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ABSTRACT: Long-term petroleum production forecasting is essential for the effective development and management
of oilfields. Due to its ability to extract complex patterns, deep learning has gained popularity for production
forecasting. However, existing deep learning models frequently overlook the selective utilization of information from
other production wells, resulting in suboptimal performance in long-term production forecasting across multiple
wells. To achieve accurate long-term petroleum production forecast, we propose a spatial-geological perception
graph convolutional neural network (SGP-GCN) that accounts for the temporal, spatial, and geological dependencies
inherent in petroleum production. Utilizing the attention mechanism, the SGP-GCN effectively captures intricate
correlations within production and geological data, forming the representations of each production well. Based on the
spatial distances and geological feature correlations, we construct a spatial-geological matrix as the weight matrix to
enable differential utilization of information from other wells. Additionally, a matrix sparsification algorithm based
on production clustering (SPC) is also proposed to optimize the weight distribution within the spatial-geological
matrix, thereby enhancing long-term forecasting performance. Empirical evaluations have shown that the SGP-GCN
outperforms existing deep learning models, such as CNN-LSTM-SA, in long-term petroleum production forecasting.
This demonstrates the potential of the SGP-GCN as a valuable tool for long-term petroleum production forecasting
across multiple wells.

KEYWORDS: Petroleum production forecast; graph convolutional neural networks (GCNs); spatial-geological rela-
tionships; production clustering; attention mechanism

1 Introduction
Accurate petroleum production forecasting is fundamental for effective oilfield management. It is

essential not only for evaluating production capacity but also for providing a decision basis for reservoir
engineers [1]. A reliable and scientifically grounded long-term production forecasting facilitates the rational
organization of oilfield operations, ultimately helping to achieve strategic objectives. Therefore, accurate
forecasting of long-term petroleum production is crucial for oilfields. However, petroleum production is
affected by various factors, including geology, technology, and economics [2]. It often exhibits non-linear
and non-stationary features, posing a significant challenge to achieving accurate long-term petroleum
production forecasting.

Traditional methods for production forecasting in the petroleum industry include numerical simula-
tion, water flooding characteristic curves, and statistical methods. Numerical simulation is currently the
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most widely employed technique for petroleum production forecasting in oilfields. However, its accuracy
heavily depends on robust history matching and precise geological modeling, often requiring substantial
computational resources [3,4]. Moreover, the requisite parameters are often unavailable in many cases. The
water flooding characteristic curve is another prevalent forecasting method; however, when the water cut
in an oilfield exceeds 90%, the curve tends to undergo upward warping, leading to significant forecasting
errors [5,6]. Furthermore, statistical methods, which determine production by analyzing data, generally
exhibit poor adaptability and computational accuracy [7].

The rapid development of artificial intelligence has provided new perspectives to revisit traditional and
important problems in the petroleum industry [8]. Compared with traditional statistical methods, machine
learning methods can automatically learn data features with higher accuracy and stronger generalization
ability. Noshi et al. [9] used algorithms such as gradient boosting decision tree (GBDT) to screen production-
sensitive features and used the support vector regression (SVR) model to forecast petroleum production.
Ng et al. [10] utilized SVR and feed-forward neural networks (FNNs), integrated with particle swarm
optimization (PSO), to forecast the well production in the Volve field. Although machine learning models
generally perform well, they rely heavily on extensive manual data pre-processing and feature engineering,
which makes it challenging to handle large-scale and high-dimensional data effectively [11].

In recent years, deep learning has gained significant traction in the field of petroleum production
forecasting [12–14]. Recurrent neural networks (RNNs), known for their ability to extract and learn features
layer by layer from raw data, have become a popular choice for this purpose [15]. Ibrahim et al. [16] applied
RNNs to model and forecast the production sequences of oil, water, and gas. Due to the inability of fully
connected neural networks (FCNNs) to directly store and utilize information from previous moments, Wang
et al. [17] employed the long short-term memory network (LSTM) to forecast oil production during high
water cut periods. Cheng et al. [18] analyzed the limitations of the Arps declining curve and combined LSTM
with the gated recurrent unit network (GRU) for oil production forecasting. Additionally, some researchers
have utilized machine learning algorithms to identify key factors influencing production prior to forecasting,
thereby enhancing accuracy. Liu et al. [19] used the mean decrease impurity (MDI) algorithm to identify
the primary factors and then applied LSTM for production forecasting. Conversely, Liu et al. [20] employed
the XGBoost algorithm to screen the key factors of production and utilized a multivariate LSTM model to
forecast production during high water cut periods.

