between magnetic nanofluids and magnetized water are shown in Table 1.

Table 1: Key differences between magnetized water and magnetic nanofluids

Aspect Magnetized water Magnetic nanofluid
Composition Pure water with no added

particles
Colloidal suspension with

magnetic nanoparticles
Magnetism source External magnetic field

temporarily alters properties
Permanent magnetic properties

due to particles
Applications Agriculture, medical, and general

chemical studies
Advanced engineering and

medical technologies
Stability in magnetic field Properties revert after field

removal
Retains magnetic behavior in the

presence of a field

Many researchers investigated the relationship between magnetic fields and water, and the reported
results showed substantial enhancements in water’s physical and chemical properties when exposed to mag-
netic effects [12,13]. For instance, Mghaiouini et al. conducted a thorough analysis of its optical characteristics
and their changes. These changes in optical properties are attributed to the changes in hydrogen bonds and
the reformation of water clusters at the molecular level caused by the magnetic field [14]. Another study was
conducted by Sronsri et al., where they investigated the effect of magnetic fields on water under static and
dynamic magnetization processes. They detected changes in the distribution of electrons, polarization, and
dipole moment of magnetized water. Moreover, they observed appreciable differences in the heat capacity
and an increase in the solubility of salts. The duration of exposure to magnetic flux and its intensity are the
main factors affecting water properties [15]. Youkai et al., along with other studies, investigated the effects of
magnetic fields on tap water, reporting an increase in the evaporation rate, a reduction in specific heat, and a
lower boiling point [5,16,17]. On the other hand, Ammar et al. found that exposing water to a high-intensity
magnetic field for a short time reduces the possibility of calcium carbonate formation with monoethylene
glycol within capillary coils [17]. In dry and semi-dry regions, evaporative cooling systems have been proven
effective, with high efficiency and low cost. However, their performance is limited by low water evaporation
rates and challenges in controlling humidity [18].

This work proposes combining magnetized water with a heat exchanger in an evaporative cooling
system. Although the aforementioned studies suggested different methods, to the best of our knowledge,
utilizing both magnetized water and a heat exchanger together has not been studied before. This work
includes a further parametric investigation to enhance the performance of the evaporative cooling system.
The results of this study offer potential benefits in many applications, including improving air-cooling
efficiency and saving energy



1362 Energy Eng. 2025;122(4)

2 Materials and Methods

2.1 Evaporative Cooler and Heat Exchanger
Aloni 100 L is a locally manufactured evaporative cooling system that implements the concept of

reducing the air temperature through water evaporation using thermal energy [19]. The required energy is
available by nature, making the energy system efficient. Fig. 2 illustrates the equipment.

Figure 2: Visualisation of the “Aloni 100 L” Locally-manufactured evaporative cooling system. (a) Detailed overview
of the cooler. (b) Basic structure and principal components [19]

Fig. 3 delineates an “LT type” aluminium plate-fin heat exchanger, a product of Japanese engineering.
This exchanger is characterised by its square shape, which has dimensions of 0.5 by 0.5 m. Aluminum,
known for its superior thermal conductivity, corrosion resistance, and optimal strength-to-weight ratio,
is the primary material utilized in constructing this exchanger. Functionally, it is an essential device for
thermal management systems, enabling efficient thermal energy transfer between two fluids. The “LT type”
designation refers to its specialized design and material properties. Its strategic placement at the outlet duct
of an evaporative cooler suggests a design intention to maximize thermal exchange efficiency and assist in
humidity control within the system [20,21].

Figure 3: Evaporative cooling system heat exchanger setup (a) “LT type” aluminum plate fin heat exchanger (b) Heat
exchanger positioned directly in front of the evaporative cooler outlet duct
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2.2 Magnetization
This study employed tap water sourced from the local water supply. Magnetization of tap water was

achieved using recycled magnets extracted from computer hard drives, as illustrated in Fig. 4a. The alter-
ations induced by the magnetic field (MF) are contingent on the magnetizing conditions. Two pivotal factors,
magnetic field strength (MFS) and water velocity, were taken into account (see Table 2). A magnetizing
apparatus was designed to produce magnetized water (MW), comprising 26 magnets, each with a minimum
strength of (0.5–1) T. These magnets were meticulously arranged within rectangular grooves, as depicted
in Fig. 4b.

