= Energy Engineering & Tech Science Press

D0i:10.32604/e€.2025.060105 .

ARTICLE Check for

updates

Bilevel Planning of Distribution Networks with Distributed Generation
and Energy Storage: A Case Study on the Modified IEEE 33-Bus System

Haoyuan Li and Lingling Li"

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
*Corresponding Author: Lingling Li. Email: lilingling@hebut.edu.cn
Received: 24 October 2024; Accepted: 03 February 2025; Published: 31 March 2025

ABSTRACT: Rational distribution network planning optimizes power flow distribution, reduces grid stress, enhances
voltage quality, promotes renewable energy utilization, and reduces costs. This study establishes a distribution network
planning model incorporating distributed wind turbines (DWT), distributed photovoltaics (DPV), and energy storage
systems (ESS). K-means++ is employed to partition the distribution network based on electrical distance. Considering
the spatiotemporal correlation of distributed generation (DG) outputs in the same region, a joint output model of
DWT and DPV is developed using the Frank-Copula. Due to the model’s high dimensionality, multiple constraints,
and mixed-integer characteristics, bilevel programming theory is utilized to structure the model. The model is solved
using a mixed-integer particle swarm optimization algorithm (MIPSO) to determine the optimal location and capacity
of DG and ESS integrated into the distribution network to achieve the best economic benefits and operation quality.
The proposed bilevel planning method for distribution networks is validated through simulations on the modified
IEEE 33-bus system. The results demonstrate significant improvements, with the proposed method reducing the annual
comprehensive cost by 41.65% and 13.98%, respectively, compared to scenarios without DG and ESS or with only DG
integration. Furthermore, it reduces the daily average voltage deviation by 24.35% and 10.24% and daily network losses
by 55.72% and 35.71%.
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1 Introduction

The electric power industry is the largest contributor to carbon emissions, exerting a significantly
impacts on climate change [1]. DWT and DPV have emerged as preferred renewable energy sources due to
their pollution-free nature and widespread distribution.

As commercial models and supportive legal policies for DG continue to evolve [2], the integration of
DG into distribution networks becomes increasingly critical. This is particularly relevant in the context of
rising electricity costs, the shift from traditional fossil fuels, and ongoing power supply challenges caused by
inadequate transmission capacity [3]. DG integration provides several benefits, including localized energy
utilization, deferral of network upgrades, and adaptability to specific local conditions, thus demonstrating
significant potential for modern distribution networks [4].

Despite these advantages, traditional distribution networks face persistent issues such as low terminal
voltage, high line losses, and significant reactive power consumption, driven by long supply lines and
rapid load changes [5]. While DG integration can enhance voltage quality, optimize reactive power flow,
and improve power supply reliability, irrational planning often results in challenges such as voltage rise at
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connection points during peak renewable energy output and transformer overloads [6]. Furthermore, the
intermittent and stochastic nature of DG exacerbates uncertainties in distribution network operations. These
issues underscore the critical need for effective ESS to address the mismatch between peak DG output and
load demand, smooth power output fluctuations, and reduce overall network losses [7].

Conventional methods for distribution network zoning, typically based on administrative or geograph-
ical boundaries, fail to capture electrical connectivity. Therefore, it is essential to incorporate electrical
distance and power complementary characteristics during the planning stage to ensure a rational layout of
DPV and ESS within the network. This approach enhances grid efficiency by mitigating local overloads and
power imbalances [8].

To address DG output uncertainty, physical and statistical methods are commonly employed. Physical
methods depend on weather forecasts and regional features but often yield complex and less generalizable
models [9]. Statistical methods, including theoretical distribution models and kernel density estimation,
have been widely used. However, these methods often depend on assumed distribution types [10], potentially
leading to discrepancies between modeled and actual conditions. The Copula model, within statistical
methods, offers high simulation accuracy and is suitable for diverse joint distributions, making it widely
applicable in research on joint output models for wind and solar power [11]. Reference [12] proposed a
methodology using multivariate Gaussian and Vine copulas to generate short-term scenarios of aggregated
wind, photovoltaic, and small hydro production, evaluating their applications in reserve bidding and system
scheduling. Reference [13] utilized the Frank-Copula function to generate output scenarios for wind and
solar power in integrated energy systems. Case analyses indicated that scenarios simulated using this method
exhibited distinct seasonal and temporal patterns, as well as correlations between wind and solar power
daily outputs.