The single RNNs have limitations in extracting potentially complex relationships within production
data. Consequently, researchers have explored methods that integrate RNNs with convolutional neural
networks (CNNs) to extract relevant features more effectively [21,22]. Zha et al. [23] proposed a CNN-
LSTM model, which successfully merges the feature extraction capabilities of CNNs with the sequence
prediction strengths of LSTM. Building on this, Pan et al. [24] introduced a CNN-LSTM-SA model
incorporating the self-attention mechanism to capture correlations among petroleum production data,
enhancing forecasting accuracy.

Those composite models often possess strong feature extraction and sequence forecasting capabilities;
however, they typically focus on achieving great predictive performance for individual production wells.
In the context of multiple production wells within the same study area, those models tend to overlook the
selective utilization of valuable information from other wells, often struggling in the forecasting of long-
term production that exhibits non-stationary features. During the development, there may be similar yet
asynchronous processes of production changes among wells. Selectively integrating these information from
other wells can help the production wells learn the long-term production change patterns that are relevant
to the current well, thus improving the accuracy of long-term production forecasting.
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In this study, we propose a spatial-geological perception graph convolutional neural network (SGP-
GCN). We hypothesize that production wells with similar geological and spatial features are inherently
more likely to exhibit analogous patterns of production change. To capture these relationships, we utilize
geological feature correlations and spatial distances to construct a spatial-geological matrix. This enables
SGP-GCN to perceive the geological and spatial information of production wells, allowing it to selectively
utilize information transmitted from each well. Furthermore, petroleum production is not only influenced
by inherent factors but external factors. To address this, we propose a matrix sparsification algorithm based
on production clustering (SPC). By reducing attention on production wells with significant production
discrepancies, this method optimizes weight distribution within the spatial-geological matrix, ultimately
enhancing the forecasting accuracy of long-term petroleum production.

2 Related Technologies

2.1 Graph Convolutional Neural Network
Graph convolutional networks (GCNs) are a class of deep learning methods designed for graph-

structured data, which have been widely applied to spatio-temporal sequence forecasting, such as infectious
disease forecasting [25,26], crime forecasting [27] and traffic flow forecasting [28,29]. GCNs propagate
information from neighboring nodes to the current node through convolution operations and aggregate the
information to update the node state. This process is referred to as message passing. Through multiple layers
of message passing, GCNs can capture information from multiple order neighbors. The message passing
formulation of GCNs is defined as follows:

H(l+1) = σ (D−1AH(l)W(l)) , (1)

where A is the adjacency matrix of the undirected graph with self-connections, D is the diagonal matrix that
records the degree information of the undirected graph, Dii =∑jAij, W(l) is the trainable weight matrix of the
lth layer, σ(−) is the activation function, H(l) and H(l+1) ∈ RN×E are the node embeddings in the lth and l +
1th layers, respectively, N is the number of nodes, and E is the node embeddings dimension.

2.2 Multi-Scale Dilated Convolutional Network
Convolutional neural networks (CNNs) have exhibited remarkable feature extraction capabilities and

efficient parallel processing performance on lattice and sequence data through learnable filters [30]. Some
researchers have integrated multiple parallel convolutional layers with the same filters but varying step sizes
and dilation rates into a multi-scale dilated convolutional network (MDCN) [31,32]. This approach aims to
capture temporal dependencies at different granularities, enabling the extraction of multiple patterns from
time series data. The multi-scale dilated convolution for one-dimensional data can be defined as:

ds [i] =
L
∑
z=1

xs [i + k × z] × c [z] , (2)

where ds is the output feature vector, xs is the raw feature vector, c is a convolution filter of length L, and k is
the dilation rate. Specifically, we use a set of filters with different k and L to form the MDCN.

2.3 Self-Attention Mechanism
The self-attention mechanism (SA) is a feature extraction method designed to capture global correla-

tions within data, first introduced by Vaswani et al. [33] in 2017. This mechanism generates query (Q), key (K),
and value (V) vectors by linearly transforming the input features. A self-attention score is computed based on
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the similarity between the query and key vectors. The value vector is then weighted and summed to produce
the final output. This approach enables the model to dynamically adjust the weights of different elements,
thereby enhancing its ability to capture correlations within the features more effectively. The self-attention
score α is calculated as:

α (Q , K) = so f tmax (QKT
√

dk
) , (3)

where softmax(−) is the normalized exponential function and dk is the dimension of key vectors.

3 Spatial-Geological Perception Graph Convolutional Neural Network (SGP-GCN)

3.1 Feature Selection
During the development, a substantial amount of data related to production wells is accumulated. Based

on the type and source of the data, it can be categorized into two main types:

• Dynamic production data: This category includes variables such as oil production, water production,
gas production, bottom-hole flow pressure, and water cut. It is derived from production records and
monitoring data, reflecting the energy changes and production status of wells post-commissioning. It
features a large number of samples and exhibits pronounced time series characteristics.

