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ABSTRACT: Power quality is a crucial area of research in contemporary power systems, particularly given the rapid
proliferation of intermittent renewable energy sources such as wind power. This study investigated the relationships
between power quality indices of system output and PSD by utilizing theories related to spectra, PSD, and random
signal power spectra. The relationship was derived, validated through experiments and simulations, and subsequently
applied to multi-objective optimization. Various optimization algorithms were compared to achieve optimal system
power quality. The findings revealed that the relationships between power quality indices and PSD were influenced by
variations in the order of the power spectral estimation model. An increase in the order of the AR model resulted in a
36% improvement in the number of optimal solutions. Regarding optimal solution distribution, NSGA-II demonstrated
superior diversity, while MOEA/D exhibited better convergence. However, practical applications showed that while
MOEA/D had higher convergence, NSGA-II produced superior optimal solutions, achieving the best power quality
indices (THDi at 4.62%, d% at 3.51%, and cos φ at 96%). These results suggest that the proposed method holds significant
potential for optimizing power quality in practical applications.
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1 Introduction
As global energy demand and environmental concerns escalate, developing renewable and clean energy

sources has emerged as a crucial direction for global energy transformation. Solar, wind, and hydroelectric
power are gradually becoming the primary alternatives to traditional fossil fuels due to their environmental
sustainability and other advantages. For instance, the integrated optimization of solar and gas turbine
systems can substantially enhance energy efficiency while reducing emissions [1]. Solid oxide fuel cell systems
demonstrate excellent power output and low emissions across various current densities [2]. Furthermore,
the combination of biomass gasification and solid oxide fuel cells has the potential to improve system
energy efficiency [3]. Innovative approaches to converting waste into renewable hydrogen also provide
new ideas for clean energy production [4]. Compared to other clean energy sources, integrating wind
energy into power systems significantly reduces generation costs and emissions [5] and enhances system
scheduling efficiency. Research indicates that wind energy integration demonstrates notable advantages in
multi-objective optimization, particularly in large-scale power systems [6].
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Many comparative analyses of accuracy and flexibility characteristics in the frequency domain through
Fourier transform methods have recently been proposed [7]. Power spectrum analysis based on Fourier
transform is extensively utilized across various fields [8,9]. For instance, Leonowicz et al. [10] evaluated
power quality using an advanced spectrum approach and found that higher-resolution spectra improved the
accuracy of assessed spectral parameters in deformed power system waveforms. Similarly, Wang et al. [11]
investigated power quality disruption characteristics using deep learning, achieving a satisfactory accuracy
of 98.43% in power evaluation. Narendra Babu [12] conducted an adaptive grid mentor control test for
power quality in a microgrid system, demonstrating promising results with direct current (DC) usage
in microgrids. Shao et al. [13] reviewed power quality monitoring in offshore wind energy, identifying
synchronized waveform detection as having great potential due to its high resolution, availability, and
effective time synchronization. Holdynski et al. [14] analyzed the impact of photovoltaic farms on select
power quality parameters in medium power grids, observing a 60% decrease in voltage distortion factor
with increased power. Tian [15] employed PSD and autocorrelation function analyses to explore chaotic
dynamic behavior in wind-electric time series at various time scales. Yao et al. [16] applied the hinge
model in PSD analysis to obtain low-pass decomposition frequency, achieving an optimized energy storage
scale for single-day energy balance. Qing et al. [17] utilized PSD to capture the frequency and amplitude
of state variable fluctuations in heterogeneous power systems with random excitation. Ayon et al. [18]
estimated the coherence index from self-PSD and cross-PSD information to identify coherent regions of
specific frequencies associated with interregional oscillation patterns. In optimization systems, Morteza
et al. [19] proposed a distribution network development and planning model based on electric vehicles
and distributed power sources, analyzing electric vehicles’ influence on the technical characteristics of
power grids in intelligent environments through scenario simulations. Reference [20] employed the Antlion
optimization algorithm to optimize parameters of model predictive control (MPC) and proportional-integral
(PI) controllers, adjusting plug-in hybrid electric vehicle (PHEV) battery charging rates to reduce frequency
fluctuations caused by wind energy variations.

Power quality is a crucial indicator for assessing the stability and reliability of a power system. Karafotis
et al. [21] introduced a wavelet packet transform-based method for power quality analysis in three-phase
power systems, considering harmonics and unbalance. Yin et al. [22] evaluated the overall power quality
of new energy permeation distribution network systems using the analytic hierarchy process (AHP). Total
harmonic distortion (THD), a significant index, is frequently utilized in power quality studies. Higher THD
values indicate poorer power quality, potentially leading to issues such as reduced equipment lifespan,
increased system losses, and equipment malfunctions. Reference [23] proposed an artificial neural network
(ANN)-based excitation current modulation method, which effectively mitigated terminal voltage harmonic
distortion in synchronous generators under nonlinear load conditions by optimizing the excitation current.
Reference [24] presented a novel multilevel alternating current (AC)/DC/AC multiunit converter topology
that significantly reduced THD in wind energy conversion systems and enhanced the voltage output quality
of grid-connected wind energy systems.

