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ABSTRACT: To address the issue of coordinated control of multiple hydrogen and battery storage units to suppress
the grid-injected power deviation of wind farms, an online optimization strategy for Battery-hydrogen hybrid energy
storage systems based on measurement feedback is proposed. First, considering the high charge/discharge losses of
hydrogen storage and the low energy density of battery storage, an operational optimization objective is established to
enable adaptive energy adjustment in the Battery-hydrogen hybrid energy storage system. Next, an online optimization
model minimizing the operational cost of the hybrid system is constructed to suppress grid-injected power deviations
with satisfying the operational constraints of hydrogen storage and batteries. Finally, utilizing the online measurement
of the energy states of hydrogen storage and batteries, an online optimization strategy based on measurement feedback
is designed. Case study results show: before and after smoothing the fluctuations in wind power, the time when the
power exceeded the upper and lower limits of the grid-injected power accounted for 24.1% and 1.45% of the total time,
respectively, the proposed strategy can effectively keep the grid-injected power deviations of wind farms within the
allowable range. Hydrogen storage and batteries respectively undertake long-term and short-term charge/discharge
tasks, effectively reducing charge/discharge losses of the Battery-hydrogen hybrid energy storage systems and improving
its operational efficiency.

KEYWORDS: Battery-hydrogen hybrid energy storage systems; grid-injected power deviations; measurement feed-
back; online optimization; energy states

1 Introduction
The development and utilization of wind power and other renewable energy sources are essential for

achieving the low-carbon goals. However, due to natural factors such as wind speed, wind power generation
exhibits uncertainty and intermittency [1], which poses a significant threat to the safe operation of the
power system when large proportions of wind power are connected to the grid, thus limiting the large-
scale development and utilization of wind energy. Hydrogen energy storage and battery energy storage can
achieve time-shifting of electrical energy and have fast response times [2], effectively mitigating wind power
fluctuations in grid connections. This makes them an effective solution for ensuring the safe operation of
large-scale wind power integration. A hybrid energy storage system, composed of battery and hydrogen
energy storage, can complement the strengths and weaknesses of different types of storage, addressing the
shortcomings of single-type energy storage [3] and improving the overall performance of the energy storage
system [4]. It is crucial to design effective control strategies for such multi-type energy storage systems.
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At present, a lot of research results have been made in the research on long-term energy storage
to solve the problem of supply and demand imbalance. In reference [5], an hourly-level coordinated
optimization strategy for a Battery-hydrogen integrated system, including hydrogen fuel vehicles, was
proposed. Reference [6] presented an improved bi-level robust planning approach to smooth the fluctuations
of renewable energy generation, maximizing the complementary benefits of Battery-hydrogen energy
storage. Reference [7] proposed a dual-battery energy storage model and compared two switching strategies,
synchronous and asynchronous, to reduce the switching frequency in a single-battery mode. Reference [8]
proposed a multi-time-scale rolling optimization control method based on the rolling optimization idea
of model predictive control to address the low reliability of optimization results due to uncertainties in
wind and solar output and load. Reference [9] presented an energy storage response strategy aiming to
minimize the cost of a hybrid energy storage system, based on the multi-time-scale demand of users.
Reference [10] proposed a peak-shaving and valley-filling strategy for a park energy system with a Battery-
thermal hybrid energy storage system. Reference [11], in light of the escalating penetration of renewable
energy to counterbalance the variability of wind and solar energy and the demand issue for compressed air
energy storage capacity, has formulated a least-cost power system founded on the combination of wind, solar,
and compressed air energy storage technologies. Reference [12], for the research concerning the utilization
of a substantial amount of energy storage to mitigate the variability of wind and solar power systems, has put
forward a novel least-cost approach. Through the comparative analysis of the above literature, the comparison
results are shown in Table 1.

Table 1: Comparison of different energy storage based on long time scales [5,7,10]

Parameter Battery-hydrogen
-thermal

multi-energy
system

Dual-battery-
hydrogen hybrid

energy storage
system

Battery-hydrogen
hybrid energy
storage system

Battery energy storage
capacity/power

1 MW/2 MW⋅h 4 MW/8 MW⋅h 2 MW/4 MW⋅h

Hydrogen energy storage
capacity/power

7 MW/9 m3/7 MW 30 MW/35 m3/30 MW 15 MW/15 m3/16 MW

Lifespan (years) 10 years 5–25 years 5–10 years
Hydrogen production

capacity (Nm3/h)
1400 2500 200

Efficiency (%) 60–95 72–95 65–95
Power density (W/cm2) 0.1–0.3 0.1–0.5 0.1–0.4
Energy density (Wh/kg) 150–200 100–120 120–200

The above studies discuss the operation optimization strategies of long-term energy storage systems,
however, most of their time levels are above the hour, which is difficult to cope with the control tasks
of shorter time scales. In response, reference [13] proposed a second-level coordinated operation method
for a Battery-hydrogen hybrid energy storage systems that can optimize the state of charge and improve
renewable energy utilization while reducing system operational costs. Reference [14] proposed a hybrid
energy storage coordination strategy to smooth photovoltaic grid-injected power fluctuations and reduce
operational losses in the hybrid energy storage system. Reference [15] presented a fast control strategy
to reduce the frequency of charge/discharge cycles in battery energy storage. Reference [16] presented
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A two-layer optimization model of hydrogen energy storage in an integrated energy system considering
the load-side demand response and the user group of electric heating equipment is proposed, which can
improve the level of new energy consumption. Reference [17] proposed an optimal scheduling model for
integrated energy microgrids considering multi-time scale energy storage. Reference [18] established a multi-
objective operational model for a Battery -hydrogen hybrid energy storage microgrid, which can improve the
utilization of clean energy and reduce microgrid operating costs and user electricity expenses. Reference [19]
proposed a predictive control strategy for a micro wind-hydrogen coupled system, significantly enhancing
the regulation capabilities of the hydrogen energy storage system. Reference [20] proposed a control
strategy for a Battery-hydrogen hybrid energy storage systems, considering the operational characteristics
of alkaline electrolyzers. Reference [21] introduced a multi-type energy storage frequency control strategy
with adaptive time constant adjustment. The aforementioned short-time-scale (minute-level, second-level)
control strategies for Battery-hydrogen hybrid energy storage systems facilitate rapid power distribution.
Nevertheless, the majority rely on filtering or heuristic distribution strategies [22], which restrict their
applicability to specific control objectives and scenarios.

