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ABSTRACT: To address the excessive complexity of monthly scheduling and the impact of uncertain net load
on the chargeable energy of storage, a reduced time-period monthly scheduling model for thermal generators and
energy storage, incorporating daily minimum chargeable energy constraints, was developed. Firstly, considering the
variations in the frequency of unit start-ups and shutdowns under different levels of net load fluctuation, a method
was proposed to reduce decision time periods for unit start-up and shut-down operations. This approach, based on
the characteristics of net load fluctuations, minimizes the decision variables of units, thereby simplifying the monthly
scheduling model. Secondly, the relationship between energy storage charging and discharging power, net load, and the
total maximum/minimum output of units was analyzed. Based on this, daily minimum chargeable energy constraints
were established to ensure the energy storage system meets charging requirements under extreme net load scenarios.
Finally, taking into account the operational costs of thermal generators and energy storage, load loss costs, and
operational constraints, the reduced time-period monthly scheduling model was constructed. Case studies demonstrate
that the proposed method effectively generates economical monthly operation plans for thermal generators and energy
storage, significantly reduces model solution time, and satisfies the charging requirements of energy storage under
extreme net load conditions.

KEYWORDS: Monthly scheduling; thermal generators; energy storage; daily minimum chargeable energy; decision
time-period reduction; unit start-up and shut-down; unit commitment; renewable energy

1 Introduction
i) Motivation
The development of renewable energy is a crucial approach to mitigating the energy and environmental

crises [1]. However, the continuous increase in renewable energy penetration has reduced the flexibility
of power generation sources, resulting in mismatches between power supply and demand within the
system [2]. This issue becomes particularly pronounced during extreme cold weather, when renewable
energy output is severely constrained, leading to prolonged power shortages lasting several hours or even
multiple days [3−5]. Under such circumstances, effective scheduling on a longer monthly time scale and
the reasonable formulation of operation plans for flexible resources, such as thermal generators and energy
storage systems, are essential to bridging the power supply-demand gap and maintaining system balance.
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ii) Literature review
For monthly scheduling, Reference [6] developed a multi-objective monthly power generation planning

model that accounts for energy supply constraints. Reference [7] proposed a long-term power generation
planning approach that considers extreme scenarios within the month to enhance the feasibility and relia-
bility of the scheduling process. Reference [8] introduced a stochastic decision-making model for monthly
unit commitment and maintenance planning, achieving the joint optimization of power generation schedul-
ing and maintenance tasks. Reference [9] presented a monthly joint maintenance and power generation
scheduling model using fuzzy chance-constrained programming. References [10,11] constructed a mixed-
integer linear programming (MILP) model for monthly optimization scheduling that incorporates fuel
supply uncertainty, thereby improving the efficiency and reliability of fuel supply scheduling. Reference [12]
proposed a short-term multi-objective economic and emissions optimization method for combined heat
and power (CHP) systems based on an enhanced epsilon-constraint technique and fuzzy decision-making.
This method optimizes both total costs and pollutant emissions while considering non-linear fuel cost
characteristics, valve-point effects, and power transmission losses. Reference [13] introduced a decentralized
monthly scheduling method for cascade hydropower systems under multiple time scales. Reference [14]
developed a robust preventive-corrective security-constrained optimal power flow model, systematically
addressing both short-term emergency limits and long-term operational constraints following incidents,
to optimize the reliability of generation scheduling strategies. The aforementioned studies primarily focus
on monthly scheduling based on hourly time granularity, resulting in more refined scheduling outcomes.
However, such models also increase the complexity of monthly scheduling, limiting their applicability in
real-world scenarios.

To address the issue of the excessive scale of monthly power generation decision-making, Reference [15]
proposed a monthly power generation optimization method based on a power aggregation-decomposition
model. Reference [16] introduced a Gaussian Mixture Model-Hidden Markov Model (GMM-HMM)
approach to construct generation models for long-term correlated output time series across multiple wind
farms, improving the modeling accuracy of wind power output sequences. Reference [17] developed an
efficient unit commitment model using load state transition analysis, which reduced computational time
while maintaining high accuracy. Reference [18] constructed a multi-scenario monthly scheduling model
for coordinated short-term scheduling and proposed an improved branch-and-bound algorithm for solving
it. Reference [19] presented a two-stage Benders decomposition and dual dynamic programming method
to build a phased cost function model for medium-term planning, enhancing the reliability of scheduling
strategies. Reference [20] introduced a monthly unit commitment model incorporating wind power interval
prediction information and wind curtailment costs, with a solution strategy based on the Memetic algorithm.
Reference [21] proposed a monthly thermal unit commitment model that considers multi-level transmission
constraints and includes a heuristic method for transmission section over-limit verification and unit start-up
and shut-down corrections. Reference [22] developed a two-stage renewable energy system unit commitment
model, achieving optimal coordination between unit commitment and economic scheduling. Reference [23]
proposed a long-term generation scheduling optimization method based on inflow aggregation and runoff
energy flow, improving both scheduling efficiency and economics. While these studies primarily focus
on the development of monthly scheduling models and efficient solution algorithms to accelerate model
computation, they often fail to adequately simplify monthly scheduling models. Moreover, they do not fully
account for the energy storage charging and discharging processes under various net load conditions. This
limitation may lead to insufficient chargeable energy during operation, making it challenging to effectively
meet discharge demands during periods of power shortages. The classification and comparative analysis of
the literature review are shown in Table 1.
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Table 1: Literature review classification and comparative analysis