ba Inlet 
tap
water

Outlet magnetized
water

Figure 4: Magnetized water system configuration (a) Computer hard drive magnets for water magnetization.
(b) Detailed arrangement of 26 magnets (0.5–1) T each within rectangular channels

Table 2: Parameters in the water magnetization process

Parameter Value
Water velocity 0.5 m/s

Magnetic field strength (0.5–1) T
Distance between magnetic 1 cm
Length of magnetized pipe 1 m

Material of pipe Steel

2.3 Air Velocity Measurement
A 200 mm air duct is equated with an anemometer (PRODIT model 6772, Italy) with a range of

(1.5 to 34.5) m/s and an accuracy of ±1.0% of reading ±1 digit. The pressure drop across the duct was
measured using a micro-manometer and correlated with fan power measurements. This correlation was
based on Eq. (1), which represents the air fan power (Fpower) in a system where both air velocity and pressure
are measured [15,22]:

Fpow er =
.

V .FTP = (ρauA) FTP (1)

where:

• V̇ is the volumetric flow rate, representing the volume of air passing through a section of the duct per
unit time.

• FTP is the thrust power, which is the power associated with the force exerted by the moving air.
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• ρa is the air density, which is the mass of air per unit volume.
• uA is the velocity of air times the cross-sectional area of the duct through which the air is flowing.

The airflow within the circuit was adjusted by manipulating the AC power through a variac transformer
connected to the axial fan. The corresponding fan power was easily read directly from the watt meter.

2.4 Temperature and Relative Humidity Measurement
The experiment utilized LAE ELECTRONIC-HT2W (Italy) relative humidity (RH) sensors, known for

their rapid and reliable measurements across the full range of 0%–100% relative humidity. These sensors
integrate a LAE Hygrometry AC-1 thin-film capacitive humidity sensor, ensuring precise detection of
atmospheric moisture content. The sensors operate with an accuracy of ±5% RH, ensuring reliable data
for various environmental conditions. Their robust design and 4-wire configuration enhance measurement
stability and reduce signal interference. The sensors were powered using a 12 V DC, 0.2 W power supply,
ensuring consistent operation throughout the experimental runs [23].

In this experiment, the RH sensors produce an output signal in milliamps (mA), which is incom-
patible with the humidity meter, as it requires a voltage signal. To address this, a high-accuracy LAE
ELECTRONIC-LT12 humidity and temperature meter (Italy) was employed. This device effectively con-
verted the milliampere output of the RH sensors into a voltage signal compatible with the recording system.
The LT12 device also measures temperature with an accuracy of ±0.2○C across a range of −40○C to +60○C,
ensuring reliable monitoring of environmental and system temperatures [24].

Integrating these high-precision instruments was critical for ensuring accurate and reproducible mea-
surements in the experiment. These sensors and meters enhanced the collected data’s overall reliability and
ensured compatibility with the experimental setup, facilitating seamless data acquisition for both humidity
and temperature parameters.

2.5 Uncertainty and Error Analysis
To address concerns regarding the reliability of the results, the experiment was repeated five times

under identical conditions to ensure consistency and reproducibility [25]. Each run involved measuring air
velocity, temperature, and relative humidity at key points in the system. Standard deviation and error bars
for the obtained data were calculated to quantify experimental uncertainties [26]. The primary sources of
error include systematic errors, measurement errors, and random variations. Table 3 presents a breakdown
of these sources.

Table 3: Summary of uncertainty, systematic errors, and measurement errors

Parameter Instrument/Method Accuracy/Error range Source of
uncertainty

Error bar
representation

Air velocity PRODIT
anemometer (Model

6772, Italy)

±1.0% of reading ±1 digit Sensor accuracy ±0.05 m/s

Pressure drop Micro-manometer ±0.5 Pa Calibration
limitations

±0.5 Pa

Temperature LAE LT12 (Italy) ±0.2○C Sensor resolution ±0.2○C
Relative Humidity (RH) LAE HT2W sensor ±5% RH Environmental

fluctuations
±5% RH

Magnetic field strength Hard drive magnets ±0.1 T Magnet variation and
alignment

±0.1 T
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The standard deviation () and standard error of the mean (SEM) were calculated for the repeated
measurements to determine the error bars [27,28]:

SEM = σ√
n

where (equal to 5) is the number of repeated trials and is the standard deviation. The results are presented
with error bars for key parameters (temperature, RH, and air velocity) to account for uncertainties.