To address this, this paper proposes an online optimization strategy for a Battery-hydrogen hybrid
energy storage systems based on measurement feedback. This strategy can quickly optimize the distribution
of charge/discharge power among multiple battery and hydrogen storage units while suppressing wind power
grid-injected deviations. An online optimization model for adaptive energy adjustment in the Battery-
hydrogen hybrid energy storage systems is constructed, considering the need to suppress wind power
grid-injected deviations and the physical operating characteristics of battery and hydrogen storage. By
utilizing the real-time measurement of energy states in hydrogen and battery storage units, an online
optimization strategy based on measurement feedback is designed. Simulation results demonstrate that the
proposed strategy can effectively suppress wind power grid-injected deviations within permissible limits.
Hydrogen and battery storage undertake long-term and short-term charge/discharge tasks, respectively,
reducing overall energy storage system charge/discharge losses and enhancing its operational efficiency.

Overall, the main contribution of this paper is three-fold:
(1) We have developed an online optimization model for the energy self-adaptive adjustment of a

Battery-hydrogen hybrid energy storage system. The model uses hydrogen storage to smooth out long-term
wind power fluctuations and battery storage to mitigate short-term wind power fluctuations.

(2) Compared with heuristic algorithms, the strategy proposed in this paper can quickly allocate power
among multiple hydrogen storage and battery units with greater precision regarding optimization objectives
and constraints.

(3) Simulation results demonstrate that the proposed strategy can effectively suppress wind power
grid-injected deviations within permissible limits. Hydrogen and battery storage undertake long-term and
short-term charge/discharge tasks, respectively, reducing overall energy storage system charge/discharge
losses and enhancing its operational efficiency.

The structure of this paper is organized as follows: The first section introduces the operational and
control architecture of the Battery-hydrogen hybrid energy storage system. The second section discusses the
model of the Battery-hydrogen hybrid energy storage system in detail, considering the need to suppress wind
power grid-injected deviations and the physical operating characteristics of battery and hydrogen storage.
By utilizing the real-time measurement of energy states in hydrogen and battery storage units, an online
optimization strategy based on measurement feedback is designed. The third section conducts an analysis
based on practical case studies by setting parameters for the wind farm energy storage station, analyzing
the power and State of Health (SOH) of multiple hydrogen storage units, as well as the power and State of
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Charge (SOC) of the energy storage units. Finally, the fourth section summarizes the main research findings
of this paper and outlines future research directions. The appendix includes the main proof processes and
formula derivations.

2 Battery-Hydrogen Hybrid Energy Storage Operation Control Architecture

2.1 Battery-Hydrogen Hybrid Energy Storage Systems Framework
The research in this paper focuses on the Battery-hydrogen hybrid energy storage systems and the wind

power system. The system structure is shown in Fig. 1.

wind power power grid

AC bus

hydrogen storage tank

Pt
W.out

Pt.i
HESS Pt.i

BESS

Pt
W.cut

H2

electrolyzer fuel cell

Pt
out

batteryMt.i
H2.in Mt.i

H2.out

Pt.i
HESS.FPt.i

HESS.E

energy storage unithydrogen storage unit

Figure 1: Schematic diagram of the Battery-hydrogen hybrid energy storage system

The expression as shown in Eq. (1) can be obtained from the relationship in the figure:

Pt
out = Pt

W.max − Pt
W.cut +

N
∑
i=1
(Pt . i

BESS + Pt . i
HESS) (1)

2.2 Control Mechanism of Energy Storage System for Suppressing the Grid-Injected Power Deviation of
Wind Farms
A schematic diagram illustrating the actual wind power and its upper and lower limits of the grid-

injected power is shown in Fig. 2.
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Figure 2: Actual wind power operation diagram

The black curve in the figure represents the actual wind power, while the red and blue curves represent
the upper and lower limits of the grid-injected power, respectively. Based on the relationships in the figure,
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we can derive:

{Pt
W.up = xup ⋅ Pt

W.fore
Pt

W.dn = xdn ⋅ Pt
W.fore

(2)

Based on the relationship between actual wind power and the upper and lower limits of the grid-injected
power, it can be divided into the following three regions. The yellow shaded area 1 indicates that the actual
wind power is above the upper limit of the grid-injected power; in this case, the Battery-hydrogen hybrid
energy storage systems need to charge. If the power adjusted by the Battery-hydrogen hybrid energy storage
systems remains above the upper limit of the grid-injected power, wind power curtailment will occur. The
blank area 2 indicates that the actual wind power is within the upper and lower limits of the grid-injected
power. In this area, the output of the Battery-hydrogen hybrid energy storage systems aims to restore the SOC
and SOH. Through reasonable charge and discharge control, the energy storage system can ensure efficient
operation and maintain its good condition. The green shaded area 3 indicates that the actual wind power is
below the lower limit of the grid-injected power; in this case, the Battery-hydrogen hybrid energy storage
systems need to discharge to supplement the insufficient Battery-hydrogen hybrid energy storage systems
power. As shown in Eq. (3), ideally, the adjusted wind power should remain within the upper and lower limits
of the grid-injected power.