Reference
number

Time
granularity

Type of energy
storage

Model simplification
method

Consider extreme
energy demands

Reference [15] Daily No Source aggregation and
decomposition

No

Reference [16] Monthly No Gaussians mixture
model-Hidden Markov

model

No

Reference [17] Daily No Load state transition
curve clustering

No

Reference [18] Daily No Constraint
transformation and
relaxation induction

No

Reference [19] Monthly Hydro storage In-stage cost function
and bilevel

decomposition

No

Reference [20] Monthly No No No
Reference [21] Daily No No No
Reference [22] Monthly No Two-stage

decomposition
No

Reference [23] Monthly Water storage Inflow aggregation and
runoff energy strategy

No

iii) Research gaps
Although existing literature has made notable contributions to monthly scheduling optimization,

several gaps remain:
(1) High computational complexity: Scheduling studies utilizing hourly time granularity often involve

numerous variables and constraints. The complexity escalates further when robust optimization methods are
applied, thereby limiting the feasibility of these approaches in large-scale power systems.

(2) Impact of simplification strategies on accuracy: To mitigate computational complexity, some studies
employ daily time granularity to simplify scheduling models. However, this approach overlooks the dynamic
characteristics at shorter time scales, resulting in an inadequate representation of load fluctuations and inter-
period coupling effects, which ultimately diminishes the accuracy of the model.

(3) Insufficient modeling of energy storage: Current research tends to simplify the modeling of energy
storage charge and discharge processes, failing to incorporate dynamic constraints under extreme operating
conditions. In particular, during high-load scenarios, energy storage scheduling may not meet supply
demands, thereby undermining the system’s reliability and adaptability in extreme conditions.

iv) Contributions
To address the large model size due to the long monthly scheduling period, this study consolidates

unit startup/shutdown periods based on the varying degrees of net load fluctuations in renewable energy
systems, reducing the number of variables and model complexity. A thermal-storage operational constraint
is developed, considering the daily net load fluctuations and ensuring energy storage charging limits
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are met under maximum net load conditions. The objective is to minimize thermal power operation
and load shedding costs while incorporating coupling constraints between thermal power and energy
storage across multiple time periods. A variable-period fire-storage monthly scheduling model with daily
minimum rechargeable capacity constraints is constructed. Case analysis demonstrates that the proposed
model provides an economically efficient monthly operation plan, significantly reducing solution time while
meeting energy storage charging requirements under extreme net load conditions.

This paper presents several main contributions and innovation points:
(1) A variable-time-period collaborative scheduling strategy for thermal power and energy storage

is proposed, considering load fluctuation characteristics. Through a time-period clustering simplification
method, the number of decision variables for unit startup and shutdown is reduced, significantly decreasing
the computational scale of the model and improving solution efficiency.

(2) The daily minimum charging capacity constraint for the energy storage system is introduced, and
a monthly scheduling model that integrates both the minimum charging demand and maximum discharge
capacity is constructed. This model enhances the energy storage system’s ability to regulate under extreme
load and climatic conditions.

(3) A case study for extreme cold weather conditions was constructed. Simulation results demonstrate
that this method effectively addresses power supply and demand imbalances under extreme weather
conditions, improving the system’s reliability and flexibility under extreme load conditions.

v) Organization
The paper is structured as follows: Section 2 outlines the fire-storage scheduling framework. Section 3

discusses reducing unit startup/shutdown periods and its impact on scalability. Section 4 addresses the daily
minimum charging constraint and storage charging demand. Section 5 presents the fire-storage model and
analysis. Section 6 validates the method through case studies. Section 7 concludes with key findings and
future directions.

2 Framework of the Monthly Reduced Time-Period Scheduling
Considering the operating constraints of conventional thermal generators and new regulating resources

such as hydrogen energy storage and electrochemical energy storage, a monthly scheduling plan for thermal
generators and energy storage with the best operating economy is formulated, and energy storage discharge
energy is reasonably reserved to make up for the shortfall in power supply and demand.

The monthly scheduling time-period is long, and the number of decision time-periods for unit start-up
and shut-down is large, which may lead to a long solution time for the monthly scheduling problem and make
it difficult to meet the calculation time requirements, at the same time, the net load (the difference between
load power and renewable energy generation power) of the high-proportion renewable energy power system
has strong uncertainty. To formulate a monthly scheduling plan, it is necessary to ensure that energy storage
has sufficient chargeable space under various net load scenarios to meet future discharge needs.