In distribution networks with numerous nodes, high DG penetration rates, small capacity, and dispersed
interconnection points, the lack of unified planning during development has led to reverse overload
conditions in regions with low power demand and weak supply capabilities. These overloads, occurring at
specific times, severely exceed the distribution network’s capacity, primarily due to arbitrary DG and ESS
siting [14]. Predetermined candidate nodes often lack validation, leading to uneconomic operational states
in certain areas or periods, thereby impacting the overall efficiency of the power system. Consequently, the
selection of candidate nodes during planning is crucial [15]. Reference [16] identifies candidate nodes for
DG deployment based on nodes with lower cost sensitivity factors. Tests conducted on IEEE 33-bus and
69-bus systems validate the method’s effectiveness. However, the approach overlooks power-related impacts.
From the perspective of improving operational reliability during planning, it is essential to enhance the
complementarity and matching of power between nodes. Thus, this study opts to reflect electrical coupling
relationships between nodes using electrical distance based on voltage-to-power sensitivity. In response
to these challenges, this study proposes a comprehensive framework for distribution network planning
that incorporates DG uncertainties, ESS integration, and power complementary characteristics to improve
operational efficiency and reliability.

Distribution network planning can be approached using two main methodologies: traditional
mathematical optimization techniques and artificial intelligence methods [17]. Traditional mathematical
optimization typically begins with an initial solution, generated randomly or based on problem-specific char-
acteristics within the solution space. This solution undergoes iterative updates using solving formulas until
a predefined maximum number of iterations or convergence conditions are satisfied. Several models have
been suggested for distribution network planning, such as the distributed robust optimization model [18],
the mixed-integer quadratic constraint model [19], and the least-squares extrapolation technique [20].
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In contrast to traditional mathematical optimization, based on artificial intelligence methods offer
advantages in handling high-dimensional nonlinear problems inherent in distribution network planning,
as they are less susceptible to local optimal [21]. Reference [22] proposed a hybrid genetic-particle swarm
optimization method for optimal DG configuration. Reference [23] developed an algorithm that combines
the non-dominated sorting genetic algorithm and tabu search, incorporating demand-side response for
DG planning. The aforementioned studies did not incorporate ESS, limiting potential increases in DG
penetration rates in distribution networks and resulting in low utilization of wind and PV power [24]. This
study further develops a DG-ESS planning model that incorporates wind and solar power uncertainties with
cluster partitioning, reformulated into a bilevel structure and solved using MIPSO for validation with the
modified IEEE 33-bus system. The main contributions of this study are as follows:

o Toaddress the uncertainties and correlations in wind and solar power outputs in distribution networks, a
joint probability distribution model for DWT and DPV is established using the Frank-Copula function.

« To tackle the difficulty of determining the large number of DG and ESS grid-connected nodes in
distribution networks, a cluster partitioning method based on electrical distance is proposed, effectively
reducing the complexity of siting grid-connected nodes.

« A bilevel planning model for distribution networks incorporating DG and ESS is established, and a
MIPSO algorithm adapted for mixed-integer programming is developed to efficiently solve the siting
and sizing problems of DG and ESS, significantly improving the economic and operational performance
of distribution networks.

The remaining sections are structured as follows: Section 2 develops models for wind and solar
uncertainties, as well as a distribution network clustering model, and presents the objective functions
and constraints of the planning model. Section 3 constructs a bilevel planning model for the distribution
network. Section 4 conducts simulation analyses using the modified IEEE 33-bus system, comparing four dif-
ferent scenarios. Section 5 summarizes the research findings, conclusions, and prospects for future research.

2 Model Establishment
2.1 Simulation of Wind and Solar Uncertainty

Theoretical distribution models such as the Weibull and Beta distributions are employed to analyze
the probability distribution of wind and solar power output [25]. However, these models necessitate precise
parameter values, which are frequently unavailable. Kernel density estimation (KDE), a non-parametric
approach, calculates the probability density function by placing a kernel function around each data point
and computing the weighted average of these kernels. KDE offers flexibility by not assuming a specific data
distribution a priori, thus enabling better adaptation to the data’s inherent characteristics.

The KDE method assesses the influence of individual data points on the estimated value by comparing
the distance between each data point and the point of interest. Data points in closer proximity to the point
of interest are accorded greater weights, whereas those farther away receive diminished weights. Historical
annual wind and solar power output data are organized into daily wind and solar power output samples as
follows:

{X:{Xl,Xf,...,X124,X;,X§,...,X§4, ...... , Xhosr Xdgs - » X3es )} W
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For a specific point 6 in the annual wind power output sample, the Gaussian function is used as the
kernel function to estimate the density function f (6) through kernel density estimation:

f(e)—nhmz p(——(ehxx)) @)

where  is the sample size, and h, is the bandwidth for WT kernel density estimation. The PV kernel density
estimation is the same as Eq. (2).