Pt
W.dn ≤ Pt

out ≤ Pt
W.up (3)

3 Model of the Battery-Hydrogen Hybrid Energy Storage Systems

3.1 Objective Function
Considering the disadvantages of high charge and discharge losses in battery and hydrogen storage and

low energy density in battery storage, the aim is to quickly restore the SOC of the battery energy storage while
minimizing the charge and discharge of battery and hydrogen storage. To this end, the operational objective
function of the Battery-hydrogen hybrid energy storage systems is designed as follows:

Min CV =
N
∑
i=1
(λBESSPt . i

BESSΔt + λHESSPt . i
HESSΔt) (4)

Min f = CV + φ (SOCt . i) + φ (SOHt . i) (5)

The penalty function of the state of charge of batteries and hydrogen storage are shown in Eqs. (6)
and (7), respectively. The function curves are illustrated in Fig. 3.

φ (SOCt . i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ [ 1
3δ1
(SOCmin − SOCt . i − δ1

2
)

3
− δ1

2

12
] , SOCmin ≤ SOCt . i ≤ SOCmin +

δ1

2

γ (SOCmin − SOCt . i + δ1)
2 , SOCmin +

δ1

2
≤ SOCt . i ≤ SOCmin + δ1

0, SOCmin + δ1 ≤ SOCt . i ≤ SOCmax − δ1

γ (SOCt . i − SOCmax + δ1)
2 , SOCmax − δ1 ≤ SOCt . i ≤ SOCmax −

δ1

2

γ [ 1
3δ1
(SOCt . i − SOCmax −

δ1

2
)

3
− δ1

2

12
] , SOCmax −

δ1

2
≤ SOCt . i ≤ SOCmax

(6)
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φ (SOHt . i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ [ 1
3δ2
(SOHmin − SOHt . i − δ2

2
)

3
− δ2

2

12
] , SOHmin ≤ SOHt . i ≤ SOHmin +

δ2

2

γ (SOHmin − SOHt . i + δ2)
2 , SOHmin +

δ2

2
≤ SOHt . i ≤ SOHmin + δ2

0, SOHmin + δ2 ≤ SOHt . i ≤ SOHmax − δ2

γ (SOHt . i − SOHmax + δ2)
2 , SOHmax − δ2 ≤ SOHt . i ≤ SOHmax −

δ2

2

γ [ 1
3δ2
(SOHt . i − SOHmax −

δ2

2
)

3
− δ2

2

12
] , SOHmax −

δ2

2
≤ SOHt . i ≤ SOHmax

(7)
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Figure 3: Relationship between φ(SOCt.i) and SOCt.i

In Eqs. (6) and (7), δ1 and δ2 are the parameters of battery energy storage and hydrogen energy storage,
respectively, which determine the size of the piecewise function interval, the larger the δ1/δ2 value, the more
effortless it is to restore the SOC/SOH state, and the smaller the δ1/δ2 value, the more challenging it is to
restore the SOC/SOH state. By adjusting the relevant parameters in the penalty functions φ(SOCt.i) and
φ(SOHt.i), the charge and discharge processes of the two types of energy storage can be altered. The smaller
the SOCmax/SOCmin and the larger the SOHmax/SOHmin, the easier it is to restore the SOC and SOH states;
conversely, larger values make it harder to restore the SOC and SOH states. In practice, the appropriate
parameter values can be chosen based on the control requirements of hydrogen storage and battery storage.

Additionally, the penalty functions φ(SOCt.i) and φ(SOHt.i) are second-order continuous. On one
hand, this helps to suppress drastic changes when the related variables approach their constraints (such
as the upper/lower limits for SOC or SOH). On the other hand, it ensures that the optimization problem
constructed using the penalty functions is also second-order continuous, which is typically one of the
assumptions required for proving the convergence of online optimization algorithms.

By taking the partial derivatives of the penalty functions for battery energy storage SOC and hydrogen
energy storage SOH, we can obtain the expressions (A1) and (A2) in Appendix A.

3.2 Constraints
3.2.1 Operational Constraints of Battery Energy Storage

The SOC of the battery energy storage system is an important indicator of its current energy level and
is closely related to its energy and capacity. The changes in the state of charge reflect the energy status of the
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storage system at different time points [23], ensuring stability and efficiency during operation. The specific
expression is shown in Eq. (8).

⎧⎪⎪⎨⎪⎪⎩

Et . i
BESS = Et−1. i

BESS + ηBESS.EPt . i
BESS.EΔt − Pt . i

BESS.FΔt/ηBESS.F

SOCt . i = Et . i
BESS/QBESS

(8)

SOCmin ≤ SOCt . i ≤ SOCmax (9)

To ensure the quality of electrical energy, the charge and discharge power of the battery energy storage
system must be maintained within a reasonable range to prevent damage to the storage system [24] or to
avoid affecting its performance, as shown in Eq. (10).

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ≤ Pt . i
BESS.E ≤ PBESS.E.max

0 ≤ Pt . i
BESS.F ≤ PBESS.F.max

Pt . i
BESS.EPt . i

BESS.F = 0

(10)

3.2.2 Hydrogen Energy Storage Operational Constraints
(1) Electrolyzer operational constraints
The key equipment for hydrogen energy storage is the alkaline electrolyzer, which converts electrical

energy into hydrogen energy. The specific expression is shown in Eq. (11).

