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ABSTRACT: In the context of advancing towards dual carbon goals, numerous factories are actively engaging in
energy efficiency upgrades and transformations. To accurately pinpoint energy efficiency bottlenecks within factories
and prioritize renovation sequences, it is crucial to conduct comprehensive evaluations of the energy performance
across various workshops. Therefore, this paper proposes an evaluation model for workshop energy efficiency based
on the drive-state-response (DSR) framework combined with the fuzzy BORDA method. Firstly, an in-depth analysis
of the relationships between different energy efficiency indicators was conducted. Based on the DSR model, evaluation
criteria were selected from three dimensions—drive factors, state characteristics, and response measures—to establish
a robust energy efficiency indicator system. Secondly, three distinct assessment techniques were selected: Grey
Relational Analysis (GRA), Entropy Weight Method (EWM), and Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) forming a diversified set of evaluation methods. Subsequently, by introducing the fuzzy
BORDA method, a comprehensive energy efficiency evaluation model was developed, aimed at quantitatively ranking
the energy performance status of each workshop. Using a real-world factory as a case study, applying our proposed
evaluation model yielded detailed scores and rankings for each workshop. Furthermore, post hoc testing was performed
using the Spearman correlation coefficient, revealing a statistic value of 10.209, which validates the effectiveness and
reliability of the proposed evaluation model. This model not only assists in identifying underperforming workshops
within the factory but also provides solid data support and a decision-making basis for future energy efficiency
optimization strategies.

KEYWORDS: DSR model; fuzzy Borda method; combined evaluation; energy efficiency evaluation

1 Introduction
With the popularisation of the concept of green and energy-saving development, guiding users to

improve their electricity consumption habits, reduce the cost of electricity, and reduce pollution emissions
has become an important development goal in electricity consumption [1]. In recent years, countries around
the world have been actively promoting industrial energy efficiency, steadily achieving the goals of energy
conservation, carbon reduction, and green development in the industrial sector [2,3]. The energy efficiency
assessment work can accurately reflect the energy efficiency level of enterprises, help enterprises find the
direction of energy efficiency optimisation, and promote enterprises to adjust their energy use methods
according to the evaluation results [4,5]. Therefore, the implementation of energy efficiency assessment is of
great significance in promoting sustainable energy development and environmental protection.
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The number of energy-using enterprises in the industrial sector in various countries is extensive.
Each enterprise has a large number of energy-consuming equipment, high energy consumption, and
complex energy use, with a huge potential for energy conservation and carbon reduction [6–8]. Before
implementing energy saving and optimisation, factories need to carry out accurate and effective energy
efficiency assessment work. This is used to find the key aspects that affect the plant’s energy use and to
provide a guiding route for energy-saving renovation work. Scholars in various countries have conducted
more in-depth studies on the issue of energy efficiency assessment.

In terms of energy efficiency evaluation systems, Literature [9] addresses the limitation that current
energy consumption evaluation indicators of public institutions cannot quantify energy efficiency and
energy-saving potential by proposing a public institution energy-environmental efficiency evaluation model
based on SBM-DEA. Literature [10] defines new energy efficiency coefficients for the energy-using character-
istics of air-conditioning equipment and determines the optimal operation mode by comparing the energy
efficiency coefficients. Literature [11] establishes an evaluation index system for energy efficiency of integrated
energy systems concerning the characteristics of energy supply and demand of integrated energy systems,
combined with the laws of thermodynamics, and considering the use of renewable energy. Literature [12]
constructed a system of IES evaluation indexes considering multiple factors and used the super-efficiency
CCR model and the cross-super-efficiency CCR model for comprehensive efficiency evaluation of IES.
The above literature proposes a corresponding evaluation system for energy efficiency assessment, but the
selection of evaluation indicators ignores the logical relationship between indicators and fails to establish an
indicator system from multiple dimensions.