3 Results and Discussion
Many characteristics, such as relative humidity RH, air velocity, and dry bulb temperature DBT, need to

be investigated in the course of studying the thermal performance of evaporative cooling using magnetized
water. To investigate the performance of residential air coolers, the performed experimental tests were
comparable in four distinct modelled situations (conventional, equipped with magnetized water, with heat
exchanger evaporative cooling systems, and a combination of magnetized water and heat exchanger). To
model real environmental conditions, a wide range of dry-bulb temperatures (DBT) and relative humidity
(RH) levels were selected; however, only a few representative values are shown on the psychrometric chart,
with RH set to 10%. The DBTs were chosen around 45○C and 50○C, reflecting Iraq’s summer weather, where
temperatures start at 45○C and can reach up to 55○C. Fig. 5 illustrates the energy differences in the evaporative
cooling system (ECS) under conditions with a magnetic field applied to the water and using a heat exchanger.
The solid line represents the cooling process with magnetically treated water, showing a reduction in the air’s
thermal energy as DBT decreases. Additionally, a noticeable increase in air moisture content was observed
as the air passed through the cooling pads.

With MF (at 50 oC)

Without MF (at 50 oC)

With MF (at 45 oC)

Without MF (at 45 oC)

1

23

Figure 5: Energy differences in ECS in cases provided with both MF and HE
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As air moves over the pads in the ECS, they act as a humidifier. On the other hand, the lower DBT led
to a precooling process for the air to pass over the witted pads. Such was presented by the inclined line (1–
2), which is an adiabatic process. The air departs the pads colder and more humid. As depicted by inclined
lines (2–3), due to the air moving across the heat exchanger, it undergoes latent and sensible heat transfer
processes, represented as cooling and dehumidification processes.

According to scientific evidence, the quantity of heat transmission is proportionally related to air
velocity. As a result, it was seen that with the low, medium, and high velocities of air (i.e., 1, 2, 3 m/s), air
velocity substantially impacts the ECS’s effectiveness and energy savings. Also, one can observe the decrease
in pressure drops at a low velocity of air, which leads to an increase in the efficiency of the evaporative
cooling process. This is attributed to the use of the formula (1/2V2)) [13], which is represented mathematically
in Fig. 6. So, the velocity of air (1 m/s) led to the highest efficiency of the system. Also, the pressure dropping
makes the fan use more energy.
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Figure 6: Variation of power consumed with air fan velocity

Fig. 7 compares the cooling system and water temperature degrees when using magnetized and regular
water during July 2023. When the evaporative cooler operates, the water in the basin drops after a period of
operation. For example, in July, the measured temperature of the water in the coolant basin was 35○C. After
an hour of operation, the temperature dropped to 22.2○C due to the evaporation process during air passage
for the conventional air cooler.

However, when using the magnetized water, the water basin temperature dropped to 21.6○C after an
hour of operation. Also, when using the magnetized water during the full operation, the temperature of the
water was reduced more than before compared to the previous situation, which is because magnetized water
reduced the surface tension of water, then the rate of evaporation increased, which in turn led to lowering the
basin water temperature. As the operation continues, basin water temperature naturally drops further due to
the presence of evaporation due to air passing and magnetic energy. Moreover, Fig. 8 illustrates that the heat
exchanger’s inlet and outlet water temperature was reduced when the magnetized water was used specifically
in dry weather (Rh = 10%). For instance, the magnetized and non-magnetized inlet water temperatures of the
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heat exchanger were 22.5○C and 24○C, respectively, and the magnetized and non-magnetized outlet water
temperatures of the heat exchanger were 22○C and 23.6○C, respectively.
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Figure 7: Variation of water temperature during the time of experiment with and without MF
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Figure 8: Variation of water temperature during the experiment for different cases

Also, the evaporative cooler outlet air temperature using the heat exchanger and the magnetized
water decreased compared to the previous air temperature throughout July. The reason behind that is the
evaporative cooler inlet air temperature is higher than the basin water temperature with the existence of the
heat exchanger. Thus, the air temperature is lower from 43○C to 24.8○C in July. While using the magnetized
water only, the air temperature is lower from 43○C to 23.3○C in July. As a result, by adding the two features
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(the magnetized water and the heat exchanger) to the evaporative cooler, the air temperature is lowered from
43○C to 22.8○C. As described in Fig. 9.
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Figure 9: Variation of water temperature during the time of the experiment

In other words, the heat exchanger’s existence leads to a decrease in the basin water temperature and
the inlet and outlet air and water temperatures of the heat exchange. Similarly, the use of magnetized water
reduces the air and water temperatures of the evaporative cooler parts.