ηelec =
Mt . i

H2 .inH
Pt . i

HESS.EΔt
(11)

⎧⎪⎪⎨⎪⎪⎩

Pelec.min ≤ Pt . i
HESS.E ≤ Pelec.max

0 ≤ Mt . i
H2 .in ≤ MH2 .in.max

(12)

From the inequality constraints in Eq. (12) and the relational expression in Eq. (11), the power
constraints at this time can be derived.

Pt . i
HESS.E ≤

MH2 .in.max ⋅H
ηelec ⋅ Δt

(13)

The electrolyzer is subject to the constraints from both Eqs. (12) and (13). The smaller value from these
two constraints is taken as the upper limit for the input power of the electrolyzer, thereby obtaining the input
power constraint of the electrolyzer, as shown in Eq. (14).

Pelec.min ≤ Pt . i
HESS.E ≤min{Pelec.max, MH2 .in.max ⋅H/ (ηelec ⋅ Δt)} (14)

(2) Hydrogen Storage Tank Operational Constraints
The primary function of the hydrogen storage tank is to effectively store the hydrogen produced by

the electrolyzer and supply it to the fuel cell when needed. Through the regulation of the hydrogen storage
tank, the system can respond flexibly to fluctuations in power demand, enhancing the overall reliability and
efficiency of the energy system.

SOHt . i = SOHt−1. i +
Mt . i

H2 .in

QHS
−

Mt . i
H2 .out

QHS
(15)
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SOHmin ≤ SOHt . i ≤ SOHmax (16)

To ensure the service life of the hydrogen storage tank, the amount of hydrogen input and output per
unit of time must be kept within a reasonable range. This not only helps to extend the lifespan of the storage
tank but also ensures the safe and efficient operation of the system, enhancing the reliability of the entire
hydrogen energy storage system [25].

(3) Fuel Cell Operational Constraints
The fuel cell is a highly efficient device that converts the hydrogen energy provided by the hydrogen

storage tank into electrical energy [26]. The hydrogen stored in the tank is transported to the fuel cell via
pipelines, providing a stable power output while also reducing environmental pollution [27].

Pt . i
HESS.F =

Mt . i
H2 .outηFCH

Δt
(17)

⎧⎪⎪⎨⎪⎪⎩

PHESS.F.min ≤ Pt . i
HESS.F ≤ PHESS.F.max

0 ≤ Mt . i
H2 .out ≤ MH2 .out.max

(18)

From the inequality constraints in Eq. (18) and the relational expression in Eq. (17), the power
constraints at this time can be derived.

Pt . i
HESS.F ≤

MH2 .out.max ⋅ ηelec ⋅H
Δt

(19)

The fuel cell is subject to the constraints from both Eqs. (18) and (19). The smaller value from these two
constraints is taken as the upper limit for the fuel cell’s output power, thereby obtaining the output power
constraint of the fuel cell, as shown in Eq. (20).

PHESS.F.min ≤ Pt . i
HESS.F ≤min{PHESS.F.max, MH2 .out.max ⋅ ηelec ⋅H/Δt} (20)

3.3 Control Strategy Based on Measurement Feedback
3.3.1 Measurement Feedback-Based Energy Storage Online Optimization Principle

In order to deal with such a complex optimization problem as Eq. (3), this paper constructs a Lagrangian
function to transform the constrained optimization problem into an unconstrained optimization problem.

L = CV + φ (SOCt . i) + φ (SOHt . i) + μt (Pt
out − Pt

W.dn)Δt + μt (Pt
W.up − Pt

out)Δt

+ s ⋅ (max{Pt
out − Pt

W.up, 0})2 + s ⋅ (max{Pt
W.dn − Pt

out , 0})2 (21)

Thus, during regulation, the active output power of hydrogen energy storage and battery energy storage
is updated based on Eqs. (22) and (23), respectively.

Pt . i
HESS = projΩ t . i

P
{Pt−1. i

HESS − β ( ∂L
∂Pt . i

HESS
)} (22)

Pt . i
BESS = projΩ t . i

P
{Pt−1. i

BESS − β ( ∂L
∂Pt . i

BESS
)} (23)
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Taking ∂L/∂Pt . i
BESS as an example, its calculation is as follows:

∂L
∂Pt . i

BESS
= ∂CV

∂Pt . i
BESS
+

∂φ (SOCt . i)
∂SOCt . i ⋅ ∂SOCt . i

∂Pt . i
BESS

+
∂φ (SOHt . i)

∂SOHt . i ⋅ ∂SOHt . i

∂Pt . i
BESS

− μt Δt + 2 ⋅ s ⋅max{Pt
out − Pt

W.up, 0} + μt Δt + 2 ⋅ s ⋅max{Pt
W.dn − Pt

out , 0}
(24)

By substituting Eqs. (A1) and (A2) into Eq. (24), the gradient of the Lagrangian function can be obtained
as shown in Eq. (A3) in Appendix A. Similarly, by taking the partial derivative of the Lagrangian function
with respect to the hydrogen energy storage power, the gradient can be derived as shown in Eq. (A4)
in Appendix A.