The outputs of wind and solar power at a specific location display correlation alongside stochastic
variability. Copula functions serve as versatile tools that connect the marginal distributions of multiple
random variables to their joint distribution, effectively characterizing their correlation and dependence. In
light of the observed negative correlation between wind and solar power, this study adopts the Frank Copula
function to model their relationship:

F(',5) = G (Fus () Fre () ®

where Fy: (x') and Fy: (x") are the marginal distribution functions of daily wind and solar power output,
F (x', ') is the joint distribution function of Fx, (x;) and Fy: (x"),and C, (-) is the Frank Copula parameter
controlling the correlation strength:

(1) (=)

et -1

Cy(u',v') = —%log 1+ (4)

where u = Fx: (x'), v = Fy:(»"), and A is a parameter of the Copula that controls the strength of
the correlation.

Eq. (4) is substituted into Eq. (3) to establish the joint probability distribution function. Random
sampling from this joint distribution function across each time period, followed by inverse transformation of
these samples, produces comprehensive daily data on wind and solar power outputs. This approach captures
both the correlation and stochastic nature inherent in these renewable energy sources. Finally, typical daily
scenarios of wind and solar power outputs are generated using the K-means clustering method.

2.2 Cluster Partitioning of Distribution Networks

The partitioning of distribution network clusters is typically based on electrical distance, defined by
the sensitivity relationship between voltage magnitude and injected power. The voltage magnitude-power
sensitivity can be derived from the Newton-Raphson polar coordinate power flow correction equation:

AP | |Jre Jpu||AD (5)
AQ Jao Jqu || AU
Considering the distribution network is shorter in distance and has a relatively uniform load compared

to the transmission network, changes in voltage magnitude are more significant than changes in voltage
phase. Therefore, A0 is omitted:

AU = SupAP + SuqAQ = (Jou — Jralgylau) AP+ (Ju - JooTmsJpu)  AQ (6)

In the distribution network, variations in both active and reactive power affect voltage, necessitating
their inclusion in the electrical distance calculation. The coefficient D;;, which represents the overall impact
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of changes in the injected power at node i on the voltage magnitude at node j, is defined based on Syp and
Suq as shown in Eq. (7):

Dij = SUP,‘;‘ - SUPij + SUQii - SUQij 7

where Syp, and Syp, are elements of the Syp matrix, indicating the impact of changes in active power
injection at nodes i and j on the voltage magnitude at node i, respectively. Similarly, Syq,, and Syq,; are
elements of the Syq matrix, indicating the impact of changes in reactive power injection at nodes i and j on
the voltage magnitude at node i, respectively.

n
Lij=Lii=| % (D= D)’ ®)
I=1

where 7 is the total number of nodes in the distribution network, and L;j represents the electrical distance
between node i and node j.

After calculating the electrical distances between all nodes, clustering is conducted using the K-means
algorithm. The traditional K-means algorithm randomly selects initial cluster centers, which can result in
convergence to a local optimum. To address this, the K-means++ algorithm is employed, selecting high-
density nodes as initial cluster centers to enhance the selection process.

For each node, M nearest neighbors are chosen. If M is too large, the algorithm may converge to a local
optimum due to overly concentrated initial cluster centers from high-density nodes. Conversely, if M is too
small, the initial cluster centers may lack diversity, leading to significant deviation in clustering outcomes.
Experimental iterations demonstrate that an optimal selection of M enhances clustering performance.

The sum of the electrical distances between each node i and its nearest M nodes is calculated as shown
in Eq. (10):

LS; ={LS},LS,..., LSy} (9)

These sums are arranged in ascending order, with the top k nodes identified as high-density nodes.
These nodes are selected as the initial cluster centers in the K-means++ algorithm. The objective function
for K-means++ clustering is the sum of the squared electrical distances between nodes within each cluster
and the central node, as shown in Eq. (10):

L N 2
J=min) > Li (10)

k=1i=1

where m is the number of clusters in the distribution network, Ny is the number of nodes in the k-th cluster,
and yy is the node with the minimum electrical distance to other nodes in the k-th cluster, serving as the
central node of the k-th cluster.

2.3 Objective Function
2.3.1 Upper-Layer Planning Model

Annual comprehensive cost of the distribution network:

Fupp = Fop + Fin + Fpuy + Fioss + Foup (11)
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Annual operational costs:

Fop = Fp ¢ +Fo)° (12)
where FOI;G and FESS are the annual operational costs of DG and ESS, respectively.

M; 2
FyP =3 ns > (pwrP" + opyPY) (13)
s=1 t=1

where g1 and ¢py are the operating costs of wind power and PV power, P};" and P/ are the actual
outputs of wind power and PV power at time ¢ under scenario s, M; is the number of typical scenarios divided
into one year, and #; is the probability of the scenario.

M, 24
Fop® = 22115 2 (9rss (Pis,e + Pachs.) (14)

where @ggg is the operating cost of energy storage, and Pfhsf ; and Pfcshs ..+ are the power of energy storage
charging and discharging at time ¢ under scenario s.