• Static geological data: This includes variables such as permeability, porosity, and oil saturation. It
originates from well logging data and represents the inherent characteristics of reservoirs, closely
correlating with the reserves and production capacity of reservoirs.

Additionally, we selected the average geodetic coordinates of the production wells within each sub-layer
to measure the spatial distances between them.

For the dynamic production data, the MDI feature selection method is employed to analyze the
importance of each feature in relation to production. During this process, we eliminated redundant features
with low importance and retained the remaining features as effective features of dynamic production data.

Related studies have indicated a significant correlation between geological features and produc-
tion [34,35]. Among these, oil saturation and porosity are critical parameters for reserve estimation, while
permeability, effective thickness, and formation pressure are essential components of Dupuit production
formula, as represented in Eq. (4).

Q = 2πKo h(Pe − Pw)
μ ln( Re

Rw
)

, (4)

where Q is the oil production, Ko is the oil permeability, h is the effective thickness, Pe and Pw are the
formation pressure and bottom-hole flow pressure, μ is the viscosity of the oil, and Re and Rw are the drainage
radius and wellbore radius, respectively.

Consequently, oil saturation, porosity, permeability, effective thickness, and formation pressure are
identified as effective features of the static geological data. Due to the limited quantity of well logging records
for each production well, we utilized geological features before production to characterize the geological
relationships between the production wells and to identify those wells that are more likely to provide valuable
information for production forecasting. The SGP-GCN model is constructed based on the data mentioned
above, as illustrated in Fig. 1.
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Figure 1: SGP-GCN model

3.2 Feature Coding
3.2.1 Production Feature Coding Module

For production well i, we define its sliced dynamic production data as Di,pro = [di,1, di,2, . . ., di,T] ∈
R

E×T , where E represents the feature dimension and T represents the time step length. The features of Di,pro
are extracted using MDCN to obtain the dynamic production features Xi,pro = [xi,1, xi,2, . . ., xi,T] ∈ RK×T .
Assuming that K is the dimension of the LSTM hidden state, for each input element xi,t, LSTM performs the
hidden state update as follows:

hi ,t = tanh (wxi ,t +U hi ,t−1 + b) , (5)

where hi,t and hi,t−1 are the hidden state of the LSTM at time t and t − 1, respectively, tanh(−) is the nonlinear
activation function, U ∈ RK×K is the weight matrix, and w, b ∈ RK are the adaptive weights and biases
vector, respectively.

The hidden state at the last moment hi,T is selected as the output of the LSTM. Subsequently, the internal
correlations of the production features is captured by the self-attention layer to obtain the production feature
encoding Hi,pro for production well i:

Hi , pro = αi , proVi , pro , (6)

where αi,pro is self-attention score of hi,T , Vi,pro is linearly transformed vectors generated from the hi,T .

3.2.2 Geological Feature Coding Module
In this module, we employ a self-attention layer to capture the internal correlations within Dgeo, which

leads to the generation of the geological feature code Hgeo.

3.2.3 Spatial-Geological Matrix Coding Module
To construct the geological feature matrix G, we set Gij to represent the correlation between the static

geological features of production well i and production well j, which is calculated as:

Gi j =
f atten(Di , geo) ⋅ f atten(D j , geo)

∣∣ f atten(Di , geo)∣∣ ⋅ ∣∣ f atten(D j , geo)∣∣
, (7)
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where fatten(−) is the spreading function that spreads the static geological features from multi-dimensional
to one-dimensional, and Di,geo and Dj,geo denote the static geological data of the production well i and
production well j, respectively.

To construct the spatial distance matrix S, we set Sij to represent the proximity in spatial distance
between the production well i and production well j, which is calculated as:

Si j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1√
(xi − x j)2 + (yi − y j)2

, i ≠ j

0, i = j
, (8)

where xi and xj represent the average horizontal coordinate of production well i and production well j in each
sub-layer, respectively, and yi and yj are their average vertical coordinate.

After normalizing the matrix S and the matrix G, the corresponding elements are summed to obtain the
spatial-geological matrix A:

Ai j = (
Si j − Smin

Smax − Smin
) + (

Gi j −Gmin

Gmax −Gmin
) , (9)

where Smin and Smax are the minimum and maximum values of the matrix S, and Gmin and Gmax are the
minimum and maximum values of the matrix G, respectively.

3.3 Matrix Sparsification Algorithm Based on Production Clustering (SPC)
In this study, we characterize the relationships between production wells based on spatial distance and

geological feature correlations, constructing the spatial-geological matrix A as the weight matrix. During the
message passing process, each production well assigns different attention weights to information received
from other production wells according to matrix A.

