
echT PressScience

Doi:10.32604/ee.2025.060945

ARTICLE

CCHP-Type Micro-Grid Scheduling Optimization Based on Improved
Multi-Objective Grey Wolf Optimizer

Yu Zhang*, Sheng Wang, Fanming Zeng and Yijie Lin

College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, China
*Corresponding Author: Yu Zhang. Email: 2002079@glut.edu.cn
Received: 13 November 2024; Accepted: 20 January 2025; Published: 07 March 2025

ABSTRACT: With the development of renewable energy technologies such as photovoltaics and wind power, it has
become a research hotspot to improve the consumption rate of new energy and reduce energy costs through algorithm
improvement. To reduce the operational costs of micro-grid systems and the energy abandonment rate of renewable
energy, while simultaneously enhancing user satisfaction on the demand side, this paper introduces an improved multi-
objective Grey Wolf Optimizer based on Cauchy variation. The proposed approach incorporates a Cauchy variation
strategy during the optimizer’s search phase to expand its exploration range and minimize the likelihood of becoming
trapped in local optima. At the same time, adopting multiple energy storage methods to improve the consumption rate
of renewable energy. Subsequently, under different energy balance orders, the multi-objective particle swarm algorithm,
multi-objective grey wolf optimizer, and Cauchy’s variant of the improved multi-objective grey wolf optimizer are used
for example simulation, solving the Pareto solution set of the model and comparing. The analysis of the results reveals
that, compared to the original optimizer, the improved optimizer decreases the daily cost by approximately 100 yuan,
and reduces the energy abandonment rate to zero. Meanwhile, it enhances user satisfaction and ensures the stable
operation of the micro-grid.
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1 Introduction
With the continuous development of technology, renewable energy has played an important role in

micro-grids, reducing the consumption of fossil fuels and carbon emissions, and enhancing the envi-
ronmental friendliness of micro-grid systems [1]. At the eleventh meeting of the Central Finance and
Economy Commission, China explicitly put forward the proposal of developing distributed smart grids [2].
Combined cooling heating and power (CCHP) micro-grids, in line with this proposal, are expected to
become a major mode of end-of-pipe energy supply in the future. They can realize efficient utilization
of primary energy, reduce pollutant emissions, and improve the reliability of energy supply through the
complementary interactions between internal cooling, heating, and power [3]. To promote CCHP-type
micro-grids, it is indispensable to solve the following optimization problems: reduce the operating costs
and the rate of renewable energy abandonment, and provide sufficient energy supply to the users. The
micro-grid system has many parameters and a complex structure, each independent variable has different
constraints, the traditional derivation of function optimization is too difficult and ineffective, and even part
of the function cannot be derived. So the search for a new function optimization method for micro-grid
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scheduling optimization is of great significance, such as the particle swarm optimizer [4] and the grey wolf
optimizer [5].