In this regard, the framework of the monthly reduced time-period scheduling of thermal generators and
energy storage is designed as shown in Fig. 1. Based on the net load fluctuation characteristics, the number
of decision periods for unit start-up and shut-down variables is reduced to effectively decrease the number
of start-up and shut-down decision variables and reduce the scale of the monthly scheduling problem, a
minimum chargeable amount constraint for energy storage that meets the charging and discharging needs
under extreme net load scenarios is constructed, so that the energy storage can be charged with enough
electricity every day to cope with future discharge needs, considering power balance constraints, operating
constraints of thermal generators and energy storage, with the goal of minimizing the thermal generators
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and energy storage operating cost and load loss cost, a monthly scheduling model is constructed, based on
this, a monthly unit commitment and energy storage charging and discharging plan are obtained.

Start-up and shut-

down  of the unit.

Thermal generators  

output power

Energy storage

charg ing and

discharging power

Reduction of the number of decision periods
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Figure 1: Sketch of the monthly reduced time-period scheduling framework

3 Reduction of the Number of Decision Periods for Start-Up and Shut-Down Variables Based on Net
Load Fluctuation Characteristics

Considering that unit start-up and shut-down occur less frequently when net load fluctuations are small,
it is approximated that the unit’s status remains unchanged during periods of minor load changes. Therefore,
several adjacent time intervals with small load variations can be merged into a single time-period for start-
up and shut-down, reducing the number of decisions for unit status. The specific implementation method is
as follows.

3.1 Clustering of Net Load Power
The net load power is:

Pt
LR = Pt

L − Pt
Re, t ∈ T, (1)

where T = {1, . . . , T} is the set of all time-periods, each time-period is 1 h, and T is the number of time-
periods, Pt

L, Pt
Re and Pt

LR are the predicted mean values of load power, renewable energy output, and net load
power at time t, respectively.

Normalize the net load, and assume the normalized load is P̃ t
LR, then:
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P̃ t
LR =

Pt
LR

Max
t∈Td
{Pt

LR}
, t ∈ Td , d ∈D, (2)

where Td = {Th (d − 1) + 1, . . . , Thd} is the set of all time-periods, Td is the set of time-periods on the d-th
day, Th is the number of time-periods per day, D = {1, . . . , D} is the set of all days, and D is the number
of days.

The net load is clustered based on the k-means algorithm. The idea is to divide a large number of
net load data points into several clusters according to their power size. The basic calculation steps are as
follows [24,25]:

(a) The net load sample set for cluster analysis is defined as PLR = { P̃1
LR, P̃2

LR, ⋅ ⋅ ⋅ , P̃T
LR }.

(b) Determine the number of clusters as N, select N sample points as the initial cluster centers, and
represent the i-th cluster center.

(c) For each sample point P̃ t
LR, calculate its distance from all cluster centers P̃∗LR. i :

d (P̃ t
LR, P̃∗LR. i) = P̃ t

LR − P̃∗LR. i , t ∈ {1, 2, 3 ⋅ ⋅ ⋅T} , i ∈ {1, 2, 3 ⋅ ⋅ ⋅N} , (3)

where P̃ t
LR represents the t-th sample point, and P̃∗LR. i represents the i-th cluster center corresponding to the

t-th sample point.
(d) Assign sample P̃ t

LR to the cluster center P̃∗LR. i with the shortest distance to form clusters correspond-
ing to N cluster centers. The net load data set of the i-th cluster is PLR. i .

(e) Update the cluster center and calculate the average value of all sample points in each cluster as the
new cluster center P̃∗LR. i

∗
′

:

P̃∗LR. i
′

= 1
Mi

∑
P̃ t

LR∈PLR. i

P̃ t
LR, (4)

where Mi is the number of samples in the i-th clusterPLR. i , and P̃∗LR. i
′

is the new cluster center of the cluster.
(f) Determine whether the cluster center P̃∗LR. i

′

of each cluster after the update is different from the
cluster center P̃∗LR. i before the update. If yes, repeat steps (d) and (e). Otherwise, the classification ends.

3.2 Reduction of Decision Time-Periods for Unit Start-Up and Shut-Down
Combined with the method described in 3.1, the net loads are clustered into several categories, where

the power of adjacent net loads in the same category is relatively similar. It is approximated that the unit’s
status remains unchanged during these time-periods, allowing the corresponding time-periods to be merged
into a single decision time-period for start-up and shut-down.

The process of reducing decision time-periods for unit start-up and shut-down is illustrated in Fig. 2. By
continuously rolling forward the calculations, adjacent time periods with similar net load power are merged
into a single decision time-period for unit start-up and shut-down.

The effect of reducing decision time-periods for unit start-up and shut-down is shown in Fig. 3. In
the figure, Lτ = {tst.τ , . . . , tst.τ + Tτ} is the set of hours in the τ-th decision period for start-up and shut-
down, tst.τ , Tτ are the starting hour and number of hours of the τ-th time-period for start-up and shut-down,
respectively. L is the set of decision time-periods for unit start-up and shut-down, L = {L1 , ⋅ ⋅ ⋅ ,LK},K is
the number of decision time-periods for unit start-up and shut-down. T = L,K = {1, ..., K}.
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Figure 2: Flowchart for reducing decision time-periods for unit start-up and shut-down
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Figure 3: Schematic diagram showing the reduction effects on decision time-periods for unit start-up and shut-down

The number of decision time-periods for unit start-up and shut-down after reduction is significantly
fewer than the number of hours, which can greatly reduce the scale of the generator status (0: ‘off ’, 1: ‘on’)
variables and shorten the solution time of the monthly scheduling model.