However, petroleum production is influenced by inherent factors, such as geological features, as well
as external factors, such as well stimulation [36]. A comparative analysis of production data indicates
that certain production wells exhibit significant discrepancies in production rates and demonstrate lower
correlations within the production data, despite having relatively high correlations in terms of spatial
and geological features. Such variation suggests that these wells may be impacted by external factors that
limit their effectiveness in improving forecasting accuracy. Within the initial spatial-geological matrix,
information from these wells may still receive disproportionately high attention weights. We refer to this
type of information that has deviated from its intended weight as “deviated information”, and we define the
connections that convey such information as “deviated connections”.

To address this issue, we propose a matrix sparsification algorithm based on production clustering
(SPC), which is designed to sparse the spatial-geological matrix by integrating production clustering with the
attention mechanism. By utilizing the attention mechanism, we selectively eliminate connections between
production wells that belong to different categories within the spatial-geological matrix. This method reduces
the emphasis on production wells that exhibit substantial discrepancies in their production data, as the
deviated information from these wells tends to exert a greater influence on forecasting accuracy. The specific
steps of this process are outlined as follows:

• Set a base threshold: Eliminate connections in matrix A with values below the base threshold, allowing
production wells to prioritize information from other wells that exhibit stronger spatial and geological
feature correlations.
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• Clustering using K-Means: Apply the K-Means clustering algorithm to the production data in the
training set. To achieve optimal partitioning of production data, the silhouette coefficient is used as an
evaluation metric to determine the optimal number of clusters.

• Set an inter-class threshold: After clustering, compute the attention scores between the production data
of each production well using Eq. (3) and sort them accordingly. Based on this, the inter-class threshold
is set to remove connections between production wells belong to different categories that have lower
attention scores, resulting in a sparsified spatial-geological matrix A′.

The SPC allows the SGP-GCN to concentrate more on information from production wells with similar
production change processes during message passing, thereby reducing the negative impact of deviated
information on production forecasting. This process is illustrated in Fig. 2.

Figure 2: Matrix sparsification algorithm based on production clustering

3.4 Production Forecasting
For production well i, splice its production feature coding Hi,pro and geological feature coding Hi,geo to

generate the spatio-temporal feature coding Hi as its representation:

Hi = [Hi , pro ; Hi , geo]. (10)

Normalize the matrix A′ while setting its diagonal elements to 1. With it as the adjacency matrix, while
defining the diagonal matrix D whose diagonal element Dii is the sum of the elements of the ith row of matrix
A′:

Di i = ∑
N
j=1 A

′

i j , (11)

where N is the total number of production wells.
The message passing is performed through Eq. (1) and finally the production forecasting results are

obtained using the fully connected layer.
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The algorithm of SGP-GCN is shown in Algorithm 1:

Algorithm 1: SGP-GCN algorithm
Input: Dpro: Dynamic production data; Dgeo: Static geological data; X: Spatial coordinates
Output: Y: Production forecasting results
1. for each production well i do
2. Hi,pro ← Production feature coding module(Di,pro)
3. Hi,geo ← Geological feature coding module(Di,geo)
4. end for
5. for each production well pair (i, j) do
6. Gij ← Geological feature matrix coding(Di,geo, Dj,geo)
7. Sij ← Spatial distance matrix coding(Xi, Xj)
8. Aij ← Gij + Sij
9. end for
10. A

′ ← SPC(A)
11. for each production well i do
12. Hi ← Hi,pro + Hi,geo

13. Hi
(l) ← GCN(Hi, A

′

)
14. yi ← Full connected layer(Hi

(l))
15. end for
16. return Y

4 Data and Training

4.1 Data Introduction
The data for this study come from an oilfield in Northern China, covering an area of approximately 15

square kilometers. The oilfield has been in development since June 1995. A substantial amount of monthly
production data has been accumulated over this period. For this study, 50 oil production wells with complete
observation records were selected. Their monthly average daily oil production data from December 1999 to
December 2023, totaling 289 months, will serve as the dataset for the proposed experiment. As production
proceeds, some of the production wells are converted to water injection wells.

To further validate the effectiveness of the SGP-GCN model, we incorporated production data from
multiple oil and gas fields. This includes production data from 6 gas wells located in the Montney shale oil
and gas production area of Canada, covering a period of 110 months. The gas wells selected for this analysis
are M3, M18, M23, M27, M1, and M24. For static geological data, four key metrics were utilized to assess the
geological features of the wells: total organic carbon in weight per cent (TOC), amount of free hydrocarbons
per gram of rock (S1), amounts of hydrocarbons generated through thermal cracking of non-volatile organic
matter per gram of rock (S2) and amount of CO2 produced during the thermal breakdown of kerogen per
gram of rock (S3).