Despite the prevalence of PSD analysis in various fields, its application in conjunction with power
quality indices to examine wind power hybrid energy storage systems remains limited. This study primarily
investigates the output power quality of wind power hybrid energy storage systems. Additionally, it explores
the relationship between PSD and power quality indices through theoretical derivation of random signal
power spectra, which is supported by experimental and simulation verification. Through comprehensive
multi-objective optimization comparisons, this research achieves an optimal state of power quality, providing
an effective and reliable framework for evaluating and enhancing the output power quality of wind
power systems.
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2 Related Theory and System Power Spectrum Calculation

2.1 FFT to PSD Conversion
Random signals lack the property of Fourier transform, resulting in theoretically infinite total energy

when calculated. To apply Fourier transform methods to random signals, energy spectrum calculation
involves using an interceptor function. Subsequently, the power spectrum of random signals is derived by
linking spectrum analysis with random signals through Parseval’s theorem. Consider a discretized sample
x(n) of the random process X(t), with a finite length N and a sampling interval of △t, where △t can be
treated as a finite energy sequence. If the discrete-time Fourier transform xN (e jw) of xN (n) exists, then
based on the relationship between discrete-time Fourier transform and Fourier transform [25], the PSD of
the discrete-time random sequence can be derived as shown in Eq. (1):

GX ( f ) = 1
N
∣

N
∑

1
xn (t) e− j2π f nΔt Δt∣

2

(1)

According to the calculation method provided by Matlab, the conversion relationship between PSD and
spectrum can be obtained through Eq. (2):

PSD (x) = 2( 1
Fs ⋅ N ) ∣x∣

2 (2)

where Fs represents the sampling frequency, and ∣x∣ denotes the amplitude after discrete Fourier transform.

2.2 Mathematical Derivation of System PSD and Power Quality Indices
The subsequent section presents mathematical calculations for the power spectrum and power quality

indices of the system. Initially, a mathematical model and corresponding complex domain are established
based on the power spectrum concept. This is followed by an examination of the nonlinear characteristics of
system components, including the aerodynamic properties of wind turbines and the switching characteristics
of electronic control devices. To simplify the analysis, a linearization method is employed to approximate the
nonlinear system near a specific operating point, yielding a linear system through frequency deviation.

Frequency deviation:
The PSD can be computed by multiplying the signal’s Fourier transform in the frequency domain with its

complex conjugate and averaging the result. Using this method, the PSD of wind fluctuation is calculated [25],
and its formula is expressed as follows:

Sw ( f ) = 1
Δ f

1
n

n
∑
i=1

Xi ( f )X∗i ( f ) (3)

where Δ f represents the sampling frequency.
Through the application of random signal analysis and frequency-domain analysis of the linear system,

the relationship between the input signal Sw ( f ) and the PSD Sy ( f ) of the system’s output signal is expressed
by the following formula:

Sy ( f ) = ∣H ( f )∣2 Sw ( f ) (4)
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Assuming the input signal x(t) is a zero-mean stochastic stationary process, the PSD corresponding to
the variance of the output y(t) can be obtained as

σ 2
y =

1
2π ∫

∞

−∞

Sy ( f ) d f (5)

Disregarding the generator governor, the model transfer function of the system frequency characteristic
is expressed as

G (s) = 1
2Ts + β

(6)

where T denotes the inertia constant of system time, and β represents the load-frequency characteristic coef-
ficient.

Moreover, the study calculates the impact of the synchronous generator and energy storage device
when wind power fluctuation χpw (s) results in frequency deviation χ f (s) following the system frequency
response. This relationship is expressed by

χ f (s) = [G (s) − PG (s) − PB (s)] χpw (s) (7)

where PG (s) and PB (s) represent the transfer functions of the synchronous generator and the energy storage
device, respectively.

The corresponding input signal Sy ( f ) of the system can be derived from Eq. (4) and expressed as

Sy ( f ) = ∣G (s) − PG (s) − PB (s)∣2 ⋅ Sw ( f ) (8)

Upon substitution of Sy ( f ) into Eq. (5), the variance of the system frequency deviation PSD can be
expressed as

σ 2
f =

1
2π ∫

∞

−∞

∣G (s) − PG (s) − PB (s)∣2 ⋅ Sw ( f ) d f (9)

Additional power quality indices are associated with the power spectrum through the spectrum
from Eq. (2), and THDi can be simply expressed by

THDi =

�




�

∞

∑
n=2

I2
n

I2
1

(10)

By multiplying the numerator and denominator of Eqs. (2) and (10), the relationship between THDi
and PSD can be expressed as

THDi =

�




�

∞

∑
n=2

PSD (In)

PSD (I1)
(11)

where I1 represents the RMS value of the fundamental current, and In denotes the RMS value of the n-th
harmonic current.

The power factor (cos φ) can be expressed by its relationship with the harmonics of the rectifier circuit.
In a public power grid, this occurs when voltage waveform distortion is minimal and current waveform



Energy Eng. 2025;122(3) 1179

distortion is substantial. According to Reference [26], voltage distortion can be disregarded, and the power
factor can be expressed as

cos φ = P
S
= UI1 cos φ1

UI
= I1

I
cos φ1 (12)

The relationship between cos φ and PSD can be expressed through Eq. (1) as follows:

cos φ = PSD (I1)
PSD (I) cos φ1 (13)

In the case of non-sinusoidal reactive power Q f = UI1 sin φ1 and S2 ≠ P2 + Q2
f , the distortion power D

is derived as follows:

S2 = P2 + Q2
f + D2

D = U

�


�

∞

∑
n=2

I2
n ⇒ D ⋅

√
2

Fs ⋅ N =
�


�

∞

∑
n=2

PSD (In)
(14)

where I represents the effective value of distortion current, and cos φ1 denotes the fundamental power factor.
Establish a signal model formula comprising a fundamental frequency component and a single

interharmonic component as follows:

u (t) = Vi [sin (2π fi t) +m sin (2π fiH t + θiH)] (15)

where Vi , fi , m, fiH , and θiH denote the peak value of fundamental frequency, fundamental frequency,
relative amplitude of interharmonic, interharmonic frequency, and phase angle, respectively.