In terms of the use of energy efficiency evaluation methods, Literature [13] evaluates office buildings,
and to avoid single subjective and objective problems, AHP-EWM is used to determine the weights of the
indicators, and weighted grey correlation is used to replace the Euclidean distance, which makes its appli-
cation wider. Literature [14], for the forging industry, combined with the complex forging process, defined
a new energy index, and combined with the system energy consumption data, proposed a comprehensive
energy efficiency evaluation method. Literature [15] takes the wastewater treatment plant as the research
object adopts the efficiency analysis tree method and combines machine learning and linear programming
techniques to scientifically and comprehensively assess the energy efficiency level of the wastewater treatment
process. Based on the total factor energy efficiency framework [16], the DDF-DEA model was used to
calculate the total factor energy efficiency, and the internal and external differences of the total factor
energy efficiency were further analyzed. Literature [17] proposes a method for evaluating the energy-saving
efficiency of urban integrated energy systems based on data envelopment analysis, which is used to identify
the weak links of the energy efficiency of the integrated energy systems under different scenarios, and lays
the foundation for the integrated energy systems to achieve efficient carbon reduction and accurate efficiency
improvement. Literature [18], for the oil industry, combined with big data analysis methods, using GA-
BP neural network to establish a prediction model of energy efficiency indicators of crude oil gathering
and transmission system. The energy efficiency evaluation system of crude oil gathering and transmission
system was constructed based on game theory combined with the weighting method and TOPSIS method,
which was used to identify the energy efficiency gap of the evaluation object. Although the aforementioned
literature has proposed corresponding evaluation models for energy efficiency assessment issues in different
industries, there are relatively few methods for energy efficiency evaluation at the workshop level in factories,
and the existing methods often lack a complete and systematic evaluation process.

Addressing the limitations of the existing literature, this paper establishes a comprehensive evaluation
indicator system by selecting energy efficiency indicators from three dimensions. Furthermore, it employs
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the Fuzzy BORDA method to quantify and rank the energy efficiency of workshops. The key contributions
are summarized as follows:
1) This research develops a multi-dimensional framework for evaluating energy efficiency based on the

operational characteristics of manufacturing facilities and the fundamental principles of the DSR
model. The proposed system is designed to comprehensively capture and reflect the holistic state of
energy efficiency within factory workshops, thereby offering a detailed and accurate viewpoint for the
management of energy efficiency.

2) Fully considering the variability in results from different evaluation methods during the assessment
process, this study introduces an energy efficiency evaluation model for factory workshops grounded
in the fuzzy Borda approach. The proposed model integrates both evaluation scores and ranking results
to ensure a comprehensive assessment. Additionally, it utilizes Kendall’s W coefficient for a priori
consistency checks, thus ensuring the scientific robustness and rigor of the evaluation process.

3) By employing the assessment model proposed in this paper, factories can accurately identify workshops
with low energy efficiency, thereby providing a scientific basis for management to implement targeted
energy-saving measures. This not only directly reduces energy costs and the unnecessary expenditures
associated with energy waste but also enhances the profitability of the enterprise. Furthermore,
enterprises that efficiently utilize resources are more likely to obtain government subsidies and tax
incentives, gaining a competitive edge in the market. The combined effect of these factors can lead to
significant indirect economic benefits for the enterprise.
The structure of this paper is as follows. Section 2 elaborates on the methodology for establishing a

scientifically robust and practical energy efficiency evaluation index system. Section 3 concentrates on the
construction of an energy efficiency index system based on the DSR model. Section 4 introduces the energy
efficiency evaluation model grounded in the fuzzy Borda method. Section 5 offers a case study to illustrate
the practical application of the proposed model. Section 6 summarizes the paper and outlines the principal
conclusions. The energy efficiency evaluation model developed in this study enables enterprises to precisely
pinpoint key areas impacting energy consumption, facilitating the formulation of more targeted energy-
saving strategies. This contributes significantly to achieving carbon reduction objectives.

2 Indicator System Construction Principles and Evaluation Process
The establishment of an energy efficiency assessment indicator system is the first task of the assessment

work, which aims to comprehensively reveal the core features and attributes of the assessed objects. The
scientific rationality of the construction of the indicator system directly determines the accuracy of the
assessment results. Therefore, the following principles need to be followed when establishing an energy
efficiency assessment index system for the factory floor [19].
1) Scientific and practical. The indicator system should be able to scientifically and objectively reflect

the energy efficiency status of the workshop, and the objectives should be clear and applicable to a
wide range.