Additionally, we selected five production wells from the Volve oil field in southern coastal region of
Norway: NO 15/9-F-1 C, NO 15/9-F-11 H, NO 15/9-F-12 H, NO 15/9-F-14 H, and NO 15/9-F-15 D. The
production data for these wells spans 744 days, from 8 April 2014, to 21 April 2016. For the static geological
data, we selected attributes such as Net/Gross, Total porosity, Total water saturation, and Horizontal
permeability from the Heather, Hugin, and Sleipner formations, noting that geological data for the Sleipner
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formation is not available for wells NO 15/9-F-1 C and NO 15/9-F-11 H. In the experiments on those two
datasets, the adjacency matrix was constructed from geological information only.

4.2 Data Pre-Processing
Due to the different units of various attributes for the same production well and the significant

differences in their orders of magnitude, attributes with larger scales tend to dominate the model. This can
negatively impact the accuracy and model training speed. To enhance forecasting accuracy and accelerate
the model training speed, the data is standardized using a min-max normalization approach, as follows:

Z = X − Xmin

Xmax − Xmin
, (12)

where X is the individual data observation, Xmin is the minimum value of the original data and Xmax is the
maximum value of the original data.

4.3 Model Training
When training the SGP-GCN model with the normalized data, the dataset is divided into training,

validation, and test sets in the proportions of 50%, 20%, and 30%, respectively. The window size is set to 20,
with forecasting steps at 2, 4, and 6. During the training process, the model uses historical production data
from the past 20 time steps to forecast future production at the 2nd, 4th, and 6th time steps, corresponding
to short-term, medium-term, and long-term production forecasting, respectively.

We employ four filters to construct the MDCN, with dilation rates and filter sizes of (1, 3), (1, 5),
(2, 3), and (2, 5), respectively. In the training phase, a grid search method is employed to select the optimal
hyperparameters, which are summarized in Table 1.

Table 1: SGP-GCN optimal hyperparameters

Hyperparameters Value

K = 2 K = 4 K = 6
Learning rate 0.005 0.005 0.005

Epoch 560 720 800
Batch size 128 128 128

LSTM hidden state dimension 128 256 256
LSTM layer 1 2 2
GCN layer 1 1 2
Dropout 0.2 0.2 0.2

5 Results

5.1 Dynamic Production Feature Selection Result
The production data includes several attributes such as water production, bottom-hole flow pressure,

and water cut in addition to oil production. The importance of the remaining attributes on oil production
was calculated using the MDI feature selection method. The results are shown in Fig. 3, where cumulative
oil production, cumulative liquid production, and cumulative water production have low importance on
oil production, and their exclusion does not have a significant impact on the model accuracy. Therefore,
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connected well injection, monthly liquid production, bottom-hole flow pressure, monthly water production,
and water cut are retained as effective features of dynamic production data.

Figure 3: Importance of dynamic production features

5.2 Production Clustering Results
The production data in the training set were clustered using the K-Means clustering algorithm, with

the results illustrated in Fig. 4. When the number of clusters is set to 2, the silhouette coefficient achieves
a maximum value of 0.793, indicating optimal clustering performance. The category with fewer production
wells is designated as Category 1, which includes 6 oil wells, while the category with a greater number is
referred to as Category 2, consisting of 44 oil wells.

Figure 4: Production clustering results
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5.3 Spatial-Geological Matrix Sparsification Results
We constructed the spatial-geological matrix based on the spatial distances and geological feature

correlations of production wells, as illustrated in Fig. 5a,b. Afterwards, we applied a base threshold to filter
out the lower values in the matrix, thereby focusing our attention on production wells with stronger spatial
and geological feature correlations, as shown in Fig. 5c. Finally, to comprehensively account for both inherent
and external factors, the SPC algorithm is used to optimize the spatial-geological matrix. By removing certain
connections between production wells that belong to different categories based on the inter-class threshold,
we achieved a sparse representation of the spatial-geological matrix, as depicted in Fig. 5d.

To determine the optimal combination of the base threshold and the inter-class threshold, we employed
a grid search method. The SPC effect reached its maximum when the base threshold was set to 0.5, with 50%
of the connections between production wells that belong to different categories removed.