Annual Equivalent Investment Costs:
F. _FPV FWT FESS
in
T _ 1+7)"1
Fl'T = Cyr Z Py, WT(rl(Jrr)rn)l 1

Lery 15
FlV = CPVZPk PV(I(::)")Z I 15)

FESS = Cpss Z Py ESS%

where Cyr, Cpy and Cgsg are the unit capacity investment costs of WT, PV and ESS, respectively, r is the
discount rate, and n;, n, and n3 are the service lives of WT, PV, and ESS, respectively.

Costs of Interaction with the Upper-Level Grid:
Fgria = Fouy — Rsenn (16)

where Fy,, represents the cost of purchasing electricity from the upper-level grid, and R represents the
revenue from selling electricity back to the upper-level grid.

Fbuy Z s Z Ebuypgrzd buy (17)

where E " is the grid electricity price at time ¢, and Pg”d P%7 is the amount of electricity purchased from
the main grid at time ¢ in scenario s.

Reert = Z 1o 3 Bl prse! (18)

s=1 t=1

where E$¢!! is the power purchase price of the power grid at time ¢, Pg”d sell 4

returned to the main grid at time ¢ under scenario s.

is the amount of electricity
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Unlike the current DG generation benefits which already cover costs and with subsidies gradually
phasing out, the ESS profit mechanism is not yet perfected and the price of ESS remains high. Hence,
subsidies are required for ESS generation [26].

Subsidies for ESS generation are typically structured as capacity price subsidies:

M; 24
Fsub = Z Ns Z Et,subpffhs,s,t (19)

s=1 t=1

where E; ,, is the capacity price at time t.

2.3.2 Lower-Level Operation and Control Model

The objective function is the sum of the annual network loss cost and the voltage fluctuation penalty
coefficient:

Flow :Floss+FV (20)

Annual network loss cost:

MS

24
Floss = Ploss Z s Z Ptl’c;ss (21)

s=1 t=1
where ¢, is the network loss discounting cost coefficient, and P9 is the system network loss power at
moment ¢t under scenario s.

Annual voltage fluctuation penalty costs:
M, 24 N
Fy=9v) 03> [Veri -1 (22)
s=1 t=1i=1
where ¢y is the voltage fluctuation penalty factor, and V; , ; is the voltage amplitude at node i at moment ¢
under scene s.

2.4 Decision Variables

wT WT WT  WT wT wT
O O A 7 7 AT
PV PV PV PV PV PV
X=3a7 5@ s @y S UL e UG s Uy, (23)
ESS ESS ESS  ESS ESS ESS
ar >, a7, Ay Ul U Uy
where a' T, alV, af5S are the access locations of wind energy storage in the i-th cluster, and u}'”, u?V, 4 £%5
are the wind energy storage capacities of the corresponding access locations.
2.5 Constraints
2.5.1 Maximum Node Access DG Capacity
0 < Ppg, < PP (24)

where Ppg, is the capacity of node i to access the DG, P5¢* and is the maximum value of the capacity of node

i allowed to access the DG.
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2.5.2 Node Maximum Access ESS Capacity

0< PESS,- < nga; (25)

where Pgs, is the capacity of node i to access the DG, and Pr is the maximum value of the capacity of
node i allowed to access the DG.

2.5.3 DG Installed Penetration Constraints

M=

Pr.pG < VPioad (26)

>~
I

1

where Py pg is the planning capacity of DG in k clusters, Py, is the total system load, and y is the maximum
new energy penetration rate of the system.

2.5.4 Nodal Voltage Constraints

UMt < U; < UM (27)

where Uj is the voltage amplitude at node i, U™ and U™™ are the upper and lower limits of the voltage at
node i.

2.5.5 Node Power Constraints

AP; = U; Z Uj (Gij CcoS 9,']' + Bij sin@,-j)
jEN,'

AQ; =U; ¥ U;(Gijcosb;; - B;;sin0;;)
jEN,‘

(28)

where AP; and AQ; denote the active and reactive power injected by node i, respectively, G;; and B;; denote
the conductance between nodes i and j, and N; is the number of nodes connected to node i.

2.5.6 Branch Transmission Power Constraints

0< S <SP (29)

where § is the transmission power of branch [, and
branch I.

S is the limit value of the transmission power of

3 Model Optimization Methods and Solutions
3.1 Establishment and Solution of the Bilevel Model

Bilevel programming offers a structured approach for tackling intricate problems by dividing them into
upper and lower levels. This hierarchical framework is employed to optimize system-wide issues. Each level is
characterized by its own objective functions, decision variables, and constraints. The upper and lower levels
are interlinked and collaboratively iterated to achieve the optimal solution.