These optimization problems for CCHP-type micro-grids have been studied at home and abroad.
Yuan Quan reduced the operating cost of CCHP-type micro-grid systems by establishing a peer-to-peer
transaction model for multiple micro-grids [6]. Zou Chao et al. optimized the economic and environmental
costs of micro-grids under multiple constraints with an improved particle swarm optimizer [7]. Du Xiaoting
used a genetic algorithm to optimize the load profile on the customer side, making the output of each
micro-source relatively balanced [8]. However, all of the above literature used only a single energy storage
method and did not describe the utilization rate of renewable energy. Literature [9] established a CCHP and
electricity-to-gas model and reduces the modeled wind abandonment through a hybrid gravity algorithm
and random forest regression while reducing the environmental cost and improving the economic efficiency,
but it is not involved in the user-side satisfaction. Meng Xian et al. considered hybrid energy storage
charging and discharging strategies to reduce costs and improve satisfaction, although it only considered
wind power as a renewable energy source [10]. In [11], Zhao Na et al. adopted a hybrid energy storage
system of batteries and hydrogen storage to reduce the cost and redundancy of micro-grids while improving
the self-balancing rate of the system, but its load side is a single electrical load. In literature [12], Liu
et al. introduced a distributed event-triggered surplus algorithm, rooted in surplus theory and finite time
projection, the algorithm effectively rectifies network imbalances caused by directed graphs and addresses
local inequality constraints. The algorithm greatly reduces the communication burden through the event-
triggering mechanism. Nagarathinam et al. [13] proposed the design of an MPPT system for solar PV
installations using the Differential Grey Wolf Optimizer (DGWO), which can efficiently track the Maximum
Power Point (MPP). This research contributes to the development of advanced MPPT techniques for
improving the efficiency and reliability of solar energy systems. In literature [14], an improved ant colony
algorithm (ACO) dynamic programming (IACODP), incorporating attenuation parameter, and deflection
angle factor, reduces the overall cost of power generation in micro-grid photovoltaic energy storage systems
and enhances optimal operation reliability. However, literature [12–14] only considers photovoltaics as a
single renewable energy source. In reference [15], Yan et al. presented a Modified version of the Chaos
Grasshopper Algorithm (MCGA) as a solution to minimize the overall daily electricity price in an integrated
clean energy micro-grid, incorporating fuel cell, battery storage, and photovoltaic systems. Notably, the
MCGA approach exhibits high precision, flexibility, and adaptability to power prices and environmental
constraints, leading to accurate and flexible solutions. In literature [16], Li et al. adopted a shared hydrogen
storage strategy for solving the supply-demand imbalance within a micro-grid, which effectively reduces the
total cost to the user and shows better economic advantages. Both references [15] and [16] have reduced
the economic cost of micro-grids, but have not taken into account user satisfaction. In literature [17],
Pang et al. proposed a nonlinear control parameter combination adjustment strategy for pure algorithmic
improvement to speed up the convergence of the algorithm. But does not mention the problem that the grey
wolf optimizer is prone to fall into local optimum. In literature [18], Özbay et al. proposed chaotic opposition-
based learning ARO (COARO), an improved version of the ARO algorithm, the convergence speed of the
algorithm increases and it explores the search space better. Summarize the literature as shown in Table 1.

As shown in Table 1, current research neither integrates wind and solar power generation nor explores
multiple objectives. Additionally, the issue of the emerging Grey Wolf Optimizer falling into local optima
remains unresolved. To address this research gap, this paper adopts a hybrid energy storage CCHP-
type micro-grid as the model, expanding the scope of the investigation. Algorithmic improvements are
implemented to reduce the likelihood of the Grey Wolf Optimizer becoming trapped in local optima.
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Table 1: Advantages and limitations of the literature

Literature Advantages Limitations
[6] Establishing a peer-to-peer transaction model for

multiple micro-grids
Only a single

energy storage
method

[7] Optimized the economic and environmental costs
of micro-grids under multiple constraints with an

improved particle swarm algorithm
[8] Used a genetic algorithm to optimize the load

profile on the customer side, making the output of
each micro-source relatively balanced

[9] Establishes a CCHP and electricity-to-gas model,
and reduces the modeled wind abandonment
through hybrid gravity algorithm and random

forest regression, while reducing the environmental
cost and improving the economic efficiency

Not involved in the
user-side

satisfaction

[15] Presents a Modified version of the Chaos
Grasshopper Algorithm (MCGA) as a solution

[16] Adopts a shared hydrogen storage strategy for
solving the supply-demand imbalance within a

micro-grid
[11] Adopted a hybrid energy storage system of batteries

and hydrogen storage
Only electrical

load
[10] Considered hybrid energy storage charging and

discharging strategies as a way to reduce costs and
improve satisfaction

A single renewable
energy source

[12] Introduces a distributed event-triggered surplus
algorithm, rooted in surplus theory and finite time

projection
[13] Proposes the design of an MPPT system for solar

PV installations using the Differential Grey Wolf
Optimizer

[14] An improved ant colony algorithm (ACO) dynamic
programming (IACODP), incorporating

attenuation parameter

Building upon the aforementioned research, this paper proposes a hybrid energy storage CCHP-type
micro-grid model incorporating batteries, super-capacitors, and hydrogen storage. The renewable energy
sources considered include photovoltaic and wind power. The objective functions are defined as minimizing
the operating costs of the micro-grid, maximizing user-side satisfaction, and minimizing the abandonment
rate of renewable energy. Enhancements to the multi-objective Grey Wolf Optimizer are introduced
and implemented, accompanied by simulation comparisons and a comprehensive analysis of the results.
Finally, under the aforementioned micro-grid model, two balanced sequences—Cold-Heat-Electricity and
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Cold-Electricity-Heat—are considered scenarios. The multi-objective particle swarm optimizer, the multi-
objective grey wolf optimizer, and the multi-objective grey wolf optimizer enhanced by Cauchy’s variant are
employed to obtain the results, thereby verifying the scientificalness and effectiveness of both the model and
the improved algorithm.