Figure 5: Spatial-geological matrix sparsification results: (a) Initial spatial-geological matrix; (b) Initial spatial-
geological matrix with category distinctions; (c) Spatial-geological matrix with category distinctions, filtered by base
threshold; (d) Spatial-geological matrix with category distinctions, with 50% of inter-class connections removed. Note:
Blue represents inter-class connections, and red represents intra-class connections
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5.4 Production Forecasting Results
After the model was established, evaluation metrics were employed to assess its accuracy and general-

ization capability. In this study, we selected the mean absolute error (MAE), root mean square error (RMSE),
and coefficient of determination (R2) as the evaluation metrics:

MAE = 1
n∑

n
i=1 ∣yi − ŷi ∣, (13)

RMSE =
√

1
n∑

n
i=1 (yi − ŷi)2, (14)

R2 = 1 −∑n
i=1
(yi − ŷi)2

(yi − y)2 , (15)

where yi is the actual value of the sample, ŷi is the ith forecasted value, ȳ is the mean value of the sample, n
represents the total number of data in the test set.

Use SGP-GCN to forecast short-term, medium-term, and long-term production. At the same time,
deep learning models such as CNN-LSTM-SA and CNN-LSTM are trained using the same spatio-temporal
feature coding. After determining the optimal hyperparameters using the grid search method, a systematic
comparison was performed. The experimental results show that SGP-GCN exhibits the highest forecasting
accuracy on long-term production forecasting in all study areas, which are shown in Tables 2–4. Meanwhile,
we have visualized the long-term forecasting results of SGP-GCN in Appendix A.

Table 2: Production forecasting results of 50 oil wells in a northern China oilfield

MAE (/m3) RMSE (/m3) R2

K = 2 K = 4 K = 6 K = 2 K = 4 K = 6 K = 2 K = 4 K = 6
SGP-GCN 2.194 3.914 4.796 3.396 5.007 6.203 0.887 0.750 0.629

CNN-LSTM-SA 2.357 5.293 5.586 3.746 6.771 7.394 0.861 0.624 0.506
CNN-LSTM 2.428 5.790 6.395 4.177 7.868 8.461 0.826 0.507 0.368

LSTM-SA 2.903 5.330 6.649 4.266 6.486 7.986 0.794 0.616 0.433
LSTM 3.353 5.829 6.956 4.761 8.382 9.060 0.783 0.442 0.264
GRU 3.420 5.345 7.193 4.533 7.139 9.899 0.788 0.594 0.258

Table 3: Production forecasting results of 6 gas wells in Montney shale oil and gas production area

MAE (/mcf) RMSE (/mcf) R2

K = 2 K = 4 K = 6 K = 2 K = 4 K = 6 K = 2 K = 4 K = 6
SGP-GCN 1790.5 1937.2 2160.9 2909.0 3195.7 3497.2 0.8249 0.8035 0.7463

CNN-LSTM-SA 1877.3 2210.2 2589.4 3389.0 3819.0 3856.4 0.8010 0.7533 0.7281
CNN-LSTM 2160.9 2709.3 2775.2 3684.1 3780.4 4201.7 0.7518 0.7387 0.7043

LSTM-SA 2082.7 2657.5 2897.8 3612.8 3805.3 4286.1 0.7613 0.7370 0.6447
LSTM 2226.1 2602.2 2947.3 3727.4 3844.3 4251.9 0.7459 0.7297 0.6694
GRU 2301.8 2783.0 2950.3 3785.7 4405.8 4536.2 0.7379 0.6450 0.6237
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Table 4: Production forecasting results of 5 oil wells in Volve field

MAE (/m3) RMSE (/m3) R2

K = 2 K = 4 K = 6 K = 2 K = 4 K = 6 K = 2 K = 4 K = 6
SGP-GCN 41.26 59.43 66.82 97.93 122.43 132.83 0.932 0.881 0.864

CNN-LSTM-SA 41.83 59.41 69.54 98.11 123.72 136.34 0.930 0.879 0.842
CNN-LSTM 42.59 61.45 77.52 99.87 124.43 144.41 0.921 0.867 0.835

LSTM-SA 41.94 62.36 72.07 99.48 127.33 137.70 0.926 0.859 0.838
LSTM 43.20 65.40 76.75 100.68 130.02 141.21 0.919 0.848 0.829
GRU 44.86 69.41 83.52 100.66 129.84 149.68 0.920 0.851 0.813

In the message passing process, due to the higher proportion of inter-class connections, production
wells in categories with fewer wells are more susceptible to the influence of deviated information. Therefore,
in theory, SGP-GCN has more significant advantages in production forecasting of such production wells. We
show the long-term production forecasting results for Category 1 and Category 2, as shown in Table 5.