In this study, the upper-level model focuses on minimizing the system’s annual comprehensive cost
while determining the optimal locations and capacities of DG and ESS, these optimal configurations are
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fed into the lower-level model. The lower-level model is designed to minimize annual network losses and
penalties associated with voltage fluctuations. Fig. 1 depicts the process of establishing and solving the bilevel

model for the system.

Initialize the population using equation (2)

!

Calculating individual fitness values and obtaining the
current optimal value

.y

Y DG, ESS access
Upper-level planning model location anq aceess lower-level operational model
capacity
—_—
S . L Optimization objective: minimize the annual network
Optimization objective :minimize the annual .
. o loss cost and voltage fluctuation penalty cost of the
integrated cost of the distribution network Lo
distribution network
o . 5 D ———
Constraints: equations (24) ~ (26) Superior Grid Constraints: equations (27) ~ (30)
Interactive Power;
Distribution
# network operation

s the maximum number of iterations
reached?

Update walrus
locations

Output the global optimum of the upper model

!

End
Figure 1: Distribution network two-layer planning model

The bilevel programming model links its two layers through transfer variables. The upper-level model
functions as the leader, emphasizing economic benefits, while the lower-level model focuses on system
operational quality. Network loss costs represent the distribution of power flows within the system, and
voltage fluctuation penalty costs denote voltage variations.

The upper-level planning model first determines the decision variable x, which it then transfers
to the lower-level operational model. Utilizing a second-order cone relaxation programming approach
[27], the lower-level model computes the optimal power flow solution and communicates the results back
to the upper-level model. These outcomes are subsequently integrated into the upper-level model’s objective
function solving process. This iterative procedure continues until a global optimal solution is attained or the
maximum number of iterations is reached.
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Throughout the solving process, bilevel programming accounts for both the economic objectives of the
upper level and the operational objectives of the lower level. The two models mutually constrain and influence
each other, ultimately achieving an optimal solution that satisfies both sets of objectives. This method not
only maximizes economic benefits but also ensures high system operational quality, providing substantial
practical application value.

3.2 Mixed-Integer Particle Swarm Optimization Algorithmn

To address the mixed-integer nonlinear characteristics of distribution network planning problems,
this study introduces a MIPSO designed for mixed-integer optimization. The proposed MIPSO employs a
dimension-separated update strategy to accommodate the distinct characteristics of continuous and integer
variables. Decision variables are divided into continuous and integer subsets, with tailored update rules for
each subset.

In mixed-integer optimization problems, integer variables must be discretized to ensure solution
feasibility while maintaining the convergence properties of continuous variables. For integer variable
optimization, genetic algorithm (GA) operations, including selection, crossover, and mutation, are integrated
into the particle update process. In this algorithm, the decision variables of the i-th particle are defined as:

x; = {x{9, x{"} (30)

where X i(c) denotes the continuous variable, which is updated using the PSO algorithm [28], X l.(I) represents
the integer variable, updated through the crossover and mutation mechanisms of the genetic algorithm [29].
The processing flow is illustrated in the Fig. 2.

Input initial data and IMPSO parameters.

'

Initialize population, calculate individual fitness
values, and obtain the current optimal value.

vVhiether the current fitness value is superio
to the global optimum?

¢ Preserve the current global optimum value

Implement dimension separation strategy.

'

Continuous variable update: update the particle's
position based on the particle's velocity and position
update formulas.

Whether the maximum number of iteratior
has been reached?

¢ Output of the global optimal value
Discrete variable update: update the particle's position
using GA-based selection, crossover, and mutation
operations.
| End

Figure 2: Mixed-integer particle swarm optimization algorithm flow chart
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4 Case Analysis
4.1 WT and PV Output Scenario Clustering

Data on WT and PV output from a region in North China in 2022 were utilized for this study, with per-
unit values illustrated in Fig. 3. Employing the scenario generation method detailed in Section 2.1, both the
WT window width £, and the PV window width h, were set to 0.05. This process yielded 1000 sets of typical
daily per-unit values for wind and solar output, subsequently grouped into four distinct daily scenarios for
wind and solar output using the k-means algorithm. Fig. 4 is the Frank-Copula distribution function graph
for the WT and PV outputs.