2 Micro-Grid Structure and Mathematical Model

2.1 CCHP-Type Micro-Grid Modifications and Structure
Traditional hybrid energy storage systems typically rely on a single form of electric energy storage, such

as batteries or super-capacitors, which cannot simultaneously meet the diverse demands of the power system.
In contrast, the combination of electric energy storage and hydrogen energy storage offers complementary
advantages, enhancing system performance and optimizing wind-solar power utilization [19]. Hydrogen
storage has the advantages of long storage time, high energy density, no pollution, etc. [11], and environmental
friendliness is very high, but also improves the rate of consumption of renewable energy, so this paper adds
hydrogen storage as the third energy storage method.

The structure of the CCHP-type micro-grid established in this paper is shown in Fig. 1 below, which
consists of a power generation part, an energy storage part, and an auxiliary part. The power generation part
includes photovoltaic cells, wind turbines, and gas turbines. The energy storage part includes batteries, super-
capacitors, hydrogen storage, and heat storage tanks. The auxiliary parts include electric heating, waste heat
boilers, lithium bromide absorption chillers, and split air conditioners.

Figure 1: Structure of CCHP micro-grid
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2.2 Mathematical Modeling of Energy Storage Micro-Sources
The mathematical model of the battery [10] is:

Eb = NbCbUb/103 (1)
Ebmin = NbCbUb (1 −Ddepth) /103 (2)
Pb = NbCbUb/104 (3)

In Eqs. (1)–(3), Eb is the rated capacity of the battery pack; Nb is the number of batteries; Cb is the rated
capacity of the battery; Ub is the rated voltage of the battery; Ebmin is the minimum capacity of the battery
pack; Ddepth is the maximum depth of discharge; and Pb is the rated value of the output power.

Mathematical modeling of super-capacitors [10] for:

Ecmax = 0.5NcCcU 2
c max/ (3.6 × 106) (4)

Ecmin = 0.5NcCcU 2
cmax/ (3.6 × 106) (5)

Pcmax = NcUcmaxIcmax/103 (6)

In Eqs. (4)–(6), Ecmax, Ecmin: maximum capacity and minimum capacity of super-capacitor, respectively;
Nc is the number of super-capacitor; Cc is the electric capacity; Ucmax, Ucmin: the maximum and minimum
voltage of super-capacitor, respectively; Pcmax is the maximum output power; Icmax is the maximum
operating current.

Mathematical Modeling of Hydrogen Energy Storage [11] for:

Pq = Pe−cηq (7)
Pr = Pc−rηr (8)

In Eqs. (7) and (8), Pq is the hydrogen power output from the electrolyzer; Pe-c is the electric power
input to the electrolyzer; ηq is the electrolyzer efficiency; Pr is the output power of the fuel cell; Pc-r is the
hydrogen power input to the fuel cell; ηr is the fuel cell efficiency.

2.3 Mathematical Modeling of the Objective Function
2.3.1 System Operating Costs

The cost of operating the micro-grid system in this paper consists of two parts: the system maintenance
cost and the pollution control cost. The system maintenance cost includes the generation cost of the
photovoltaic cells and the wind turbine, the maintenance cost of the micro-sources in the system, the gas
purchase cost, and the power purchase cost of the power grid. Pollution control cost includes the pollutant
control cost generated when the gas turbine is running and the pollutant control cost generated when
interacting with the power grid. Calculate the cost per hour and summarize it as the cost required for system
operation. The mathematical expression for the operating cost of the system is:

f1 =min (Cwh + Cwr) (9)

Cwh = ∑
24
i=1 {Ppv, i ∗ apv + PW, i ∗ aW +∑

N
j=1 ∣Pj∣ ∗ a j +Cgas ∗

PMT, i

ηMTE
}

i
(10)
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Cwr = ∑
24
i=1 {∑

n
k=1 (WMT,k ∗ PMT, i +Wg,k ∗ Pg,k) ∗ Ck}i (11)