According to Eqs. (22) and (23), the initially allocated power for the Battery-hydrogen hybrid energy
storage systems can be obtained. Then, using Eq. (1), the adjusted wind power can be calculated. If the
adjusted wind power is not within the upper and lower limit range of the grid-injected power, the strategy
presented in this paper is needed to adjust the upper and lower Lagrange multiplier for exceeding the wind
power upper limit, namely:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

μt =max{μt−1 + β (Pt
out − Pt

W.up) , 0}

μt =max{μt−1 + β (Pt
W.dn − Pt

out) , 0}
(25)

3.3.2 Online Optimization Strategy Flow for Battery-Hydrogen Hybrid Energy Storage Systems
The online optimization strategy flow for the Battery-hydrogen hybrid energy storage systems based on

measurement feedback is shown in Fig. 4. Measurable equipment continuously monitors the power of the
hydrogen storage unit and energy storage unit. Based on Eqs. (4), (6), and (7), the gradients of the operating
cost objective function, state of charge penalty function, and hydrogen state penalty function are calculated.
These gradients are then substituted into Eq. (24) to compute the gradient of the Lagrangian function. This
gradient is subsequently used in Eqs. (22) and (23) to calculate the hydrogen energy storage and battery
energy storage power for the next time step. Finally, Eq. (25) is utilized to adjust the energy output for the
next time step.
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Pt
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calculate the gradient �CV/�Pt.i
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BESS �SOH t.i/�Pt.i
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calculate the gradient �L/�Pt.i
BESS and 
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Figure 4: Online optimization diagram of electric-hydrogen hybrid energy storage system
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3.3.3 Online Optimization Strategy Analysis
Based on the different intervals of SOC and SOH (in Eqs. (6) and (7), SOCmin/SOHmin to SOCmin +

δ1/2/SOHmin + δ2/2 is defined as the first interval, SOCmin + δ1/2/SOHmin + δ2/2 to SOCmin + δ1/SOHmin +
δ2 is defined as the second interval, SOCmin + δ1/SOHmin + δ2 to SOCmax − δ1/SOHmax − δ2 is defined as the
third interval, SOCmax − δ1/SOHmax − δ2 to SOCmax − δ1/2/SOHmax − δ2/2 is defined as the fourth interval,
SOCmax − δ1/2/SOHmax − δ2/2 to SOCmax − δ1/SOHmax − δ2 is defined as the fifth interval), as well as the
relationship between Pt

W.act and Pt
W.dn, the energy storage allocation under the control strategy presented in

this paper can be determined:
(1) When SOC is in the first and second intervals
a) When SOH is in the first and second intervals, and Pt

W.act >Pt
W.dn, energy storage charging is required.

If the battery energy storage power exceeds its maximum power, then Pt.i
BESS.E = PBESS.E.max. If the hydrogen

energy storage power exceeds its maximum power, then, as shown in Eq. (26).

Pt . i
HESS.E.max =min{Pelec.max, MH2 .in.max ⋅H

ηelec ⋅ Δt
} (26)

When Pt
W.act < Pt

W.dn, energy storage discharging is required. Due to the significant losses associated
with the frequent start-stop of the electrolyzer, which also greatly impacts its lifespan, the electrolyzer
operates at standby power: Pt.i

BESS.E = Pelec.min.
b) When SOH is in the third, fourth, or fifth intervals, and Pt

W.act > Pt
W.dn, energy storage charging is

required. At this time, SOC is at a relatively low state while SOH is at a higher state, so battery energy storage
is prioritized for charging. When Pt

W.act < Pt
W.dn, energy storage discharging is needed; since SOC is lower

than SOH, hydrogen energy storage is prioritized for discharging.
(2) When SOC is in the third interval
a) When SOH is in the first or second interval, and Pt

W.act > Pt
W.dn, energy storage charging is required.

At this time, SOC is at a higher state while SOH is at a lower state, so hydrogen energy storage is prioritized
for charging. When Pt

W.act < Pt
W.dn, energy storage discharging is needed; since SOC is higher than SOH,

battery energy storage is prioritized for discharging.
b) When SOH is in the third, fourth, or fifth interval, and Pt

W.act > Pt
W.dn, energy storage charging is

required. At this time, SOC is at a lower state while SOH is at a higher state, so battery energy storage is
prioritized for charging. When Pt

W.act < Pt
W.dn, energy storage discharging is needed; since SOC is lower than

SOH, hydrogen energy storage is prioritized for discharging.
(3) When SOC is in the fourth or fifth interval
a) When SOH is in the first, second, or third interval, and Pt

W.act > Pt
W.dn, energy storage charging is

required. At this time, SOC is at a higher state while SOH is at a lower state, so hydrogen energy storage is
prioritized for charging. When Pt

W.act < Pt
W.dn, energy storage discharging is needed; since SOC is higher

than SOH, battery energy storage is prioritized for discharging.
b) When SOH is in the fourth or fifth interval, and Pt

W.act > Pt
W.dn, energy storage charging is required.

At this time, SOC is at a higher state while SOH is at a lower state, so hydrogen energy storage is prioritized
for charging. If the electrolyzer is operating at minimum power such that SOHt.i ≤ SOHmax, charging can
continue. However, if the electrolyzer is operating at minimum power and SOHt.i > SOHmax, to ensure the
safety of the hydrogen energy storage tank, the fuel cell must discharge. When Pt

W.act < Pt
W.dn, energy storage

discharging is required; since SOC is higher than SOH, battery energy storage is prioritized for discharging.
If the battery energy storage power exceeds its maximum power, then Pt.i

BESS.F = PBESS.F.max. If the hydrogen
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energy storage power exceeds its maximum power, then, as shown in Eq. (27).