By setting fiH = h fi + Δ fh , where h represents the number of harmonics closest to fiH , and assuming
the interharmonic phase angle θiH is zero, the voltage expansion formula is given by Eq. (16):

u (t) = Vi [sin (2π fi t) +m cos (2πΔ fh t)] sin (2πh fi t) + Vi m sin (2πΔ fh t) cos (2πh fi t) (16)

An analysis of the expansion above reveals that the waveform incorporates a harmonic component
h fi with an amplitude variation of Vi m sin (2πΔ fh t). By the definition of the effective value of voltage
fluctuation [27], the formula for dRMS is derived and presented as in Eq. (17):

dRMS =
ΔU
UN
∣
RMS
= URMS−max −URMS−min

UN
× 100%

≈ ∣ 2m
1 + Δ fi ⋅ T0/2

⋅ sin (πΔ fi ⋅ T0)
πΔ fi ⋅ T0

∣
(17)

The analysis reveals that the deviation between the interharmonic and fundamental frequencies (Δ fi)
and the relative amplitude of the interharmonic (mi h) exhibit fluctuations proportional to the root value of
the voltage square. A direct correlation exists between their magnitudes dRMS , as described by Reference [27]
and expressed in Eq. (18) below:

m = Vn

V1
× 100% = PSD (Vn)

PSD (V1)
× 100% (18)

where T0 represents the fundamental period, Vn denotes the n-th interharmonic voltage amplitude, and V1
signifies the fundamental voltage amplitude.
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The above derivation demonstrates that the PSD variance of the system frequency deviation is influ-
enced by several factors: wind power fluctuation, synchronous generator characteristics, energy storage
transfer function, system inertia constant, and load frequency coefficient. Notably, a larger PSD Sw ( f ) of
wind power fluctuation corresponds to a larger variance in the PSD of system frequency deviation, indicating
increased instability in system frequency. The variance of the system frequency deviation PSD is inversely
proportional to the energy storage transfer function. Furthermore, when deriving the other three power
quality indices, the relationship between spectrum and power spectrum is utilized. This analysis reveals that
the three-phase THDi and cos φ of the system generator are consistent with PSD (I1), where PSD (In) is
directly related. THDi is directly proportional to PSD (In), while cos φ defines the relationship between
harmonics and the power factor. In the rectification stage, it is deduced that it is inversely proportional to
PSD (In). Additionally, an increase in harmonic current leads to an increase in distortion power D, which
consequently decreases the power factor. Based on the theory that interharmonics affect voltage fluctuation,
it is shown that different interharmonic voltage amplitudes influence the magnitude of voltage fluctuation,
with a larger PSD (Vn) resulting in a larger dRMS .

This study demonstrates a correlation between PSD and power quality indices through the development
of mathematical derivations for the system. The research also reveals that these factors are influenced by
energy storage systems, power electronic devices, wind power fluctuations, and load disturbances.

2.3 Power Spectrum Simulation and Wind Power System Analysis
The wind power hybrid energy storage system model was constructed using the Simulink platform,

incorporating components such as wind turbines, energy storage devices (batteries and supercapacitors),
power electronic devices (rectifiers), load models, and power electronic control systems. The model
development considered several factors, including the system’s dynamic characteristics, control strategies,
and component interactions. It simulated wind speed fluctuations, load variations, and charge-discharge
processes of the energy storage system. Additionally, the model recorded system spectra and power quality
indices, such as the harmonic content and voltage fluctuations. During the simulation, spectrum analysis
software calculated the power spectrum of the output power signal, determining the system’s energy distri-
bution across different frequencies and revealing its frequency-domain characteristics. Through analysis of
the simulation results, the study established the correlations between power spectrum characteristics and
power quality indices of wind power hybrid energy storage systems.

As illustrated in Fig. 1, the single-phase current spectrum diagram of the permanent magnet syn-
chronous generator under random wind conditions reveals that the generator’s THDi is 18.57%. This
distortion primarily consists of the 5th, 7th, 11th, and 13th harmonics, which correspond to the typical
characteristics of nonlinear loads and switchgears in power systems. The harmonic content decreases
progressively with increasing frequency. In terms of spectral energy distribution, the low-frequency range
(near 50 Hz) exhibits the highest amplitude ratio, attributable to the fan’s output being predominantly
concentrated at the fundamental frequency. In the mid-frequency range (100–400 Hz), several significant
harmonic peaks are observed, indicating the influences of wind speed fluctuations and nonlinear control
devices on the system. The high-frequency range (above 400 Hz) contains less harmonic content, although
some small-value components persist, possibly resulting from rapid switching actions or other high-
frequency interferences. The high harmonic content may impact the system’s power quality, potentially
causing issues such as equipment heating and power factor reduction.
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Figure 1: Single-phase current energy distribution with frequency

Likewise, Fig. 2 indicates the impact of energy storage on voltage fluctuation and frequency stability
when wind speed varies. The results demonstrate that wind speed fluctuates at 2 and 4 s, with wind power
decreasing from 450 to 380 W, indicating significant volatility. The total harmonic distortion rate of the
generator’s three-phase current ranges from 24.81% during the 2–4 s period to 13.45% after stabilizing at
4 s, primarily due to reduced subharmonic and interharmonic wave content. Concurrently, the load voltage
fluctuates, decreasing from 55 to 54 V, with increased amplitude compared to the 2–4 s period. This causes
the lithium battery power to drop from −300 to −200 W to maintain system balance. In comparison, the
supercapacitor’s power decline is minimal, only 5 W, but its energy storage effect in maintaining system
energy balance is rapid. Notably, it supplements load power loss in less than 0.1 s, preventing load voltage
fluctuations and system instability, thereby enhancing the system’s power quality.