In Eqs. (9)–(11), Cwh is the 24-h maintenance cost of the system; Cwr is the 24-h pollution control
cost of the system; i is time quantum; Ppv, i, PW, i: the photovoltaic power and wind power in the i time
period, respectively; apv,aW: the unit prices of photovoltaic power generation and wind power generation,
respectively; Pj is the power of micro-source j; aj is the maintenance unit cost of micro-source j; Cgas is the
price of natural gas; PMT,i is the power of gas turbine; ηMTE is the efficiency of the gas turbine; k is the type
of pollutant gas emitted; WMT,k is the emission coefficient of the kth pollutant gas of the gas turbine; Wg,k is
the emission coefficient of the kth pollutant gas of the main grid; Pg,k is the power to buy electricity from the
main grid (0 when electricity is sold); and Ck is the unit cost of treatment of the pollutant gas.

2.3.2 Renewable Energy Abandonment Rate
When the supply of energy exceeds the demand for the current time period, the excess is treated as

abandoned energy, and the abandoned energy is considered as part of the renewable energy sources. The
energy abandonment rate is calculated as the ratio of the total abandoned energy to the sum of the renewable
energy sources. The energy abandonment rate can show the degree of utilization of renewable energy and is
an important indicator in the process of micro-grid operation. The mathematical expression for the energy
abandonment rate is:

f2 =min
⎛
⎝

∑24
i=1 ∣Pqi, i ∣

∑24
i=1 (Ppv, i + Pw, i)

⎞
⎠

(12)

In Eq. (12), Pqi,i is the discarded energy for the i time period, which is negative.

2.3.3 User Satisfaction
User satisfaction is related to the sum of energy shortages per time period, and user satisfaction

decreases when the micro-grid is short of energy, in other words, when the energy supply is insufficient to
meet the load. The mathematical expression for user satisfaction is:

f3 =max(1 − ∑24
i=1 Pque, i

∑24
i=1 (PP, i + PT, i + PC, i)

) (13)

In Eq. (13), Pque,i is the energy deficit in the i time period; PP,i, PT,i, PC,i: the electric load, heat load and
cooling load in the i time period, respectively.

2.4 Constraints
To satisfy users’ demands for heating, cooling, and electricity, enhance user satisfaction, and ensure

the stable operation of the micro-grid, it is must that the system consistently adhere to the constraints of
electrical load, thermal load, cooling load, and the upper and lower power limits of each micro-source.

The electrical load constraint means that the generation of renewable energy, the charging and discharg-
ing of each energy storage, the power consumption of each micro-source, the power interacting with the
larger grid, and the possible lack or abandonment of power have to be equal to the electrical load in total.
The electrical load constraint of the system during the time period is:

Ppv, i + PW, i + PMT, i − Pxu, i − Pdr, i − Pqin, i + Pg, i + Qec, i + Qeh, i + Pqi_E, i + Pque_E, i = PP, i (14)
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In Eq. (14), Pxu,i, Pdr,i, Pqin,i: the output power of battery, super-capacitor and hydrogen storage during
the i time period, where charging of battery, super-capacitor and hydrogen storage is positive and discharging
is negative; Pg,i is the power of the interaction power with the power grid during the i time period,
where purchasing power is positive and selling power is negative; Qec,i, Qeh,i: the power output to split air
conditioning and electric heating during the i time period, respectively; Pqi_E,i , Pque_E,i: the power shortage
and power abandonment of the system during the i time period, respectively.

The heat load constraint means that the power of the waste heat boiler, the charging and discharging
power of the heat storage tank, and the possible lack of heat or heat abandonment in total should be equal
to the heat load. The heat load constraint of the system during the i time period is:

Pbl, i + Qeh, i + EEST , i + Pqi_T, i + Pque_T, i = PT, i (15)

In Eq. (15), Pbl,i, EEST,i: the power of the waste heat boiler as well as the heat storage tank during the
i time period, where the heat storage tank is negative for heat storage and positive for heat release; Pqi_T,i ,
Pque_T,i: the power of the system’s lack of heat and abandoned heat during the i time period, respectively.