Pt . i
HESS.F.max =min{PHESS.F.max, MH2 .out.max ⋅ ηelec ⋅H

Δt
} (27)

4 Case Study and Simulation Analysis

4.1 Case Setup
To verify the effectiveness of the strategy proposed in this paper, actual wind power data from a city

in northeastern China in 2023 was used. The region has a wind farm with an installed capacity of 200 MW,
equipped with 15 MW of battery energy storage capacity and 20 MW of hydrogen energy storage capacity.
Other specific parameters for battery and hydrogen energy storage can be found in Tables A1 and A2. The
sampling period is set to 7 days, with a sampling interval of 1 s. The simulation tool uses MATLAB.

4.2 Simulation Analysis of Wind Power Smoothing
Fig. 5a,c shows the relationship between wind power before and after smoothing and its upper and lower

limits of the grid-injected power. It was found that, before smoothing, the wind power exceeded the upper
limit of the grid-injected power between 740 and 800 s and dropped below the lower limit of the grid-injected
power between 3200 and 3400 s. After smoothing, the wind power remained within the upper and lower
limit of the grid-injected power during these intervals. In Fig. 5b,d, the blue curve represents the portion
of the wind power that exceeds its upper limit of the grid-injected power, and the red curve represents the
portion that falls below its lower limit of the grid-injected power. After adjustments based on the proposed
strategy, the power exceeding the upper and lower limits of the grid-injected power was reduced to around
0.1 MW, the time during which the power exceeded the upper and lower limits of the grid-injected power
accounted for 1.45% of the total time; whereas before the adjustment, the power exceeded the upper and
lower limits of the grid-injected power by about 3 MW, the time during which the power exceeded the upper
and lower limits of the grid-injected power accounted for 24.1% of the total time. This shows that the wind
power curve became more stable after regulation, with significantly reduced fluctuations. This indicates that
the proposed control strategy can effectively reduce the volatility of wind power, making it more controllable,
and better meeting the power system’s requirements for wind power output.
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Figure 5: (Continued)
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Figure 5: Comparison of wind power before and after stabilization

4.3 Simulation Analysis of Energy Storage Unit Power with SOC and Hydrogen Storage Unit Power with
SOH
Fig. 6 shows the power distribution within the energy storage unit, where all power fluctuates within the

range of −0.5 to 0.5 MW, without exceeding this range. This indicates that the proposed power distribution
strategy for the energy storage unit is highly effective.
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Figure 6: Diagram of SOC and power variation of 10 cells

Due to differences in internal power distribution and the introduction of penalty functions, the SOC of
each battery varies, but the overall trend remains consistent. Each battery’s SOC changes smoothly within
the range of 0.3 to 0.7, with the curve becoming more stable. In the 0.2 to 0.3 and 0.7 to 0.8 ranges, the SOC
curve changes more rapidly, and in the 0.1 to 0.2 and 0.8 to 0.9 ranges, the SOC curve changes significantly
faster. Through rapid adjustment of power distribution, the system can effectively bring SOC back to a more
optimal range, thereby avoiding the risks of overcharging or overdischarging. These results demonstrate that
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the proposed strategy can effectively manage the SOC of the energy storage unit under various operating
conditions, ensuring both the safety and efficiency of the system.

Fig. 6 shows that the SOC can be maintained within a reasonable range under different cell efficiency,
and compared with hydrogen energy storage, battery energy storage can be charged and discharged more
frequently, fully exerting its high efficiency, thereby verifying the efficacy of the adaptive adjustment of the
operation optimization objective function in this paper.

Fig. 7 shows the power distribution within the hydrogen storage unit, where all power fluctuates within
the range of −0.5 to 0.5 MW, without exceeding this range.
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Figure 7: Diagram of SOH vs. power variation of ten hydrogen storage units

Due to differences in internal power distribution and the introduction of penalty functions, the SOH of
each hydrogen storage unit varies, but the trend of SOH changes across different intervals is similar to that of
SOC. Considering the higher loss associated with hydrogen energy storage during charging and discharging,
as well as the lower energy density of battery energy storage, the penalty function for hydrogen storage is set
to be larger than that for battery storage. As a result, the SOC tends to change more frequently, while SOH
changes more gradually.

Overall, by comparing the SOC and SOH curves of battery and hydrogen energy storage, the dynamic
response characteristics of different energy storage systems under the corresponding control strategy are
evident. Hydrogen and battery storage are respectively responsible for long-term and short-term charging
and discharging tasks, reducing the losses of hydrogen energy storage and keeping the battery SOC within
the allowable range.

To further study the distribution and variation of power in more detail, we performed a magnified
analysis of a specific time interval. As shown in Fig. 8, the time period between 740 and 800 s was selected to
magnify the situation where the wind power exceeds the upper limit of the grid-injected power. When the
actual wind power exceeds its upper limit of the grid-injected power, according to the strategy proposed in
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this paper, the upper lagrange multiplier for exceeding the wind power upper limit is adjusted to increase
the gradient. As the gradient increases, the power at the next moment tends to move towards negative values
(in this paper, negative values indicate charging, while positive values indicate discharging). Therefore, the
increase in the gradient will cause the system to tend toward more charging operations at the next moment.
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Figure 8: Enlarged plots and their gradients that exceed the upper limit

As shown in Fig. 9, the charging power of both battery energy storage and hydrogen energy storage
increases as the gradient increases. When the energy storage system charges, it can effectively reduce the
power adjusted by the energy storage system.
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Figure 9: Battery energy storage and hydrogen energy storage charging power