4 The Minimum Daily Chargeable Energy Constraint for Energy Storage
Under the maximum net load, the discharge power of the energy storage is the largest and the chargeable

power is the smallest. If the charge and discharge power integral meets the energy constraint at this time, the
charging demand of the energy storage under various net loads can be met. Therefore, the chargeable capacity
constraint of the energy storage under the maximum net load can be constructed. The specific method is
as follows.

4.1 Calculation of Maximum Discharge Power and Minimum Chargeable Power of Energy Storage
According to the net load fluctuation characteristics, the maximum discharge power and minimum

chargeable power of energy storage are analyzed, as shown in Fig. 4. When the maximum net load Pt
LR is

greater than the maximum output of thermal generators, energy storage needs to be discharged, and the gray
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shaded part is the energy storage that needs to be discharged, when the maximum net load is less than the
maximum output of thermal generators, the energy storage can be charged, and the green shaded part is the
energy storage that can be charged.

Figure 4: Schematic diagram of calculation of minimum chargeable capacity and maximum discharge capacity of
energy storage day

Assume Pt
bdmin. i and Pt

bcmin. i are the maximum discharge power and minimum chargeable power of
energy storage at time t, respectively. According to the meaning shown in Fig. 1, considering load loss and
thermal generators output adjustment, the calculation formula can be summarized as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
i∈Nb

Pt
bdmax. i − ∑

i∈Nb

Pt
bcmin. i = Pt

L − Pt
Re − ΔPt

L − ∑
i∈Ng

uτ
g. i Pg. i + ΔPt

g.total

ΔPt
g.total ≤ ∑

i∈Ng

uτ
g. i (Pg. i − Pt

g. i)
, t ∈ Lτ , τ ∈ K , (5)

where Ng = {1, . . . , Ng} is the set of all units, Ng is the number of units, Nb = {1, . . . , Nb} is the set of all
energy storage systems, Nb is the number of energy storage systems, Pt

L, Pt
Re and ΔPt

L are the maximum load
forecast at time t, the maximum renewable energy output forecast and the corresponding load loss power,
respectively, Pg. i and uτ

g. i ∈ {0, 1} represent the maximum output of unit i and the generator status (0: ‘off ’,
1: ‘on’) in the τ-th decision time-period for unit start-up and shut-down, respectively. uτ

g. i = 1 represents the
unit status is on and uτ

g. i = 0 represents the unit status is off, ΔPg.total represents the reduction value of thermal
generators output compared to its total maximum output.

4.2 Energy Storage Charging and Discharging Energy Constraints under the Most Extreme Net Load
It is required that under the maximum net load, the difference between the minimum chargeable

amount and the maximum discharge amount of the energy storage every day meets the energy constraint
and is greater than the energy storage energy at the end time of each day in the monthly decision:

∑
t=Td

(Pt
bcmin. i ηc. i − Pt

bdmax. i/ηd. i) ≥ ∑
t=Td

(Pt
bc. i ηc. i − Pt

bd. i/ηd. i) , d ∈D, (6)

T′

∑
t=1

Pt
bdmax. i/ηd. i −

T′

∑
t=1

Pt
bcmin. i ηc. i ≥ γi Eb. i ; , T ′ ∈ T , (7)

T′

∑
t=1

Pt
bdmax. i/ηd. i −

T′

∑
t=1

Pt
bcmin. i ηc. i ≤ (1 − γi)Eb. i ; , T ′ ∈ T , (8)
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where Pt
bd. i and Pt

bc. i are the discharge power and charging power of the energy storage at time t, respectively,
ηd. i and ηc. i are the discharge efficiency and charging efficiency of the energy storage, respectively, γi is
the energy storage charge and discharge energy coefficient, γi ≤ 1, Eb. i ; is the upper limit of the energy
storage capacity. The left-hand side of Eq. (6) represents the minimum charge power of the energy storage
system on a given day under the maximum net load, while the right-hand side represents the charging power
of the energy storage system on that day according to the monthly scheduling plan. Eq. (6) ensures that
the minimum charge energy of the energy storage system under the maximum net load can still meet the
charging requirements of the scheduling plan, meaning the monthly scheduling plan remains feasible even
under the maximum net load.

5 Monthly Scheduling Model
Combined with the reduction of the time-periods for unit start-up and shut-down and the construction

of the daily minimum chargeable capacity constraint of energy storage, a monthly thermal generators and
energy storage scheduling model is constructed by considering constraints such as thermal generators and
energy storage operation cost, load loss cost and thermal generators and energy storage operation.

5.1 Objective Function
The goal is to minimize the total operating costs and load loss costs of thermal generators and energy

storage.