Table 5: Long-term production forecasting results of each model for Category 1 and Category 2

MAE (/m3) RMSE (/m3) R2

Category 1 Category 2 Category 1 Category 2 Category 1 Category 2
SGP-GCN 1.752 4.916 2.124 6.379 0.752 0.617

CNN-LSTM-SA 2.090 5.835 2.707 7.566 0.591 0.494
CNN-LSTM 2.432 6.505 2.931 8.611 0.519 0.359

LSTM-SA 2.390 6.718 2.901 8.002 0.534 0.417
LSTM 3.015 7.101 3.060 9.137 0.262 0.266
GRU 3.137 7.286 3.606 10.152 0.243 0.261

To assess the advantage of SGP-GCN compared to other models in such production wells, we define the
relative decrease in mean absolute error (DM), relative decrease in root mean square error (DR) and increase
in coefficient of determination (IR) as the evaluation metric:

DM = MAEmod e l −MAESGP−GC N

MAEmod e l
, (16)

DR = RMSEmod e l − RMSESGP−GC N

RMSEmod e l
, (17)

IR = R2
SGP−GC N − R2

mod e l , (18)

where MAESGP−GCN , RMSESGP−GCN , and R2
SGP−GC N are mean absolute error, root mean square error and

coefficient of determination for SGP-GCN in long-term production forecasting, respectively, MAEmodel,
RMSEmodel, and R2

mod e l are mean absolute error, root mean square error, and coefficient of determination for
other models in long-term production forecasting.
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As shown in Fig. 6, the DM, DR, and IR on Category 1 is higher than the Category 2 in most instances,
proving its superiority in dealing with the categories with lesser production wells compared with other
models. Specifically, well 4 is a production well in Category 1, and its long-term production forecasting results
of each model are shown in Fig. 7. In the long-term production forecasting, all models have some degree
of lag. However, the SGP-GCN model is able to sense and respond to dynamic changes in production in a
relatively timely manner, thereby providing more accurate production forecasting results.

Figure 6: Comparison of the results of the long-term production forecasting for Category 1 and Category 2: (a)
Comparison of DM; (b) Comparison of DR; (c) Comparison of IR

Figure 7: Long-term oil production forecasting results of each model for well 4

5.5 Ablation Experiments
To evaluate the effectiveness of the attention mechanism, spatial distance matrix S, geological feature

matrix G, spatial-geological matrix A, and the SPC algorithm in enhancing the accuracy of production
forecasting, we conducted ablation experiments on the components mentioned above, with the results shown
in Table 6. Here, “w/oSA” represents for SGP-GCN without the attention module. “w/oS”, “w/oG”, and “w/oA”
indicate that the matrices S, G, and A are encoded as all-one matrices in SGP-GCN, respectively, while
“w/oSPC” indicates that the SPC algorithm is not applied in SGP-GCN.
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Table 6: Results of ablation experiments

MAE (/m3) RMSE (/m3) R2

K = 2 K = 4 K = 6 K = 2 K = 4 K = 6 K = 2 K = 4 K = 6
SGP-GCN 2.194 3.914 4.797 3.396 4.997 6.203 0.887 0.752 0.629

w/oSA 2.245 4.271 5.413 3.809 5.894 6.860 0.856 0.717 0.584
w/oS 2.348 4.021 5.298 3.675 5.468 6.814 0.866 0.724 0.597
w/oG 2.637 4.399 5.576 3.968 6.055 6.993 0.830 0.668 0.542
w/oA 2.797 5.014 5.682 4.427 6.798 7.553 0.797 0.611 0.471

w/oSPC 2.784 5.139 6.231 4.246 6.804 7.988 0.806 0.612 0.435

The experiment results show that adding the attention mechanism to SGP-GCN helps to improve the
accuracy of petroleum production forecasting at each step. The short-term and medium-term production
forecasting results demonstrate that matrices S, G, and A can introduce spatial and geological information
during the message passing process, significantly improving forecasting accuracy. In the short-term pro-
duction forecasting, the RMSE was reduced by 0.279, 0.572, and 1.031, respectively; in the medium-term
production forecasting, the RMSE was reduced by 0.471, 1.058, and 1.801, respectively. This emphasizes
that even static geological features evolve throughout the development process. Our findings reveal that
production wells selected based on geological features before production are more likely to maintain stronger
correlations. Prioritizing these wells can lead to improved forecasting performance compared to treating all
production wells with equal consideration.

However, as the forecasting step further increases, the deviated information introduced by matrix A
gradually becomes a prominent negative factor affecting the accuracy of production forecasting. In this
context, the introduction of SPC algorithm can effectively address the production and geological features
variations caused by external factors, leading to a significant reduction of 1.785 in the RMSE.

5.6 Computational Cost
We conducted a comparative analysis of the parameter counts and training times across various models,

as shown in Table 7. The experiments were carried out on a machine equipped with 2 Intel Xeon Silver 4316
CPUs, 3 NVIDIA Geforce RTX 3090 GPUs, and 128 GB of memory. Overall, the SGP-GCN had a higher
parameter count compared to the other models, which resulted in it requiring more time during the training
process. Additionally, the time required to optimize the spatial-geological matrix using the SPC algorithm
also contributed to the longer time cost for the SGP-GCN.