Cold load constraint means that the combined power of the lithium bromide absorption chiller and the
possible lack of or abandoned cooling power should be equal to the cold load. The cold load constraint of
the system during the i time period is:

Qec, i + Pac, i + Pque_C, i + Pqi_C, i = PC, i (16)

In Eq. (16), Pac,i is the power of the lithium bromide absorption chiller in the i time period; Pque_C,i,
Pqi_C,i: the power of the system’s cooling shortage and cooling abandonment in the i time period, respectively.

During micro-grid operation, the power of each micro-source should be between the maximum and
minimum values of the micro-sources [19]:

Pj ,min ≤ Pj , i ≤ Pj ,max (17)

In Eq. (17), Pj,min is the minimum operating power of the micro-source j. Pj,i is the actual operating
power of the micro-source j; Pj,max is the maximum operating power of the micro-source j.

3 Multi-Objective Algorithm and Improvements

3.1 Multi-Objective Algorithms
The Multiple Objective Particle Swarm Optimization (MOPSO) algorithm is commonly used to solve

optimization problems. It has the following characteristics: does not depend on the problem information and
uses real numbers for the solution; the algorithm is highly general; the principle is simple and few parameters
need to be adjusted. Its updated formula is:

V k+1
id = ωV k

id + c1r1 (Pk
id − Xk

id) + c2r2 (Pk
gd − Xk

id) (18)

Xk+1
id = Xk

id + V k+1
id (19)

In Eqs. (18) and (19), ω is the inertia weight; r1, r2: random numbers in the interval [0, 1]; k is the current
iteration number; Pid

k is the individual optimal particle position; Pgd
k is the group optimal particle position;

c1, c2: the weights of local optimization and global optimization, respectively; V is the particle velocity; X is
the particle position.
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Multi-objective Grey Wolf Optimization (MOGWO) is a multi-objective optimization method based
on the Grey Wolf Optimization Algorithm. MOGWO is a new group intelligence optimization algorithm
inspired by the cooperative feeding process of wolf packs in literature [20]. Multi-objective Grey Wolf
Optimization algorithm was proposed on this basis in 2015. Its updated formula is:

Dk
i = ∣C ∗ Xk

p − Xk
i ∣ (20)

Xk+1
i = Xk

p − A∗ Dk
i (21)

In Eqs. (20) and (21), Xp is the current location of the prey; Xi is the location of the grey wolf particles;
C, A are the impact factors and the calculation formulas are shown below:

A = 2aR1 − a (22)
C = 2R2 (23)

a = 2 − 2 × k
kmax

(24)

In Eqs. (22)–(24), R1, R2 are random numbers in the interval [0, 1]; k is the current iteration number.
However, in the face of complex optimization problems, the above commonly used multi-objective

algorithms have a common disadvantage: due to the strong randomness of the particles and the limitations
of the search range, the search accuracy is not high, so the algorithm is easy to fall into the local optimal
solution in the optimization process.

3.2 Cauchy Variant Improved Multi-Objective Grey Wolf Optimizer
In order to expand the search scope and reduce the possibility of the algorithm falling into a local

optimum, Cauchy variation is applied to the multi-objective grey wolf optimizer. Cauchy mutation is a
common mutation strategy used in improved swarm algorithms, which uses the Cauchy distribution to
generate random numbers with long-tailed properties. It aims to enhance the algorithm’s global search
capability and be more helpful in exploring the search space.

The object of Cauchy mutation is the screened first echelon wolf (α wolf β wolf γ wolf), which is
subjected to Cauchy mutation when the preset number of iterations is not reached. Through the Cauchy
mutation increased update formula, expand the search range of the first echelon of wolves, so as to avoid
falling into the local optimum. Cauchy mutation after the improvement of the increase of the update
formula is:

xnew = xold + xold ∗ Cauchy (0, 1) (25)

In Eq. (25), xnew is the position of grey wolf after Cauchy’s mutation; xold is the position of grey wolf
before the mutation; Cauchy(0, 1) indicates the formula of Cauchy’s distribution when the position parameter
is 0 and the scale parameter is 1, and the specific formula is shown below:

Cauchy (0, 1) = 1
π [1 + r2] (26)

In Eq. (26), r is a random number within [0, 1]. The flowchart of the multi-objective grey wolf optimizer
improved by one of the Cauchy variants is shown below in Fig. 2.
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Figure 2: Flowchart of Cauchy mutation improved MOGWO