As shown in Fig. 10, the time period between 3200 and 3400 s was selected to magnify the situation
where the wind power falls below the lower limit of the grid-injected power. When the actual wind power
is lower than its lower limit of the grid-injected power, according to the strategy proposed in this paper, the
lower lagrange multiplier for exceeding the wind power lower limit should be adjusted to reduce the gradient.
The decrease in gradient causes the power at the next moment to tend towards positive values. Therefore,
reducing the gradient will make the system more inclined to perform more discharging operations in the
next moment.
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Figure 10: Zoomed-in plots below the lower limit and their gradients
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As shown in Fig. 11, the discharging power of both battery energy storage and hydrogen energy storage
increases as the gradient decreases. When the energy storage system discharges, it can effectively increase
the power adjusted by the energy storage system.
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Figure 11: Battery energy storage and hydrogen energy storage discharge power

As shown in Fig. 12a, the time period between 40,000 and 60,000 s was selected to magnify the situation
where wind power is within the upper and lower limit range of the grid-injected power. When the actual wind
power remains within the upper and lower limit range of the grid-injected power, both the upper lagrange
multiplier for exceeding the wind power upper limit and lower lagrange multiplier for exceeding the wind
power lower limit are zero, and the gradient is determined by the penalty function.
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Figure 12: Enlarged view of wind power in the range and the gradient of the five intervals

When battery storage or hydrogen storage is in the first or fifth zone, the gradient is large, allowing the
system to quickly battery storage move towards the third zone. When battery storage or hydrogen storage is
in the second or fourth zone, the gradient is still relatively large, allowing the system to move towards the
third zone at a fast pace. However, when battery storage or hydrogen storage is in the third zone, the gradient
is small, and thus the system remains in this stable zone.

This shows that the proposed strategy effectively adjusts the operational state of battery and hydrogen
energy storage systems through appropriate gradient control, thereby enhancing system performance and
extending its lifespan.
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5 Conclusion
In this paper, an online optimization strategy for a power-hydrogen hybrid energy storage system with

adaptive SOC adjustment is designed, leveraging the real-time measurement of hydrogen storage and battery
energy storage SOC. The main conclusions are as follows:

(1) Case study results show: before and after smoothing the fluctuations in wind power, the time when
the power exceeded the upper and lower limits of the grid-injected power accounted for 24.1% and 1.45% of
the total time, respectively, the proposed online optimization strategy can effectively control wind power grid
integration within allowable limits, meeting the fast regulation requirements for wind power grid integration.

(2) The introduction of adaptive SOC adjustment allows hydrogen energy storage and battery storage to
handle long-term and short-term charging and discharging tasks. Respectively, effectively reducing the losses
from hydrogen energy storage charging and discharging, while minimizing the risk of insufficient charging
and discharging in battery storage. The strategy takes into account the differences in SOC and SOH between
different battery and hydrogen storage units, enabling reasonable distribution of charging and discharging
power among various storage units.

(3) In the research on smoothing wind power fluctuations, this paper has not considered certain factors,
such as the impact of hydrogen tank temperature on efficiency and the pressure of the hydrogen tanks. These
factors need to be further addressed in future research.
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Abbreviations
Pt.i

BESS The power of the battery unit i at time t
Pt.i

BESS.E The charging power of the battery unit i at time t
Pt.i

BESS.F The discharge power of the battery unit i at time t
Pt.i

HESS The power of the hydrogen unit i at time t
Pt.i

HESS.E The power of the electrolyzer unit i at time t
Pt.i

HESS.F The power of the fuel cell unit i at time t
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N The number of batteries
Mt.i

H2.in The quality of hydrogen produced by the electrolyzer unit i at time t
Mt.i

H2.out The quality of hydrogen consumed by the fuel cell i at time t
Pt

W.cut Curtailment wind power at time t
Pt

W.act The actual wind power at time t
Pt

out Grid-injected power deviation of wind farms with hybrid energy storage systems
Pt

W.max Maximum wind power output
Pt

W.fore Wind power forecast
Pt

W.up Upper limit of the grid-injected power at time t
Pt

W.dn Lower limit of the grid-injected power at time t
xup, xdn Upper and lower limit coefficients respectively
λBESS Operating cost coefficient of batteries
λHESS Operating cost coefficient of hydrogen energy storage
CV Operating costs of hybrid energy storage systems
φ(SOCt.i) Penalty function of the state of charge of batteries
φ(SOHt.i) Penalty function of the state of charge of hydrogen storage
γ Penalty factor
δ1 Battery energy storage parameters
δ2 Hydrogen energy storage parameters
SOCt.i The state of charge of the battery unit i at time t
SOCmax The upper limit of the state of charge of a single battery
SOCmin The lower limit of the state of charge of a single battery
SOHt.i The hydrogen storage state at the time of the i hydrogen storage tank
SOHmax The upper limit of the hydrogen storage state of the hydrogen storage tank
SOHmin The lower limit of the hydrogen storage state of the hydrogen storage tank
Et.i

BESS The energy of the battery unit i at time t
ηBESS.E The charging efficiency of a battery
ηBESS.F The discharge efficiency of a battery
QBESS The capacity of the battery
PBESS.E.max The maximum charging power of a single battery
PBESS.F.max The maximum discharge power of a single battery
ηelec Production efficiency of electrolyzers
H The calorific value of hydrogen
Pelec.max The upper limit of the input power of a single electrolyzer
Pelec.min Lower limit of input power of a single electrolyzer
MH2.in.max The maximum amount of hydrogen produced per unit time by a single electrolyzer
QHS The capacity of hydrogen storage tanks
ηFC The efficiency of fuel cells
PHESS.F.max The upper limit of the power output of a single fuel cell
PHESS.F.min The lower limit of power output of a single fuel cell
MH2.out.max The maximum amount of hydrogen consumed per unit time by a single fuel cell
L The Lagrange function
f Loss costs of electric-hydrogen hybrid energy storage systems
β Step factor
μt Upper Lagrange multiplier for exceeding the wind power upper limit at time t
μt Lower Lagrange multiplier for exceeding the wind power lower limit at time t
s Penalty factor for exceeding the wind power upper limit at time t
s Penalty factor for exceeding the wind power lower limit at time t
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Appendix A