Min ∑
t=Td

⎡⎢⎢⎢⎢⎣
∑

i∈Ng

cg (Pt
g. i) + ∑

i∈Nb

cb (Pt
b. i) + cL (ΔPt

L)
⎤⎥⎥⎥⎥⎦

, (9)

where Pt
g. i , Pt

b. i , and ΔPt
L are the thermal generators output, energy storage charging and discharging power,

and load loss power at time t, respectively, cg (Pt
g. i), cb (Pt

b. i), and cL (ΔPt
L) are the thermal generators cost,

energy storage operation cost, and load loss cost, respectively:

cg (Pt
g. i) = kg. i Pt

g. i + cg. iuτ
g. i + cSU. ivτ

g. i + cSD. i yτ
g. i , t ∈ Lτ , τ ∈ K , (10)

cb (Pt
b. i) = kb. i Pt

b. i , t ∈ T , (11)

cL (ΔPt
L) = ωkLΔPt

L + ωkLΔPt
L, t ∈ T , (12)

where kg. i and cg. i are the marginal cost of thermal generation and the fixed operating cost per unit time,
respectively, kb. i and kL are the costs of energy storage unit charging and discharging power and unit load
loss power, respectively, ω and ω are the probabilities of average net load and maximum net load, respectively,
cSU. i and cSD. i are the start-up and shut-down costs of thermal generators, respectively, vτ

g. i and yτ
g. i are

auxiliary variables for startup/shutdown, respectively, representing the start-up and shut-down actions of
the thermal generators unit in the τ-th decision time-period for unit start-up and shut-down:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

vτ
g. i − yτ

g. i = uτ
g. i − uτ−1

g. i

vτ
g. i + yτ

g. i ≤ 1
vτ

g. i ∈ {0, 1} , yτ
g. i ∈ {0, 1}

, τ ∈ K (13)
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5.2 Constrained Conditions
(1) Power balance constraints

∑
i∈Ng

Pt
g. i + ∑

i∈Nb

Pt
b. i = Pt

L − Pt
Re − ΔPt

L, t ∈ T , (14)

where Pt
L and Pt

Re are the load power and renewable energy output at time t, respectively.
(2) Reserve constraints

∑
i∈Ng

(ut
g. i Pg. i − Pt

g. i) ≥ Rt
reserve.up, t ∈ T , (15)

∑
i∈Ng

(Pt
g. i − uτ

g. i Pg. i) ≥ Rt
reserve.dn, t ∈ T , (16)

where Rt
reserve.up and Rt

reserve.dn are the upper and lower reserve requirements at time t, respectively.
(3) Thermal generators operation constraints

1© Output upper and lower limit constraints

uτ
g. i Pg. i ≤ Pt

g. i ≤ uτ
g. i Pg. i , t ∈ Lτ , τ ∈ K , i ∈Ng, (17)

where Pg. i and Pg. i are the upper and lower limits of thermal generators output, respectively.
2© Climbing constraint

⎧⎪⎪⎨⎪⎪⎩

Pt
g. i − Pt−1

g. i ≤ uτ
g. i Pramp. i + vτ

g. i Pstart. i

Pt−1
g. i − Pt

g. i ≤ uτ
g. i Pdown. i + yτ

g. i Pshut. i
, t − 1 ∈ Lτ or t − 1 ∈ Lτ−1 , t ∈ Lτ , τ ∈ K , i ∈N}, (18)

where Pramp. i and Pdown. i are the maximum power increase rate and decrease rate of thermal generators,
respectively, Pstart. i and Pshut. i are the maximum start-up power change rate and shut-down power change
rate of thermal generators power, respectively.

3© Minimum start-up and shut-down time constraints

τ+Son. i(τ)

∑
s=τ

us
g. i ≥ vτ

g. i S
τ
on. i , τ ∈ K , i ∈Ng, (19)

τ+Soff . i(τ)

∑
s=τ

(1 − us
g. i) ≥ vτ

g. i S
τ
off . i , τ ∈ K , i ∈Ng, (20)

where Son. i (τ) and Soff . i (τ) are the number of the decision time-periods for unit start-up and shut-down
that thermal generators i needs to maintain starting up and shutting down from the τ start-stop periods.
Since the time window length of each time-period for unit start-up and shut-down is different, Son. i (τ) and
Soff . i (τ) are related to the unit start-up and shut-down time-period. The calculation formula is as follows:

{ tτ+Son. i(τ) + TSon. i(τ) − tτ + 1 ≥ Ton. i
tτ+Son. i(τ) − tτ + 1 ≤ Ton. i

, τ ∈ K , i ∈Ng, (21)

{ tτ+Soff . i(τ) + TSoff . i(τ) − tτ + 1 ≥ Toff . i
tτ+Soff . i(τ) − tτ + 1 ≤ Toff . i

, τ ∈ K , i ∈Ng, (22)
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where Ton. i and Toff . i are the minimum start-up time and shut-down time of thermal generators, respectively.
(4) Energy storage operation constraints
Considering electrochemical energy storage and hydrogen energy storage, for the convenience of

modeling and analysis, the unified operating constraints for both types of energy storage are established by
referring to the method in [26], as follows:

1© Charge and discharge power constraints [27]