4 Example Analysis

4.1 Basic Data
The basic data required for the initialization of the CCHP micro-grid model include: wind power as

well as photovoltaic power generation prediction (Fig. 3a); cooling, thermal and electrical loads prediction
(Fig. 3b); parameters of each micro-source of the micro-grid (Table 2) [21]; the price of electricity trading
with the big grid, the unit price of the treatment of the polluted gases (Table 3), and the unit price of natural
gas. The capacity of the storage battery and super-capacitor is preset to be capped at 80 kW/h, the capacity
of the hydrogen storage is capped at 100 kW-h, and the initial capacity is 40 kW/h; the price of trading with
the big grid is fixed at 0.5 yuan kW/h; the price of the natural gas is 0.175 yuan/kW/h; the maximum rate of
climb of the gas turbine is set to 40 kW/h, and the initial power is 80 kW/h. Among the three multi-objective
algorithms, the number of particles is set to 100, the number of iterations is set to 400, and the final Pareto
solution set size is set to 150. The MOPSO inertia weight is set to 0.5, and the overall optimal weight and local
optimal weight are set to 0.7.

The data used in the paper are cited from the literature [19], and the software used for the simulation
experiments is MATLAB R2022a. After setting up the basic data, the multi-objective particle swarm
algorithm, multi-objective grey wolf optimizer, and improved multi-objective are used to optimize the
operation process of the micro-grid to obtain the optimization results, respectively.
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Figure 3: Renewable energy and load forecasting

Table 2: Relevant data of CCHP micro-source

Micro-source Equipment operating
power limit/kW

Lower limit of
equipment operating

power/kW

Maintenance
prices/(yuan/kW/h)

Micro gas turbine 200 0 0.04
Accumulators 40 −40 0.045

Super-capacitor 30 −30 0.045
Electrolyzer 30 −30 0.02

Photovoltaic cell 80 0 0.01
Ventilator 100 0 0.045

Major power grid 150 −150 0.012
Absorption chillers 100 0 0.01
Heat storage tank 200 −200 0.02
Electric heating 80 0 0.02

Split type air conditioner 80 0 0.03
Waste heat boiler 200 0 0.025

Table 3: Unit price and emission coefficient of pollution gas treatment

Pollutant gas type CO2 SO2 NOX

Unit price of treatment (yuan/kg) 0.21 14.824 62.964
Contaminated gas emission factor

(g/kW/h) Micro gas turbine 724 0.0036 0.2

Major power grid 922 2.295 3.583
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4.2 Optimization Results under Two Equilibrium Orders
Two equilibrium orders were selected as scenarios to be optimized separately [22].
In Scenario 1, the order of load balance is cold balance-heat balance-electricity balance, and the

electricity balance is used as the final energy balance. At first, the power to be supplied by the waste heat boiler
is deduced by the cooling and heating loads, and then the energy to be consumed is apportioned by the gas
turbine and the hydrogen storage according to a certain ratio. Through the above power balancing process,
the electric power generated by gas turbine and hydrogen storage is derived. Finally performing the electric
power balancing, and the electric power is stored or sold in case of surplus or purchased through the power
grid in case of shortage. In this scenario, the internal power change of each energy storage micro-source and
the output of the gas turbine after optimization by the improved multi-objective Grey Wolf Optimizer are
shown in Fig. 4.
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Figure 4: Scenario 1: power changes of each energy storage micro sources and gas turbine output after optimization by
the improved GWO

Analyzing Fig. 4 shows that the gas turbine output power rises overall from 1:00 to 9:00, while it
decreases from 9:00 to 11:00, and then rises again and maintains high power output. This shows that the trend
of the gas turbine’s output curve is roughly similar to the trend of the load forecast, i.e., the gas turbine is able
to adjust accordingly with the load change and track the load curve better. The energy storage micro-sources
have relatively uniform power output in each time period, which is conducive to the stable operation of the
micro-grid system.