Table 7: Computational cost for each model

Model Parameter count Training time (/s)
SGP-GCN 4.10 M 1920 + 9 (SPC)

CNN-LSTM-SA 2.52 M 1267
CNN-LSTM 2.08 M 1093

LSTM-SA 1.20 M 534
LSTM 1.00 M 458
GRU 0.75 M 314
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5.7 Hyperparameter Sensitivity
To assess the impact of each hyperparameter on long-term forecasting performance, we conduct

sensitivity analyses of the hyperparameters in SGP-GCN, as depicted in Fig. 8. For instance, when the base
threshold is set too low, production wells with weak spatial and geological feature correlation dispropor-
tionately dominate the attention weights in SGP-GCN, which undermines the focus on production wells
with stronger spatial and geological feature correlations. Conversely, if the base threshold is set too high,
valuable information for long-term production forecasting from production wells exhibiting strong spatial
and geological feature correlations may be overlooked.

Figure 8: Hyperparameter sensitivity analysis results

6 Conclusions
This study establishes the relationships between production wells based on the synergy of spatial

distance and geological feature correlations, developing a spatial-geological perception graph convolutional
network (SGP-GCN) for long-term petroleum production forecasting. Additionally, a matrix sparsification
algorithm based on production clustering (SPC) is introduced. By reducing attention on production wells
with significant production discrepancies, this approach can reduce the influence of deviated information,
thereby enhancing the accuracy of long-term production forecasting.

Experimental results demonstrate that, compared to deep learning models such as CNN-LSTM-SA,
SGP-GCN exhibits higher accuracy in long-term petroleum production forecasting. Future research will aim
to expand the variety of data utilized for encoding the representation of production wells and constructing
the adjacency matrix. Specifically, we will explore the integration of artificial control factors, such as well
stimulation, into the representation of production wells to improve the adaptability and predictive capability
of SGP-GCN.

7 Discussions
• Scalability: SGP-GCN can be applied to various resource extraction industries where production is

closely linked to geological features and other relevant factors. The fundamental approach involves
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modeling diverse extraction points (e.g., mineshafts and geothermal wells) within the same study area
as nodes in a graph. By analyzing the correlations among geological and other relevant features, we can
construct a weight matrix that facilitates the selective integration of information from multiple extraction
points. Additionally, the SPC algorithm can be utilized to optimize the existing weight matrix based on
known production data, thereby updating the weight distribution for information integration. Through
this methodology, SGP-GCN has the potential to deliver accurate long-term production forecasts for
other resource extraction industries.

• Deployment challenges: In real-world applications, the diversity of well logging techniques results in
a wide variety of well logging data formats. Effectively extracting geological features from this diverse
data for production wells complicates the application of SGP-GCN. Additionally, production data
from different oilfields may exhibit varying sensitivities to the same geological features. This geological
heterogeneity indicates that there may be more optimal parameter combinations than those utilized
in current experiments. However, the limited quantity of well logging records presents significant
challenges for analyzing geological feature sensitivity. Furthermore, compared to models like LSTM,
SGP-GCN has a larger number of parameters. As the dataset size increases, the model requires better
configuration and longer training times.

Acknowledgement: None.

Funding Statement: This research was funded by National Natural Science Foundation of China, grant number
62071491.

Author Contributions: The authors confirm contribution to the paper as follows: Study conception and design: Xin
Liu, Meng Sun; Data collection: Meng Sun, Bo Lin, Shibo Gu; Analysis and interpretation of results: Meng Sun;
Draft manuscript preparation: Meng Sun, Xin Liu. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: The production data of 6 gas wells in Montney shale oil and gas production area
can be available at https://data.mendeley.com/datasets/vdpkty7wrf/1 (accessed on 01 June 2024) and the Volve dataset
can be avaliable at https://data.equinor.com/dataset/Volve (accessed on 06 December 2024). Additional data can be
obtained by contacting the corresponding author.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Appendix A
The long-term production forecasting results of SGP-GCN for the 6 gas wells in Montney shale oil and

gas production area and 5 oil wells in Volve field are shown in Figs. A1 and A2.

https://data.mendeley.com/datasets/vdpkty7wrf/1
https://data.equinor.com/dataset/Volve
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Figure A1: Long-term production forecasting results of SGP-GCN for 6 gas wells in Montney shale oil and gas
production area

Figure A2: Long-term production forecasting results of SGP-GCN for 5 oil wells in Volve field
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