0 ≤ Pt
bd. i ≤ Pbd. i δt

bd. i , t ∈ T , i ∈Nb, (23)
0 ≤ Pt

bc. i ≤ Pbc. i δt
bc. i , t ∈ T , i ∈Nb, (24)

δt
bd.i + δt

bc.i ≤ 1, t ∈ T , i ∈Nb, (25)
Pt

b. i = Pt
bd. i − Pt

bc. i , t ∈ T , i ∈Nb, (26)

where Pbd. i and Pbc. i are the maximum discharge power and maximum charging power of energy storage,
respectively. δt

bd.i and δt
bc.i are binary decision variables indicating whether discharging and charging

operations occur at time t, respectively. Specifically, δt
bd.i = 1 denotes discharging, while δt

bc.i = 1 denotes
charging. These variables take values of 0 or 1, determining the execution of corresponding operations.

2© Energy-power integration constraint

Et
b. i = Et−1

b. i − Pt
bd. i/ηd. i + Pt

bc. i ηc. i , t ∈ T , i ∈Nb, (27)

where Et
b. i is the energy storage at time t.

3© Energy constraint

γi Eb. i ; ≤ Et
b. i ≤ (1 − γi)Eb. i , t ∈ T , i ∈Nb, (28)

ET
b. i = E0

b. i , t ∈ T , i ∈Nb, (29)

For different types of energy storage, Pt
bd. i , Pt

bc. i , and Et
b. i correspond to different physical meanings.

For example, for hydrogen energy storage, they represent the equivalent electrical quantity of the fuel
cell power, the hydrogen electrolyzer power, and the hydrogen storage capacity of the hydrogen storage
tank, respectively.

(5) Load loss constraint

ΔPt
L ≤ ΔPt

L, t ∈ T, i ∈Nb, (30)

where ΔPt
L is the maximum allowable load loss at time t.

The current model assumes fixed parameters for thermal power plants and energy storage systems,
but these can fluctuate due to environmental conditions. For example, thermal plant efficiency and load
regulation are affected by temperature, while hydrogen storage efficiency and energy losses depend on
temperature and pressure. Such variations may reduce optimization accuracy and model adaptability. Future
research should incorporate environmental dynamics through parameter prediction models and use robust
optimization or Monte Carlo simulations to address uncertainties, improving robustness and predictive
accuracy for coordinated operations under complex conditions.
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6 Case Study

6.1 Case Setup
Consider a high-ratio wind-solar system, with thermal generators installed capacity of 2305 MW, wind

power and photovoltaic installed capacities of 1100 and 935 MW, respectively, and battery energy storage and
hydrogen energy storage configurations of 200 MW × 2 h and 200 MW × 10 h, respectively. The parameters
of the thermal power plant are detailed in Table A1, while the storage parameters are outlined in Table 2 [28].
The parameter setting of energy storage systems is based on their technical characteristics. Electrochemical
energy storage typically uses lithium batteries, which have high charge/discharge efficiency and low energy
density. Therefore, when selecting, the focus is on efficiency and smaller rated capacity. In contrast, hydrogen
storage generates hydrogen through an electrolyzer and utilizes fuel cells for charge and discharge. Due to
the large capacity of hydrogen storage tanks, the selection focuses more on lower efficiency but larger rated
energy capacity.

Table 2: Energy storage operation parameters

Type Pb. i Eb. i ; ηd. i ηc. i γi

Energy storage batteries 200 400 0.9 0.9 0.1
Hydrogen energy storage 200 2000 0.65 0.65 0.1

The load, wind, and solar output curves are shown in Figs. 5 to 7, respectively. On the 22nd and
23rd days, there was extreme cold weather. The load increased, while the wind and solar output decreased
significantly. The maximum allowable load loss power is 5% of the load in the corresponding period on the
22nd and 23rd days, and 0 on the other days.

Figure 5: Monthly load power
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Figure 6: Monthly wind power

Figure 7: Monthly photovoltaic power generation

6.2 Case Results
6.2.1 Evaluation of Monthly Scheduling Outcomes

The reduced time-periods for unit start-up and shut-down for the units are shown in Fig. 8. During
periods of significant net load fluctuations, the number of the decision time-periods for unit start-up and
shut-down obtained through reduction is larger. This enables thermal generators to respond effectively to
substantial net load fluctuations, adapting to the more frequent start-up and shut-down occurrences during
these periods. Conversely, during periods of smaller net load fluctuations, the number of the decision time-
periods for unit start-up and shut-down is reduced, minimizing the number of decision variables while
still meeting the operational requirements of the thermal generators. According to statistics, the number of
reduced decision time-periods for unit start-up and shut-down is 149. At this stage, the number of 0–1 integer
decision variables (generator status (0:‘off ’, 1:‘on’), variables of generator status) is reduced from 2106 (24 ×
28 × 3) to 447 (149 × 3), significantly decreasing the scale of the monthly decision model.