The optimization results for this scenario are shown in Fig. 5. The data visualization is not performed
because all renewable energy abandonment rates are reduced to zero. The cost of OPSO optimization results
in the best, reduced to below 1800 yuan. The final optimization result of improving OGWO is 1891.7 yuan,
which is lower than the final optimization result of OGWO, 2043.2 yuan. It can be seen that the optimization
result of improving OGWO through Cauchy’s variation is significantly better than that of OGWO; user-
side satisfaction, improves the OGWO optimization results by close to 96%, and the enhancement is higher
than the OGWO and OPSO. The direction of the optimization curves shows that the effects of the three
optimization algorithms have obvious differences: MOPSO has an advantage in optimizing the operating
cost; the optimization result of the improved OGWO algorithm is better than the unimproved one.

In Scenario 2, the load balancing sequence is cold balancing-electric balancing-heat balancing, with
heat balancing as the final energy balance: cold power balancing is the same as in the previous scenario, but
in this scenario, the electric power required for electric loads as well as electric heating and air conditioning
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is calculated firstly. The power needed for gas turbine and hydrogen storage is determined after balancing the
micro-sources of storage and renewable energy sources, and the power needed for gas turbine and hydrogen
storage is filled in by purchasing power from the power grid if it exceeds its upper limit. Otherwise, the waste
heat boiler power is calculated for thermal power balancing. In this scenario, the internal power change of
each energy storage micro-source and the output power of the gas turbine after optimization by the improved
multi-objective Grey Wolf Optimizer are shown in Fig. 6 below.

Figure 5: Scenario 1: optimization curve

Figure 6: Scenario 2: power changes of each energy storage micro sources and gas turbine output after optimization
by the improved GWO

It can be seen that in this scenario the gas turbine does not have a decreasing trend from 9:00 to 11:00,
but rather the power continues to rise, then starts to reduce the power from 19:00 to 22:00. The internal power
of each energy storage micro-source of the micro-grid also decreases compared to Scenario 1, but does not
fluctuate significantly.

The optimization results for this scenario are shown in Fig. 7. The energy abandonment rate is the same
as that of Scenario 1, and the optimization result is reduced to zero. The cost is still the optimal result obtained
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by OPSO optimization, which is between 1700 yuan and 1800 yuan, and the optimization result of improved
OGWO is better than that of OGWO; the satisfaction is similar to that of scenario one. From the optimization
results, it can be seen that the optimization results of the three algorithms in this scenario are not significantly
different from the previous scenario.

Figure 7: Scenario 2: optimization curve

5 Conclusion and Outlook

5.1 Conclusion
In this paper, by building a CCHP-type micro-grid model with added hydrogen storage, taking the

lowest system operating cost, the highest user satisfaction, and the lowest renewable energy abandonment
rate as the objective function, and then utilizing MOPSO, MOGWO, and the improved MOGWO algorithms
to conduct simulation and analysis, which verified the model as well as the algorithms’ scientificity and
validity, and obtained the following conclusions:

(1) Successfully reduces the operating cost of the micro-grid system as well as the renewable energy
abandonment rate compared to the pre-optimization period, while increasing the satisfaction of the user
side;

(2) The three objectives to be optimized have a certain conflict between them, and can not reach their
respective optimum at the same time, in the optimization of the objectives of the same weight, only to find
the relative optimum point;

(3) The multi-objective grey wolf optimizer improved by Cauchy’s variation outperforms the multi-
objective grey wolf optimizer in terms of optimization.

By adopting the improved Grey Wolf Optimizer, the trade-offs between multiple objectives of the
CCHP-type micro-grid can be effectively balanced so as to obtain the relative optimal point, which provides
a reference for the further development of the micro-grid as well as the algorithm research; at the same
time, the reduction of the abandonment rate of renewable energy sources also improves the energy supply
efficiency of the micro-grid.
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5.2 Future Work
(1) The optimization of CCHP-type micro-grid with hybrid energy storage does not only include two

parts: modeling and algorithm optimization, but also the charging and discharging strategy selection of the
hybrid energy storage. The next step will continue to explore the charging and discharging strategy of the
hybrid energy storage in-depth, to obtain better optimization results.

(2) Uncertainty about photovoltaic and wind energy will affect the micro-grid system, and how to cope
with the uncertainty as well as the error will also be our research topic in future research.

(3) In order to realize the transition from theoretical modeling to practical applications, some fac-
tors such as communication delays, control system limitations, and dynamic load variations need to be
considered and solved.
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