Furthermore, an unsteady source-storage-load experimental platform revealed variations in the output
power quality indices when the wind power system lacked energy storage. Upon incorporating different
energy storage devices and utilizing the AR model to estimate the PSD of the data, the frequency-domain
transformation trend of the power quality indices in the wind power system decreases. Moreover, this
approach provides a more comprehensive understanding of the power quality indices and power spectrum
characteristics of wind power hybrid energy storage systems, offering an effective and reliable method for
evaluating and enhancing the output power quality of wind power systems.
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Figure 2: Diagram of the influence of charge and discharge on voltage fluctuation and frequency stability

3 System Power Quality and Power Spectrum Analysis Experiment
This study’s experimental setup was arranged as shown in Fig. 3. The research focused on observing

the harmonic mode, frequency changes, and harmonic numbers of the power signal. Additionally, the PSD
of the AR model was estimated to verify the relationships between the power quality indices and PSD. The
experiment utilized a wind tunnel platform to provide relatively stable incoming air. A wind wheel was
connected to the generator through a torque meter, with the output connected to a rectifier and then to a
DC load box for no-energy storage experiments. Energy storage experiments were conducted by connecting
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various devices (including lithium batteries, supercapacitors, and heat storage devices). The generator output
voltage, current, and other parameters were recorded using a DH5902 data acquisition and analysis system, a
Fluke Norma 5000 power analyzer, and other experimental instruments. The equipment was set to harmonic
mode to monitor frequency changes and harmonic frequencies of the power signal. The DC load box and
Fluke data recording were adjusted for unsteady state experiments. Tests were conducted within a wind speed
range of 8 to 12 m/s, with the generator speed adjusted from 100 to 600 rad/min through the DC load box to
examine performance under varying wind speeds.
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Heat
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A
B
C

Data processing

switch

Fluke data
acquisition

device
A
B
C

A
BBBBBBBB
C

device

Lithium
battery

Figure 3: Experimental test system diagram

3.1 No-Energy Storage Power Quality Index Characteristics Experiment
This study investigated the correlation between power quality and load at varying wind speeds.

The experiment was conducted at and above the rated wind speed to explore the relationships among
power quality evaluation indices, loads, and wind speeds under different conditions. Four representative
power quality evaluation indices were analyzed: THDi, frequency deviation ratio, voltage fluctuation,
and power factor cos φ. THDi was calculated using the average of 10 non-overlapping measurement periods,
as per Reference [28]. dRMS represents the effective value of the mean-root curve of voltage square, observed
over 10 consecutive measurement periods, which was calculated according to the Voltage Fluctuation and
Flicker of Power Quality method described by Reference [29]. Similarly, the average value of cos φ was
determined from 19 random time points, following the Method for Measurement and Evaluation of Power
Quality of Wind Turbines. The frequency deviation ratio was derived by comparing the frequency deviation
with the system’s nominal frequency. The relationship between speed n and pole logarithm p indicates that
the generator’s voltage fundamental frequency at different speeds aligns with the system’s normal frequency,
as shown in Fig. 4.

Analysis of Fig. 4a reveals that THDi initially decreases and then increases, reaching its lowest value
at 150 W under a 10 m/s load. At constant loading, THDi slightly increases when wind speed is at its
minimum. THDi is notably influenced by load, with a more pronounced upward trend observed beyond
200 W. Fig. 4b demonstrates that under consistent load conditions, voltage fluctuation exhibits a positive
correlation with wind speed, increasing by 0.2%–0.3%. Voltage fluctuation is also affected by load, reaching
its minimum between 150 and 200 W at a constant wind speed. Fig. 4c primarily illustrates the impact of
load. Under steady wind speed, the trend initially increases before stabilizing. The maximum value of 94%
is achieved when the load reaches 200 W. Conversely, at constant load, cos φ displays an upward trend
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with increasing wind speed, albeit with minimal change, approximately 1% overall. Fig. 4d indicates that
the frequency deviation ratio’s variation trend mirrors that of voltage fluctuation. The key distinction is that
under consistent load conditions, the amplitude of voltage fluctuation exceeds the frequency deviation ratio
as wind speed increases. In the absence of energy storage, the power quality indices are primarily influenced
by changes in wind speed and generator speed. As generator speed is adjusted by modifying the load during
the experiment, harmonic content, voltage fluctuation, and frequency deviation increase with speed under
constant wind conditions before the rated speed is reached.

Figure 4: Experimental test diagram of power quality indices without energy storage. (a) THDi; (b) voltage fluctuation;
(c) power factor; (d) frequency deviation ratio

However, the corresponding fundamental frequency and nominal voltage value increased more rapidly,
resulting in a reduced THDi, d%, and frequency deviation ratio. Upon reaching the rated speed, the output
rated power is stabilized, contributing to reduced voltage fluctuations, total harmonic distortion rate, and
frequency deviation of the current. The power quality analyses illustrated in Fig. 4a,b,d all reach their lowest
points. After exceeding the rated speed, alterations in the electromagnetic field distribution within the
generator lead to increased harmonic generation. In variable-speed wind turbines, speed changes affect
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the response of the control system, potentially increasing the distortion of current and voltage waveforms,
thus elevating harmonic content. Nevertheless, it is observed that the growth of fundamental frequency
and nominal voltage decelerates. cos φ ceases to increase while the other power quality indices in the
graphs exhibit increases. This observation aligns with the previously derived relationship, further validating
its accuracy.