The output power of thermal generators and energy storage and the results of wind curtailment and
load loss are shown in Fig. 9. The output of each thermal generators, the charging and discharging power
and energy of battery energy storage and hydrogen energy storage are shown in Figs. 10–12, respectively.
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Figure 8: Results of reducing the unit start-up and shut-down time-periods

Thermal power generation Hydrogen energy storage discharge capacity
Hydrogen energy storage charging capacity Battery energy storage discharge
Battery energy storage charge Renewable energy curtailment
Loss of load power Net load power

Upper limit of total thermal power outputLower limit of total thermal power output

Figure 9: Monthly scheduling results of thermal generators and energy storage, wind curtailment and load loss

As shown in Fig. 9, it can be observed that the total maximum output of thermal generators varies
with net load fluctuations, indicating that start-up and shut-down operations are conducted to improve the
economic efficiency of thermal generator operation while satisfying power balance and reserve constraints.
During the extremely cold weather period (the 22nd and 23rd days), the total output of thermal generators is
maintained at the maximum value, and the energy storage discharge should increase the net load and reduce
the load loss, as a result, the load loss is minimized due to the increased net load and energy storage discharge
during extremely cold weather. Combined with Fig. 10, it can be seen that without considering maintenance,
the coal consumption cost of units 10–12, 16–20, and 24 is relatively small, and they are kept in the start-up
state most of the time, the coal consumption cost of units 1, 2, 6, and 9 is relatively large, and they are kept in
the off state for a long time, the economy of the remaining units is in the middle, starting when the net load
is large and shutting down when the net load is small, reducing the cost of power generation.

Combining Figs. 9, 11, and 12, it can be seen that battery energy storage has a daily charge and discharge
cycle, charging during the daily net load valley and discharging during the net load peak, which can reduce
the number of start-up and shut-down of thermal generators, and transfer the output of thermal generators
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during the period of low marginal cost of net load valley to the period of high marginal cost of net load peak,
thereby reducing the system operation cost. Compared with battery energy storage, hydrogen energy storage
has a longer energy change cycle, charging before the occurrence of extreme cold weather, discharging during
the extreme cold weather period to make up for the power shortage caused by the increase in net load as
much as possible, and charging to restore energy after the extreme cold weather, in addition, the charging
and discharging efficiency of hydrogen energy storage is low, so there are fewer charging and discharging
actions in each period except the extreme cold weather, which can minimize its charging and discharging
energy loss.

Figure 10: Output of each unit

Figure 11: Battery energy storage charging and discharging power and energy changes

Figure 12: Hydrogen energy storage charging and discharging power and energy changes
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6.2.2 Assessment of the Effectiveness in Reducing Decision Time-Periods for Unit Start-Up and Shut-Down
The total maximum output, monthly scheduling cost and calculation time of the unit before/after the

unit start-stop period is reduced are shown in Fig. 13 and Table 3, respectively. It can be seen from Fig. 13
that the total maximum output of the unit after the time-period for unit start-up and shut-down is reduced
has the same change trend as before the reduction, indicating that the reduction of the time-period for unit
start-up and shut-down has a small impact on the unit’s start-up and shut-down decision-making. It can be
seen from Table 1 that the monthly scheduling model solution time before and after the time-period for unit
start-up and shut-down is reduced is 7565 and 597 s, respectively. The cost is 170.5 and 171.6 million yuan,
respectively. Compared with before the time-period for unit start-up and shut-down is reduced, the monthly
scheduling model after the reduction is the calculation time for solving the scheduling model was reduced
by 92.1%, while the scheduling cost only increased by 0.006%. It can be seen that the reduction of time-
period for unit start-up and shut-down can significantly shorten the monthly scheduling model solution time
without significantly increasing the scheduling cost, and effectively improve the formulation of scheduling
plans efficiency.

Figure 13: Comparison of the total maximum output of the units before and after the reduction of the time-period for
unit start-up and shut-down

Table 3: Comparison of scheduling costs and calculation time before and after the reduction of time-period for unit
start-up and shut-down

Method Scheduling and operating
costs/100 million yuan

Calculation
time/second

Before the tart-up and shut-down
time-period is reduced

1.705 7565

After the tart-up and shut-down
time-period is reduced

1.716 597

6.2.3 Evaluation of the Effectiveness in Constructing the Minimum Chargeable Energy Constraint for Energy
Storage
The total maximum output of thermal generators with or without the minimum chargeable capacity

constraint of energy storage is shown in Fig. 14. Hydrogen energy storage with a longer charge and discharge
cycle is selected for analysis, and the charge and discharge power, energy, and load loss of hydrogen energy
storage under maximum net load are shown in Figs. 15–17, respectively.
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Figure 14: Comparison of maximum output of thermal generators with and without considering the minimum
chargeable capacity constraint of energy storage

Figure 15: Comparison of hydrogen energy storage charging and discharging power with and without considering the
minimum chargeable capacity constraint at maximum load power

Figure 16: Comparison of hydrogen energy storage energy with and without considering the minimum charge capacity
constraint at maximum load power

Figure 17: Comparison of load loss power with and without considering the minimum chargeable energy storage
capacity constraint at maximum load power
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As shown in Fig. 14, compared with not considering the minimum chargeable capacity constraint,
the maximum output of thermal generators obtained by considering the minimum chargeable capacity
constraint is slightly higher during the daily net load valley period, and the number of thermal generators in
operation is more, which can reserve sufficient chargeable space for energy storage.