Standardized photovoltaic output

1000 2000 3000 4000 5000 6000 7000 8000
Time

0.8 -~ -

SR f

0.5 -

0.4

0.3

Standardized wind power output

0.2

0.1

| I
1000 2000 3000 4000 5000 6000 7000 8000
Time

Figure 3: Historical output of PV and WT in a certain region in 2022
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Figure 4: Frank-Copula distribution function graph

In Fig. 5, WT output appears more consistent across all scenarios. At night, as surface temperatures drop,
atmospheric temperature differentials increase, fostering brisk air movement that boosts power generation,
partially offsetting PV output. Within each scenario, wind and solar outputs show correlations, sometimes
exhibiting consistent or opposing trends in specific periods. For instance, in Scenario 2, both wind and solar
outputs decrease around noon due to intense summer heat, which stifles wind and hampers PV generation.
Seasonal differences between scenarios are pronounced, reflecting distinct seasonal patterns. In Scenario 4,
diminished solar irradiance during winter and earlier sunsets result in notably reduced PV output compared
to other scenarios, aligning with the quarterly output trough evident in January, February, and December
in Fig. 3.
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Hour Hour

Figure 5: scenario generation results

4.2 Cluster Partitioning of IEEE 33-Bus System

The study focused on the modified IEEE 33-bus system, featuring an active load of 37.15 MW, a reactive
load of 23 MW, and a system reference voltage set at 12.66 kV. Employing the K-means++ algorithm,
the distribution system was segmented into clusters according to electrical distance. Fig. 6 illustrates the
outcomes of cluster partitioning across various K values.
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Figure 6: Partitioning indicators under different numbers of clusters
The optimal number of clusters K was determined using the elbow method [30]. Fig. 6 clearly indicates
that K = 5 represents a significant inflection point. Given the structure of the distribution network, five

clusters were chosen for partitioning, as illustrated in Fig. 7.

Cluster II

Cluster [V

Cluster V
Figure 7: Distribution network division structure diagram

4.3 IEEE 33-Bus System Parameters and Optimization Settings

The system is permitted to export electricity to the main grid, with exported electricity priced at 70% of
the prevailing electricity rate. Table 1 outlines additional key parameters of the system. The power distribution
ratios for individual load nodes are configured using default settings, and fluctuations in system load over
time are depicted in Fig. 8.

The base electricity price under peak-valley tariffs is ¥560/MW. The coefficients for periods of deep
valley, low valley, flat periods, high peak, and deep peak are 0.2, 0.4, 1, 1.3, and 1.8 times the base price,
respectively, as depicted in Fig. 9.
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Table 1: System parameter

Parameters Value

Maximum DG installed capacity penetration (p.u.) 120%
Maximum transmission power of the line (MVA) 3
Maximum return power (MVA) 2
Network loss cost coefficient (¥/MVA) 200
Voltage fluctuation penalty coefficient (¥/(p.u. h) 10
Node voltage amplitude (p.u.) 0.95~1.05

2.5 T T T T

2.0 B

Load(MW)
in
T
1

—
=
T

1

0.5 B

0.0 1 1 1 1

Hour

Figure 8: System daily load fluctuation diagram
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Figure 9: System daily peak and valley electricity price
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Based on the relatively short spatiotemporal distances within the distribution network in the same
region, the DG output characteristics are assumed to be uniform. To minimize the lifespan reduction of the
ESS caused by deep discharges and high-power charge/discharge cycles [31], the minimum ESS charge level is
set at 10% of its capacity, with the charge/discharge efficiency limited to 30% of the capacity. Additionally, the
compensation price for ESS capacity follows peak and off-peak electricity prices, with a base rate of ¥100/MW.
The key parameters of both DG and ESS systems are detailed in Table 2.

Table 2: DG, ESS parameters

Parameter WT PV ESS
Service life 15 20 16

Discount rate 0.06 0.06 0.06

Investment cost 8500 6500 1500

Operation and maintenance cost 0.03  0.03  0.015

The maximum number of iterations in the MIPSO algorithm is set to 100. For continuous variable
optimization, the number of particles is set to 30, the learning parameters C; and C, are both 2, the
maximum value of the inertia weight w is 0.9, and the minimum value is 0.1, the dimensionality is set to 15,
corresponding to the capacities of DPV, DWT, and ESS in the five clusters. For integer variable optimization,
the population size remains 30, the crossover probability is 0.8, and the mutation probability is 0.05, the
dimensionality is also set to 15, corresponding to the locations of PV, WT, and ESS in the five clusters.

4.4 Economic Evaluation of Planning Results

Each cluster in the model is configured to include one access point for DW'T, DPV, and ESS, respectively,
allowing multiple devices to connect to the same node. The access capacity for DWT and DPV at each node is
limited to 100-500 kW, while ESS access is restricted to 100-700 kW. Table 3 shows the DG and ESS planning
results of each cluster after MIPSO solution.

Table 3: Planning results under MIPSO

Cluster WT®}(KW) PV®}(KW) ESS ®}(KW) Fitness

I 450243} 176.214 522.8123}
11 500.0121} 232.4122} 190.6122
111 321.212¢} 323217} 44158} 413.257E — 04
1% 331911} 246.7412} 589.6116}
\% 380.8133} 3146133 596.7(30}

Table 3 presents planning outcomes applied to the modified IEEE 33-bus system. DWT capacities
generally exceed those of DPV. This disparity arises because DWT, despite a slightly higher unit cost than
DPV, offers longer daily generation durations, thereby delivering superior overall daily generation benefits.