Conversely, under constant load conditions, an increase in wind speed leads to a decline in power
quality, particularly when the wind speed reaches 11–12 m/s. This phenomenon is attributable to several
factors. The significant fluctuations in wind speed, combined with the nonlinearity of power electronic
devices in the rectifier, result in distortion of the three-phase waveform and generation of harmonics.
Consequently, the generator’s output power becomes unstable. The presence of harmonics may increase
the system’s reactive power demand and reduce the fundamental wave factor, potentially impeding further
improvement of the power factor. Furthermore, without an energy storage system to balance the energy, the
load voltage and power are susceptible to instability and fluctuations. These factors collectively contribute to
a decrease in the overall system’s power quality.

3.2 Power Quality Index Characteristics Experiment under Different Energy Storage Forms
This paper examined the impact of various energy storage systems, including lithium batteries, heat stor-

age, supercapacitors, and a hybrid of lithium batteries and supercapacitors, on improving power quality. Fig. 5
illustrates that THDi decreases as the blade tip speed ratio (λ) increases under unsteady state conditions.
The addition of energy storage devices to the system demonstrates that hybrid energy storage significantly
outperforms other storage types in reducing THDi within the λ range of 3.0–5.0, with supercapacitors slightly
surpassing lithium batteries. At higher blade tip speed ratios, the effectiveness of all three energy storage
systems diminishes. In the λ range of 3.0–4.0, when the generator achieves the rated speed, conversion
efficiency peaks, potentially resulting in more stable power output and the most rapid decrease in system
THDi. In this range, generator speed remains relatively constant, with λ primarily influenced by the wind
speed. Supercapacitors can respond swiftly to reduce THDi and enhance power quality. However, variations
between intervals are mainly affected by the motor speed. During this process, lithium batteries can absorb
excess energy generated and maintain system stability. As λ continues to increase beyond the rated value,
the system generator becomes overloaded, compounded by wind speed and velocity influences, causing
THDi to rise. At this point, energy storage responds rapidly to suppress system harmonics, though this
impacts the lifespan of the energy storage equipment. The frequent occurrence of harmonics necessitates
continuous short-term, high-frequency charging and discharging of the energy storage system, particularly
for supercapacitors, which typically handle a higher proportion of harmonic suppression tasks due to their
rapid charge and discharge capabilities. This high-frequency operation mode increases heat accumulation
in the energy storage device, accelerating internal material aging, such as electrolyte deterioration and plate
loss. These phenomena directly lead to decreased energy storage equipment capacity, increased internal
resistance, and shortened service life. Regarding long-term system maintenance and efficiency impacts, the
reduced lifespan of energy storage systems necessitates more frequent replacement of batteries or other
energy storage components, increasing maintenance costs. Furthermore, the degradation of energy storage
equipment performance may result in diminished harmonic suppression effectiveness, leading to decreased
system power quality and compromised stability and reliability.
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Figure 5: Comparison of THDi values of different energy storage forms

Similarly, Fig. 6 demonstrates a negative correlation trend between d and λ. Following the addition of
the energy storage device, the system voltage fluctuation decreases from a λ range of 3.6–7.0. Increased energy
storage can reduce d by approximately 0.5%. Lithium batteries and supercapacitors exhibit comparable effects
in improving d, while hybrid energy systems demonstrate superior performance in reducing d compared to
other single-energy storage methods. When λ ranges from 6.0–7.0, a gradual decreasing trend in d is found.
When λ is low, the wind turbine blades rotate slowly relative to wind speed, resulting in inefficient conversion
of wind energy into rotational energy. This leads to reduced aerodynamic efficiency of the blades, unstable
power output, and the inability of battery energy storage to promptly accommodate system power changes,
resulting in a large d. Supercapacitors more effectively suppress short-term voltage fluctuations due to their
rapid response capabilities, although fluctuations may persist over longer timescales. When λ is excessively
high, the blade speed becomes too fast, subjecting the blade tip to significant aerodynamic resistance
and eddy current loss. Consequently, a portion of the wind energy cannot be effectively converted into
mechanical energy. In this scenario, the fan’s aerodynamic efficiency is poor, and power output fluctuations
are more severe. Supercapacitors can respond to power fluctuations rapidly and reduce d, but d may remain
substantial due to the inherent volatility of wind speed and power changes. Battery energy storage may
face slow response issues, potentially resulting in more pronounced voltage fluctuations. Hybrid energy
storage combines the long-term energy regulation capabilities of lithium batteries with the advantages of
supercapacitors in rapidly responding to short-term power fluctuations, achieving effective suppression of d.