Combined with Figs. 15–17, it can be seen that when the net load is large, the energy storage can charge
more electricity to meet future discharge needs, and load loss only occurs during extremely cold weather
periods, when the minimum chargeable capacity constraint is not considered, the chargeable space of energy
storage is insufficient under the maximum net load, and the power shortage matching effect when thermal
generators and wind and solar power generation are insufficient is poor. Load loss occurs during extremely
cold weather and other periods, and the load loss power is relatively large. When the system load is high
and the energy storage system’s state of charge (SOC) is near its lower limit, the system’s discharge capacity
is constrained, leading to a loss of load, particularly in high-load conditions like extreme cold weather.
For instance, during high-load periods on the 22nd day (18:00–21:00) and the 23rd day (08:00–10:00), the
SOC approaches its lower limit, limiting discharge and failing to meet demand. Conversely, during low-load
periods (e.g., 02:00–04:00 on the 21st day and 02:00–05:00 on the 24th day), when the SOC is near the upper
limit, charging is restricted, resulting in curtailment of excess renewable energy. These findings highlight that
SOC limits significantly affect the energy storage system’s charge-discharge capacity, supply-demand balance,
and system flexibility, especially under extreme conditions. Therefore, based on the proposed monthly
strategy that considers the minimum chargeable capacity constraint, the decision result can still reserve
enough charging space for energy storage, better match the energy storage discharge demand caused by the
larger actual value of net load, reduce possible load loss, and improve system power supply reliability.

7 Conclusions and Future Perspectives
Considering the differences in unit startup and shutdown times and the rechargeable capacity of energy

storage under maximum net load, a time-varying scheduling strategy for coal-fired and energy storage
systems with a daily minimum chargeable capacity constraint is proposed. Case study results show:

(1) The proposed method yields an economically efficient operation plan for thermal power and energy
storage, where long-term storage (e.g., hydrogen) operates in a “low storage, high output” mode to balance
power supply and demand during peak net load periods.

(2) The start-stop decision time reduction method reduces decision variables and shrinks the fire-
storage monthly scheduling model without significantly impacting economic performance. Optimization
reduces decision periods from 672 to 149, decision variables from 2106 to 447, solving time by 92.1%, with a
0.006% increase in scheduling cost, demonstrating efficiency gains while maintaining economic viability.

(3) The minimum rechargeable energy constraint strategy reserves sufficient charging space for long-
term storage under extreme net loads, ensuring cross-day discharge capability and improving system
reliability. During extreme cold weather, it reduces load shedding by approximately 30%, significantly
enhancing power supply stability and adaptability.

(4) Future research will enhance the method’s applicability and practical value. The current model
ignores transmission line capacity limits, which may affect accuracy in high renewable scenarios. Future
work will incorporate transmission constraints and regional capacity to refine the optimization model and
account for the transmission network’s impact on system operation.
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Appendix A Thermal Generation Units and Energy Storage Parameters

Table A1: Thermal generators unit operating parameters

Unit kb. i cg. i cs. i Pg. i Pg. i Pramp. i Pdown. i Pstart. i Pshut. i Ton. i Toff . i

1 234.2562219.429 200 12 7 10 10 3 7 3 2
2 235.6075219.699 200 12 7 10 10 3 7 3 2
3 237.014 221.7438 200 12 7 10 10 3 7 3 2
4 238.246 222.8445 200 12 7 10 10 3 7 3 2
5 239.432 223.9938 200 12 7 10 10 3 7 3 2
6 341.4121 1059.796 400 20 12 16 16 4 12 3 2
7 342.605 1062.975 400 20 12 16 16 4 12 3 2
8 343.90691066.118 400 20 12 16 16 4 12 2 2
9 345.13341069.385 400 20 12 16 16 4 12 2 2
10 129.0902730.22761000 76 40 50 50 10 40 4 3
11 129.528 731.682 1000 76 40 50 50 10 40 4 3
12 129.9249733.1769 1000 76 40 50 50 10 40 4 3
13 130.3958734.6331 1000 76 40 50 50 10 40 4 3
14 170.69091961.057 1400 100 55 60 60 15 55 5 3
15 171.4374 1965.015 1400 100 55 60 60 15 55 5 3
16 172.1421 1968.9771400 100 55 60 60 15 55 5 3
17 106.03851284.613 3000 155 80 70 70 30 80 6 4
18 106.44261287.259 3000 155 80 70 70 30 80 6 4
19 106.80351289.861 3000 155 80 70 70 30 80 6 4
20 107.1248 1292.375 3000 155 80 70 70 30 80 6 4
21 213.9231 2332.179 4000 197 100 90 90 30 100 6 5
22 214.84982336.8414000 197 100 90 90 30 100 5 5
23 215.83 2341.5844000 197 100 90 90 30 100 5 5
24 104.98371593.518 6000 350 175 130 130 40 175 8 6
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