In terms of cluster analysis, Cluster II exhibits the highest DG planning capacity, facilitated by its ability
to inject electricity back into the upstream grid, thereby reducing network losses compared to other clusters.
Within clusters, DG capacity correlates positively with ESS capacity. This relationship emerges because
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surplus DG generation within clusters tends to be absorbed internally by the system. The topology diagram
of the planning results in Table 3 is shown in Fig. 10.

Figure 10: Modified IEEE 33-bus system DG-ESS planning diagram under MIPSO

The operational performance of the modified IEEE 33-bus distribution network is assessed based on
economic benefits and power quality considerations. Four scenarios are examined to validate the efficacy of
the proposed model:

Casel: No installation of DG or ESS.
Case2: Installation of DG using the algorithm and model proposed herein, without ESS.

Case3: Installation of DG and ESS using the algorithm and model proposed herein, without accounting
for the compensation price for energy storage capacity.

Case 4: Installation of DG and ESS using the algorithm and model proposed herein, accounting for the
compensation price for energy storage capacity.

Table 4 demonstrates that deploying DG effectively reduces the operational costs of the distribution
network. In Case2, annual comprehensive costs decrease by 32.17% compared to Casel, with DG benefits
covering its construction costs, indicating substantial economic gains. This reduction is attributed to
declining DG unit prices over recent decades due to technological advancements. In Case4, compared to
Casel, annual comprehensive costs decrease by 41.65%, indicating that the combined integration of DG and
ESS achieves higher economic benefits than the sole integration of DG. In Case3, annual comprehensive
costs decrease by 4.50% compared to Case2, primarily because ESS are relatively new, with their unit prices
still requiring further market development. Presently, profitability from energy storage based solely on peak-
valley arbitrage barely offsets costs. In Case4, annual comprehensive costs decrease by 9.92% compared to
Case3, attributed to subsidies for energy storage capacity prices. Additionally, introducing energy storage
capacity pricing increases energy storage penetration rates by 52.72%.

Table 4: Planning results under the four scenarios

Case Cluster WTe=H(KW)  PVP}(KW)  ESS ©}(KW) Fitness

I - - -
11 - - -
Casel 111 - - - 708.238E — 06
v - - -
AV - - -

(Continued)
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Table 4 (continued)

Case Cluster WTE=H(KW)  PVE}(KW)  ESS ©=}(KW) Fitness
I 2937125} 215.614) -
II 380.0121 149.1{22} -
Case2 11 364.5(28) 100.0(8} - 480.399E — 06
v 258.6414} 2353111} -
\% 401.2133} 259.4131} -
I 376.213} 224114 169.6123}
11 415,521} 100121} 291.6{22}
Case3 111 199.3126} 347217 179.147} 458.764E — 06
% 231.4111} 350813} 393.5 {14}
\% 410.3(32} 3233133} 499.2133}
I 450.013 176.214} 522.8123}
11 500.021 132.4122} 190.6122}
Case4 111 321.2126} 32327} 44158 413.257E - 06
1\Y 3319011} 346.7112} 589.6116}
\% 380.8133} 414,613} 596.7030}

4.5 Operational Quality Analysis of Planning Results

The operational quality analysis of the distribution network in this study focuses on power quality and
network loss levels. Fig. 11 illustrates the three-dimensional voltage distribution on a typical summer day
across the four scenarios. Table 5 details daily voltage deviations and network losses for these scenarios.

Fig. 11 illustrates that in Casel, without DG and ESS, there are notable voltage fluctuations across
distribution network nodes. Only nodes close to the upstream main grid maintain voltage around 1.00 p.u.,
while most end nodes experience low voltage. In Case2, introducing DG resolves low voltage issues at end
nodes, yet excessive DG causes overvoltage at installation sites and nearby nodes. Case3 shows that installing
DG and ESS concurrently effectively mitigates DG-induced overvoltage, resulting in smoother voltage
fluctuations across the network. In Case4, with higher DG and ESS penetration than Case3, overall voltage
fluctuation reduction is modest, but localized areas experience more pronounced voltage stabilization.
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Figure 11: (Continued)



1354 Energy Eng. 2025;122(4)

106

1.04
L4 -

1.02 -

~

Voltage (p.u.)
Voltage (p.u.)