In addition, the experimental results represent the effect of adding a heat exchanger and magnetized
water to the evaporative cooler on the relative humidity of the outlet air of the evaporative cooler through
July. The outlet air of the evaporative cooler had a high relative humidity percentage of around 50%–60%
when using normal and magnetized water, without using the heat exchanger, while the circumstance relative
humidity percentage was 30%–40%. After integrating the heat exchange, the relative humidity of the outlet
air of the evaporative cooler was minimized to approximately 40%–45% when using magnetized and non-
magnetized water, respectively. It can be noticed that the heat exchange played a vital role in decreasing
the relative humidity due to the relative condensation that was created on the heat exchange and helped to
remove a small part of the humidity. Also, the results described that using the magnetized water and the heat
exchanger in the evaporative cooler was very efficient for controlling the humidity of the air to be an adequate
percentage, especially for South Iraq cities that have highly humid weather, especially during summer.

Fig. 10 illustrates the cooling efficiency of the evaporative cooler when utilizing both a heat exchanger
and magnetized water. The heat exchanger increased the average cooling efficiency from 69.44% to 93.96%
during July. This improvement is attributed to the enhanced heat transfer capabilities of the exchanger, which
facilitates better temperature regulation and improves the system’s overall cooling performance. Similarly,
the use of magnetized water enhanced the average cooling efficiency from 70.62% to 91.43%. Magnetized
water has been shown to promote more rapid evaporation, which results in faster cooling by reducing the
heat absorbed by the water, thereby improving the system’s efficiency.
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Figure 10: Efficiencies during the time of experiment for all four cases

Furthermore, a slight increment in cooling efficiency was observed when both the heat exchanger and
magnetized water were used together, reaching 91.44% and 93.97%, respectively. This synergistic effect is due
to the combined impact of both methods in reducing the outlet air temperature of the evaporative cooler. As
a result, there is a higher temperature difference between the ambient weather temperature and the cooler’s
outlet air temperature, which directly contributes to the increased cooling efficiency. Combining these two
methods optimizes the heat exchange process and enhances the overall performance of the evaporative
cooling system.

4 Conclusion
The influence of using magnetized water and fined heat exchanger on the thermal performance of

evaporative air cooler were investigated in this manuscript. Four case studies were carried out during the
experiments (i.e., conventional air cooler, with MF, with HE, and with both MF and HE air cooler). It was
concluded the following:

1. Applying the magnetic field reduced the surface tension of water, and the rate of evaporation increased,
which in turn led to a lower basin water temperature.

2. Using magnetized water reduces the air and water temperatures of the evaporative cooler parts.
3. The heat exchange played a vital role in decreasing the relative humidity due to the relative condensation

that was created on the heat exchange, which helped to remove a small part of the humidity.
4. The use of a heat exchanger decreases the basin water temperature and the inlet and outlet air and water

temperatures of the heat exchange.
5. Using both the magnetized water and the heat exchanger in the evaporative cooler was very efficient for

controlling the air humidity to an adequate percentage, especially for highly humid weather regions.
6. The heat exchanger increased the average cooling efficiency during July from 69.44% to 93.96%, while

the magnetized water enhanced the average cooling efficiency from 70.62% to 91.43%.
7. Utilizing the heat exchangesr and magnetized water together in the evaporative cooler led to higher

efficiencies, reaching 91.44% and 93.97%, due to the reduction in the outlet air temperature of the
evaporative cooler.
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Nomenclature
AC Alternating Current
DBT Dry-Bulb Temperature (○C)
ECS Evaporative Cooling System
Fpower Air fan power in the cooling system (W)
FTP Thrust Power, associated with the force exerted by moving air (W)
HE Heat Exchanger
LT Low Temperature (in the context of heat exchanger design)
MFS Magnetic Field Strength (T, teslas)
MW Magnetized Water
RH Relative Humidity (%)
TWh Terawatt hours (a sunit of energy)
V Volumetric flow rate of air (m3/s)
ρa Air density (kg/m3)
uA Velocity of air times cross-sectional area of duct (m/s)
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