Fig. 7 illustrates that cos φ exhibits the most rapid growth rate when λ is in the 3.0–4.0 range. The
growth rate tends to decelerate around 5.0. Although hybrid energy storage can continue to enhance the
system’s power factor, with the maximum value exceeding 0.90, in this range, lithium batteries demonstrate
a marginally superior improvement effect compared to supercapacitors. The current speed and cos φ are
correlated. The frequency and current generated by the permanent magnet synchronous generator are
directly influenced by its rotational speed. If the rotational speed is below the rated speed, the power factor
will be affected due to distortion in the output current and frequency fluctuations. The primary function of
energy storage is to improve power quality and mitigate system volatility.
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Figure 6: Comparison diagram of voltage fluctuations of different energy storage forms

Figure 7: Comparison diagram of power factors of different energy storage forms

Fig. 8 demonstrates that, without energy storage, the frequency deviation ratio progressively decreases
as λ rises, then slightly increases after λ reaches 3.7. Upon the addition of an energy storage device, the
frequency deviation ratio drops to 0.25. Hybrid energy storage exhibits a superior improvement effect
compared to single energy storage options, with supercapacitors showing a marginally better effect on
reducing frequency deviation than heat storage and lithium batteries. Heat storage and lithium batteries
demonstrate comparable effects in lowering the frequency deviation ratio. This experiment, conducted in a
wind tunnel, provides a more realistic simulation of wind speed fluctuations and volatility. As λ increases
significantly, the system experiences high-frequency power fluctuations. Supercapacitors can provide rapid
and sufficient power in short periods, thereby suppressing frequency fluctuations caused by wind speed
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variations. The hybrid energy storage system can more effectively manage power fluctuations and frequency
deviations across different time scales. Consequently, supercapacitors are particularly effective in handling
frequency deviations, especially those involving high-frequency, rapid power fluctuations, while lithium
batteries and thermal energy storage address energy management over longer time scales.

Figure 8: Comparison diagram of frequency deviation ratios of different energy storage forms

In conclusion, the hybrid energy storage system, which combines different energy storage devices
such as batteries and supercapacitors, offers distinct advantages over single energy storage solutions. This
system enhances the ability to manage load fluctuations and wind power instability, thereby mitigating
economic losses associated with power supply interruptions. Moreover, it circumvents the need for higher
capacity redundancy often required by single energy storage devices, thus reducing initial investment costs.
From a frequency-domain perspective, the hybrid energy storage system minimizes battery cycle depth
by allocating high-frequency power fluctuations to rapid-response supercapacitors, while low-frequency
fluctuations are managed by the battery. This strategic distribution extends battery service life and reduces
long-term operational expenses.

3.3 Correlation Analysis of Power Quality and Power Spectrum Characteristics
This research analyzed the fluctuations of wind power output and their effects on system stability,

investigating how energy storage systems could effectively mitigate power fluctuations while enhancing
the system’s power quality. The hybrid energy storage system was influenced by the power quality indices,
energy storage capacity, and system volatility. The study examined the current signal of the generator at
the rated speed and its power spectrum. The figure below shows a comparison between different energy
storage modes and the single-phase current spectrum without energy storage. After the generator reaches
the rated speed, the fundamental frequency is 50 Hz. Due to wind speed fluctuations, the generator-side
power signal produces 5th, 7th, 11th, and 13th harmonics, as well as some interharmonics, under no-storage
conditions. Upon introduction of the energy storage system, the harmonic energy decreases due to the
energy’s fundamental frequency. Fig. 9 demonstrates that the lithium battery primarily suppresses harmonics
in the 0–255 Hz frequency range. Notably, the fifth harmonic is suppressed, with its amplitude decreasing
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from 0.77 to 0.5, resulting in a harmonic reduction ratio of 60%. In Fig. 10, the suppression range of heat
storage is mainly concentrated in the 250–500 Hz range. Similarly, Fig. 11 reveals that after adding the
supercapacitor, the highest frequency harmonics are suppressed, the 11th harmonic frequency is reduced,
and the 13th harmonic experiences the largest decline, with its amplitude approaching zero. The frequency
spectrum characteristics of the generator’s output current signal align with the simulation results of the wind
turbine’s three-phase current in the previous simulation system, confirming that energy storage can reduce
the signal’s harmonic energy and increase the proportion of fundamental wave energy.

Figure 9: Spectrum comparison between lithium battery and no-energy storage

Figure 10: Spectrum comparison between heat storage and no-energy storage
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Figure 11: Spectrum comparison between supercapacitor and no-energy storage

Moreover, Fig. 12 presents the variance comparison of PSD with various energy storage frequencies.
Without energy storage, the system frequency deviation exceeds the fluctuation, with the frequency deviation
ratio surpassing ±0.005 at certain points. The addition of energy storage devices notably mitigates frequency
deviation ratio fluctuations. Lithium batteries demonstrate the most significant reduction in frequency
deviation ratio, while heat storage and supercapacitors exhibit relatively higher ratios at specific moments.
The variance of the system frequency deviation PSD decreases from 0.000790228 without energy storage
to 0.000520593 for heat storage, 0.000507921 for lithium batteries, and 0.000585 for supercapacitors. The
introduction of energy storage devices gradually stabilizes the system frequency. Key observations include:

(1) Following the conversion using Eq. (1), the current signal and THDi of the generator increase, primar-
ily due to the influence of harmonics and frequency. The increase in each harmonic content leads to an
increase in overall distortion. This phenomenon is attributed to the converter’s on-off operation, which
produces a non-sinusoidal waveform, resulting in a three-phase electric current containing multiple
frequency components of the complex waveform, including harmonic components. This process of
harmonic generation was previously discussed by Reference [30]. Notably, the harmonic amplitude
decreases as the harmonic order increases [31]. Concurrently, wind speed variability causes fluctuations
in wind power, which subsequently affects the wind turbine’s output power. These rapid fluctuations
in power output contribute to the distortion of the system’s harmonic current and voltage waveforms.