∂φ (SOCt . i)
∂SOCt . i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ 1
δ1
(SOCmin − SOCt . i − δ1

2
)

2
, SOCmin ≤ SOCt . i ≤ SOCmin +

δ1

2

2γ (SOCt . i − SOCmin − δ1) , SOCmin +
δ1

2
≤ SOCt . i ≤ SOCmin + δ1

0, SOCmin + δ1 ≤ SOCt . i ≤ SOCmax − δ1

2γ (SOCt . i − SOCmax + δ1) , SOCmax − δ1 ≤ SOCt . i ≤ SOCmax −
δ1

2

γ 1
δ1
(SOCt . i − SOCmax −

δ1

2
)

2
, SOCmax −

δ1

2
≤ SOCt . i ≤ SOCmax

(A1)

∂φ (SOHt . i)
∂SOHt . i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ 1
δ2
(SOHmin − SOHt . i − δ2

2
)

2
, SOHmin ≤ SOHt . i ≤ SOHmin +

δ2

2

2γ (SOHt . i − SOHmin − δ2) , SOHmin +
δ2

2
≤ SOHt . i ≤ SOHmin + δ2

0, SOHmin + δ2 ≤ SOHt . i ≤ SOHmax − δ2

2γ (SOHt . i − SOHmax + δ2) , SOHmax − δ2 ≤ SOHt . i ≤ SOHmax −
δ2

2

γ 1
δ2
(SOHt . i − SOHmax −

δ2

2
)

2
, SOHmax −

δ2

2
≤ SOHt . i ≤ SOHmax

(A2)

∂L
∂Pt . i

BESS
=
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λBESSΔt −
r (SOCmin − SOCt . i − δ1

2
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ηBESSΔt

δ1QBESS
− μt Δt + 2 ⋅ s ⋅max{Pt

out − Pt
W.up, 0}+

μt Δt + 2 ⋅ s ⋅max{Pt
W.dn − Pt

out , 0} , SOCmin ≤ SOCt . i ≤ SOCmin +
δ1

2

λBESSΔt +
2r (SOCt . i − SOCmin − δ1) ηBESSΔt
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out − Pt
W.up, 0}+

μt Δt + 2 ⋅ s ⋅max{Pt
W.dn − Pt
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λBESSΔt − μt Δt + 2 ⋅ s ⋅max{Pt
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2
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δ1

2
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ηBESSΔt

δ1QBESS
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out − Pt
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≤ SOCt . i ≤ SOCmax

(A3)
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∂L
∂Pt . i

HESS
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(A4)

Table A1: Parameters related to battery energy storage [10]

Parameter Numeric value
Rated power 0.5 MW

Rated capacity 150 KWh
Upper or lower limit of charge status 0.9/0.1

Charge/discharge efficiency 0.85~0.9
Battery energy storage unit 10

Battery energy storage parameters 0.1
Penalty factor 100

Operating cost coefficient of batteries 0.1

Table A2: Parameters related to hydrogen energy storage [5]

Parameter Numeric value
Number of cell units 10

Calorific value 33.3 KWh/kg
The upper limit of hydrogen production per unit

time of an electrolyzer
100000 m3/h

Upper/lower limit of input power of electrolyzer 0.5/0.05 MW

(Continued)
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Table A2 (continued)

Parameter Numeric value
Maximum hydrogen production per unit time of

the cell
10 kg/h

Cell efficiency 0.62~0.67
Number of hydrogen storage tank units 10

Maximum volume of flow into/out of hydrogen
storage tank per unit time

20/20 kg/h

Upper/lower limit of hydrogen storage state 0.9/0.1
Hydrogen storage tank capacity 5.6 m3

Number of fuel cell units 10
Fuel cell efficiency 0.62~0.67

Fuel cell power limit 0.5 MW
The upper limit of hydrogen consumption per

unit time of a fuel cell
100000 m3/h

Hydrogen energy storage parameters 0.15
Operating cost coefficient of hydrogen energy

storage
0.2

Appendix B

Ωt . i
P =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Pt . i
BESS, Pt . i

HESS) ∶

Pt . i
BESS ≤ Pt . i

BESS ≤ Pt . i
BESS

, Pt . i
HESS ≤ Pt . i

HESS ≤ Pt . i
HESS

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(A5)

The power of battery energy storage is constrained by the maximum charging and discharging power,
as well as the capacity of the inverter or rectifier.

⎧⎪⎪⎨⎪⎪⎩

Pt . i
BESS =min{Pe . i

BESS, Ei
BESS − Et . i

BESS}
Pt . i

BESS = −min{Pe . i
BESS, Et . i

BESS − Ei
BESS}

(A6)

The power of hydrogen energy storage is constrained by the maximum charging and discharging power,
as well as the amount of stored hydrogen, as shown in Eqs. (26) and (27).

⎧⎪⎪⎨⎪⎪⎩

Pt . i
HESS =min{Pt . i

HESS.E.max, Pt . i
HESS.F.max}

Pt . i
HESS =max {Pelec.min, PHESS.F.min}

(A7)
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