098 |

098 -

096 | 096

20

30 T s 20 a0
20 10 =] 10
Node "

20
Fime (h) Node

Case3 Cased

- Time (h)

Figure 11: Typical summer daily voltage distribution under four cases

Table 5 illustrates that Case2 exhibits a 17.06% reduction in daily voltage deviation compared to Casel,
accompanied by a 31.13% decrease in network losses. This installation of DG effectively enhances node
voltage and optimizes internal power flow within the distribution network. In Case3, voltage values range
from approximately 0.96 to 1.04 p.u., indicating improved node power supply quality. In Case4, the daily
voltage deviation and network losses are the lowest, with reductions of 24.35% and 55.72%, respectively,
compared to Casel. This highlights that appropriate ESS subsidies promote energy storage market growth
and larger ESS capacities effectively mitigate voltage fluctuations and reduce power company losses due to
network inefficiencies.

Table 5: Daily average voltage deviation and daily average network loss under the four scenarios

Case Daily voltage fluctuation (p.u. h) Daily network loss (MW)

Casel 28.408 2.281
Case2 23.563 1.571
Case3 21.907 1.096
Case4 21.149 1.010

5 Concluding Remarks

In response to escalating climate change from excessive carbon emissions, integrating DG and ESS
into the grid at large scales and high capacities has become inevitable. This study aims to determine
optimal locations and capacities for DG and ESS grid integration, maximizing benefits within distribution
networks. A dual-layer planning model is developed, incorporating DWT, DPV joint output, and network
clustering. The MIPSO algorithm, which exhibits strong adaptability, is proposed to solve the model’s mixed-
integer nonlinear characteristics. Test results demonstrate that the proposed method effectively addresses
the planning challenge of DG-ESS grid integration, yielding significant improvements in both economic and
operational aspects of the system. The results of the study are summarized as follows:

« A joint probability distribution model for DWT and DPV is established using the Frank-Copula
function, considering the uncertainty and coupling characteristics of wind and solar power output in
the distribution network.

o A cluster partitioning method based on electrical distance is developed to address the challenge of
determining the number of DG and ESS interconnection nodes, significantly reducing the complexity
of node selection.
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« Case studies on the modified IEEE 33-bus system showed that integrating DG and ESS reduced annual
comprehensive costs by 41.65%. Operationally, it mitigated voltage fluctuations by 24.35% and network
losses by 55.72% daily, with energy storage subsidies increasing ESS penetration by 52.72%.

Given the continual rise in distribution network loads, strategic planning of DG-ESS within distribution
networks is pivotal for their evolution and the integration of renewable energy sources. This study proposes
effective solutions and strategies for determining optimal grid connection points and capacities for DG and
ESS. However, opportunities for enhancement remain. Future research could concentrate on developing
more sophisticated ESS models and scheduling strategies to optimize ESS longevity and profitability.
Additionally, improving methods for addressing network losses, voltage fluctuations, and incorporating
reactive power compensation methods are areas that warrant further investigation.
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Nomenclature

hy Bandwidth for wind power kernel density estimation

A Parameter of the Copula that controls the strength of the correlation
Sup Voltage magnitude-active power sensitivity matrix

Suq Voltage magnitude-reactive power sensitivity matrix

D;; Opverall impact of changes in the injected power at node i on the voltage magnitude at node j
Lij Electrical distance between node i and node j

Ny Number of nodes in the k-th cluster

Fupp Annual comprehensive cost of the distribution network, ¥

Fop Annual operational costs, ¥

owr Operating costs of wind power, ¥/kW

opv Operating costs of PV power, ¥/kW

PNt Actual outputs of wind power at time ¢ under scenario s, kW

prY Actual outputs of PV power at time ¢ under scenario s, kW

M; Number of typical scenarios divided into one year

#s Probability of the scenario in one year

PESS Operating cost of energy storage, ¥/kW

Cwr Unit capacity investment costs of WT, ¥/kVA

Cpv Unit capacity investment costs of PV, ¥/kVA

Cgss Unit capacity investment costs of ESS, ¥/kVA
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Fyuy Cost of purchasing electricity from the upper-level grid, ¥/kW

Re.n Revenue from selling electricity back to the upper-level grid, ¥/kW
EM Grid electricity price at time ¢, ¥/kW

Ecup Capacity price at time t, ¥/kW

Qloss Network loss discounting cost coeficient, ¥/kW

ploss System network loss power at moment ¢ under scenario s, kW

ov Voltage fluctuation penalty factor, ¥/kW

\ Voltage amplitude at node i at moment ¢ under scene s

Ppg, Capacity of node i to access the DG, kW

Pgss, Capacity of node i to access the DG, kW

Prpe Planning capacity of DG in k clusters, KW

Pioad Total system load, kW

U; Voltage amplitude at node i

Prgs, k Maximum charging and discharging power of the ESS in cluster k, kW
ur Charging and discharging efficiency of ESS

Ue k,t Charging and discharging flag of the ESS

SOC; State of charge of the ESS in cluster k at time ¢

Sk.0 Initial state of charge of the ESS in cluster k
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