(2) The impact of voltage fluctuation primarily manifests in wind speed variations, which subsequently
affect wind turbine power output. After rectification, the bus voltage also changes, increasing inter-
harmonic content corresponding to the rise of PSD (Vn), resulting in varying degrees of voltage
fluctuations. In the hybrid energy storage system, wind speed randomness influences the system’s
energy balance. Through precise control of the energy storage system, internal energy can be rapidly
transformed to meet the system’s energy balance requirements, maintain stable voltage at the load end,
and enhance power quality [32]. These findings align with the simulation results of voltage fluctuation
caused by energy storage charge and discharge cycles.

(3) The energy storage device rapidly responds to wind power system demands, balancing fluctuations
by absorbing or releasing energy, thereby reducing system frequency deviations. As illustrated by
the power spectrum analysis in Figs. 9–12, the incorporation of energy storage redistributes energy
across frequency bands, enhancing fundamental frequency energy while decreasing the variance of
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the system frequency deviation PSD. This results in improved system frequency stability and power
quality. Consequently, effective configuration and control strategies for the energy storage system are
critical for maintaining power grid frequency stability.

(4) The generation of harmonics in the system leads to distortion power D, resulting in a significant phase
offset between the terminal voltage and current. This offset causes the power factor to decrease below
the neutral value of 0.9. The power factor is a crucial characteristic of power users, as a lower value
can unnecessarily burden synchronous generators and electric transmission lines [33]. In wind power
hybrid energy storage systems, odd harmonics are frequently generated due to wind power fluctuation
and converter influences. A higher harmonic content leads to a lower PSD (I1), increased distortion
power D, and a larger phase offset. However, the energy storage system demonstrates a notable capacity
to suppress harmonics, thereby enhancing the power factor and improving overall power quality.

Figure 12: Variance comparison of PSD with different energy storage frequency deviations

4 Multi-Objective Optimization
This section elucidated the relationships between the system signal value and the power quality indices

by modifying the order of the AR model in power spectrum estimation parameters. Through Matlab
algorithm programming, this relationship was applied to NSGA-II, MOEA/D, and GA+Pareto optimization
algorithms to optimize the power quality indices. This process enabled the system to explore multiple
solution combinations, aiming to achieve optimal performance across various power quality metrics. The
specific optimization process is illustrated in Fig. 13.

The optimization algorithm incorporated four power quality indices: frequency deviation, THDi, cos φ,
and d%. These indices served as objective functions f 1, f 2, f 3, and f 4, respectively. The objective function
relationships were derived from Eqs. (9), (11), (13) and (18), based on which the following multi-objective
function was formulated:

f = f ( f1 , f2, f3, f4)
=min [ f1 + f2 − f3 + f4]

(19)

The specific decision variables encompassed the AR model order, wind speed, and wind power.
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Figure 13: NSGA-II multi-objective optimization flow chart

Simultaneously, several constraints were implemented to ensure the accuracy and stability of power
spectrum estimation. The order n of the AR model was subject to the following constraint:

45 ≤ n ≤ 75 (20)

THDi was calculated using the following equation:

0 ≤ THDi ≤ 12% (21)
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The voltage fluctuation was determined based on

∣d∣ ≤ 7% (22)

The wind speed range was calculated using Eq. (23) to ensure the feasibility, practicability, and safety of
the power quality optimization results.

7m/s ≤ v ≤ 9m/s (23)

The algorithm iterated 500 times, with the distance between individuals reflecting the algorithm’s
diversity and convergence. A higher number of individuals with large distances indicates greater diversity,
while a higher number of individuals with small distances and high aggregation suggests stronger correlation
and improved convergence. Tables 1 and 2 illustrate the diversity and convergence of the three algorithms for
orders 45 and 75, respectively. Following multi-objective optimization, the distribution of optimal solutions
for different objective functions was depicted in three-dimensional space, as shown in Fig. 14.

Table 1: Diversity and convergence for an AR model order of 45

Distance NSGA-II MOEA/D GA + Pareto
0–0.2 445 455 454

0.2–0.4 35 37 33
0.4–0.6 10 4 10
0.6–0.8 7 4 3
0.8–1.0 1 1 0
1.0–1.2 2 0 0

Table 2: Diversity and convergence for an AR model order of 75

Distance NSGA-II MOEA/D GA + Pareto
0–0.2 427 440 435

0.2–0.4 37 40 39
0.4–0.6 19 8 16
0.6–0.8 12 9 8
0.8–1.0 3 1 1
1.0–1.2 2 2 1

(1) Diversity analysis results

As the order of the AR model increases from 45 to 75, the number of high-distance individuals utilized
to measure the relative differences in the target space significantly increases. This observation indicates that
the algorithm can explore more diverse solutions, thereby enhancing the likelihood of identifying the global
optimal solution. Irrespective of the AR model order, NSGA-II consistently demonstrates a higher number
of individuals in the high-distance interval (0.6–1.2) compared to MOEA/D and GA + Pareto. This suggests
that NSGA-II maintains superior diversity in its solution set.
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Figure 14: Distribution of optimal solutions of the three algorithms

(2) Convergence analysis results
At an order of 45, NSGA-II exhibits marginally fewer individuals in the 0–0.2 distance range com-

pared to MOEA/D while showing similar performance to GA + Pareto. When the order increases to 75,
MOEA/D performs superior to NSGA-II in the low-distance range. Overall, the MOEA/D algorithm displays
higher convergence.
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(3) Optimal solution analysis results

Fig. 14 shows the distribution of optimal solutions for different objective functions in a three-
dimensional space. In Fig. 14a, the AR model has an order of 45, while in Fig. 14b, the AR model has an
order of 75. The results indicate that when the order of the AR model increases from 45 to 75, the number
of optimal solutions for each power quality index increases by 36%, and the clustering degree of different
solutions is also higher. Compared to the other two algorithms, NSGA-II demonstrates greater diversity, with
a more uniform distribution of different solutions. The number of NSGA-II’s solutions with cos φ exceeding
0.9 is significantly higher than that of the other two algorithms, achieving optimal power quality indices of
THDi (4.62%), d% (3.51%), and cos φ (96%). MOEA/D exhibits higher convergence, with a more aggregated
distribution of different solutions, and demonstrates optimal power quality indices of 5.03%, 3.58%, and
95%, although including solutions with cos φ below 0.9. The GA + Pareto algorithm yields inferior optimal
solutions compared to the other two algorithms.

5 Conclusion
This study employed the correlation theory of spectra, PSD, and random signal power spectra to

derive the relationships between the system’s output power quality indices and PSD. These relationships
were subsequently validated through experimental and simulation methods. Ultimately, the established
relationships were utilized for multi-objective optimization, where various optimization algorithms were
compared to achieve optimal system power quality. The specific conclusions are as follows:

(1) Correlation between power quality and power spectrum

Wind power variability contributes to power quality fluctuations by influencing the PSD. This impact
manifests as increased frequency deviation, heightened voltage fluctuation, elevated THDi, and reduced
power factor (cos φ). The integration of energy storage equipment significantly mitigates system frequency
fluctuations and harmonic components while improving the power factor. These results underscore the
critical role of energy storage in optimizing power quality.

(2) Optimization effect of energy storage system on power quality

Lithium batteries and supercapacitors substantially enhance system stability by swiftly responding to
power fluctuations induced by wind speed variations, effectively mitigating THDi and d%. The hybrid
energy storage system integrates the long-term energy regulation capacity of lithium batteries with the rapid
response capability of supercapacitors. This combination achieves notable improvements in power quality
across multiple time scales, particularly in diminishing harmonic distortion rates and voltage fluctuations.

(3) Comparison of multi-objective optimization algorithms

As the order of the AR model increases, the diversity and convergence of the three algorithms
significantly improve. From the perspective of optimal solution distribution, NSGA-II demonstrates the best
diversity performance, while MOEA/D exhibits superior convergence. However, practical applications reveal
that despite its enhanced convergence, MOEA/D is less effective than the NSGA-II algorithm in obtaining the
optimal solution. The optimum power quality indices achieved by NSGA-II are as follows: THDi of 4.62%,
d% of 3.51%, and cos φ of 96%.

This study uniquely combines PSD theory with power quality optimization, proposing a multi-objective
optimization framework. This approach not only addresses the impact of wind power fluctuation on power
quality but also offers a novel perspective for optimal energy storage system configuration. Future research
directions include: (1) investigating the integration of wind, solar, and other renewable energy sources with
energy storage systems to optimize overall power quality and operational efficiency in multi-energy systems;
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(2) developing more efficient energy management strategies and equipment optimization models to extend
the lifespan of energy storage devices while considering the impact of frequent harmonic suppression; (3)
exploring optimization algorithms in complex, multi-objective environments to address high-dimensional
and real-time dynamic power quality optimization challenges; and (4) comprehensively evaluating the
environmental and economic benefits of energy storage systems to provide multi-dimensional decision
support for energy storage equipment deployment.

Acknowledgement: Sincere thanks are due to Professor Caifeng Wen of Inner Mongolia University of Technology for
providing lots of constructive suggestions.

Funding Statement: This research was funded by: the Inner Mongolia Nature Foundation Project, Project number:
2023JQ04.

Author Contributions: The contributions to this paper are as follows: research idea and design: Jian Gao, Caifeng
Wen; data collection: Hongliang Hao, Yongsheng Wang, Yuwen Zhang; results analysis and interpretation: Jian Gao,
Zhanhua Han, Edwin E. Nyakilla; first draft: Jian Gao, Caifeng Wen. All authors reviewed the results and approved the
final version of the manuscript.

Availability of Data and Materials: Data is available on request from the authors. The data that support the findings
of this study are available from the corresponding author, upon reasonable request.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Nomenclature
PSD Power spectral density (W/Hz)
RMS Root mean square
THDi Total harmonic distortion rate of current
dRMS Effective value of voltage fluctuation
cos φ Power factor
N Signal sequence length
Δt Sampling interval (s)
Fs Sampling frequency (Hz)
∣x∣ Amplitude after discrete Fourier transform
Δ f Sample frequency (Hz)
X∗i ( f ) Complex conjugate of the frequency domain signal
Sw ( f ) PSD of wind power fluctuation
σ 2

y Variance of the system frequency deviation PSD
T System time inertia constant
β Load-frequency characteristic coefficient
I1 Effective value of fundamental current (A)
In RMS of the n-th harmonic current (A)
PSD (I1) PSD corresponding to the effective fundamental current
PSD (In) PSD corresponding to the n-th effective harmonic current
cos φ1 Fundamental power factor
m Relative amplitude of interharmonics
fi Fundamental frequency (Hz)
fiH Interharmonic frequency (Hz)
Δ fi Deviation between fiH and fi (Hz)
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θiH Phase angle
T0 Fundamental period
V1 Fundamental voltage amplitude (V)
Vn n-th interharmonic voltage amplitude (V)
λ Tip speed ratio
FFT Fast Fourier transform
AR Modern power spectrum estimation—autoregressive model
GA + Pareto Genetic Algorithm + Pareto frontier search
NSGA-II Non-dominated Sorting Genetic Algorithm-II
MOEA/D Multi-Objective Evolutionary Algorithm Based on Decomposition
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