2) Measurability and comparability. Selected evaluation indicators should be easily accessible and compa-
rable with each other.

3) Comprehensiveness and simplicity. The indicator system should be able to comprehensively reveal the
energy efficiency status of electricity consumption in workshops, and at the same time have a clear
structure and concise expression.

4) Operationality and independence. The indicator system should be easy to operate and process, while
at the same time keeping the indicators as independent as possible and avoiding cross-meaning and
duplication between indicators.
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To comprehensively understand the energy usage situation of a factory workshop, the conventional
process for assessing energy efficiency levels mainly covers the following three key steps:

1) Establishing an Energy Efficiency Indicator System: Based on the specific energy consumption charac-
teristics of the workshop, select appropriate evaluation indicators to establish a scientific and practical
energy efficiency indicator system. This system is designed to accurately and objectively reflect the
energy efficiency status of the workshop, ensuring that the assessment objectives are clear and the
application scope is broad.

2) Data Collection and Preprocessing: After determining the evaluation indicators, the next crucial step
is to collect relevant data and carry out necessary preprocessing work. This process requires ensuring
the quality and accuracy of the data so that subsequent analysis can proceed smoothly. The accessibility
and comparability of the data are the main focuses at this stage.

3) Calculation, Analysis, and Evaluation: Using the established energy efficiency assessment model,
conduct an in-depth analysis of the collected data to evaluate the energy efficiency level of the entire
workshop and its various subsystems. This phase not only provides a comprehensive evaluation of
the overall energy efficiency condition but also offers improvement suggestions for specific areas or
equipment, helping to achieve more efficient energy management.

Through these steps, it is possible to effectively assess and optimize the energy efficiency performance
of the factory workshop, promote the rational use of resources, reduce production costs, and also contribute
to environmental protection.

3 Energy Efficiency Indicator System Based on DSR Modelling

3.1 DSR Modelling Theory
The DSR model is an extensively applied framework in environmental management and policy analysis,

designed to evaluate environmental issues and policy outcomes by examining the interactions among
drivers, states, and responses within a system. In the context of this study, which focuses on electricity
consumption, the DSR model has been chosen to comprehensively capture and reflect the holistic energy
efficiency status of factory workshops. This encompasses external driving factors that influence energy
efficiency, internal states reflecting current conditions, and response measures taken to improve efficiency.
The multi-dimensional analytical framework provided by the DSR model facilitates a more comprehensive
and systematic understanding and assessment of energy efficiency levels within factory workshops.

This paper combines the DSR model with the electric power industry to construct the energy efficiency
evaluation index system of factory workshops and divides it into three levels. The first layer is the target layer,
which is the highest layer of the index system and represents the general objective of the evaluation system of
the plant workshop. The second layer is the influence factor layer, which consists of three dimensions: driving
force, state, and response. The third layer is the indicator layer, which mainly refers to the basic indicators of
energy efficiency evaluation of factory workshops, and is the basic component unit of the indicator system.
The specific system framework is shown in Fig. 1.
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Figure 1: Factory workshop energy efficiency evaluation index system framework

3.2 Selection of Energy Efficiency Evaluation Indicators
1) Driving force subsystem: Driving force refers to the driving factor that directly or indirectly triggers

a change in energy efficiency. The total annual power consumption and annual production value in a factory
are the most basic and direct driving factors that lead to changes in energy efficiency. Therefore, annual
power consumption D1 and annual production value D2 can be used as driving force indicators in the energy
efficiency assessment system [20].

2) State subsystem: state refers to the specific performance of workshop energy efficiency under the
influence of driving force. It can accurately reflect the influence of workshop power quality on energy
efficiency levels. Combined with the characteristics of workshop energy use, the following four indicators
can be used as state indicators [21].

Voltage pass rate S1 is the percentage of hours in a year that the voltage at the monitoring point is within
the pass range.

The current unbalance rate S2 refers to the degree of asymmetry of the transformer’s three-phase
currents and is expressed as:

S2 =
max {IA, IB , IC}

Iav
(1)

where, IA, IB , IC denote the phase A, B, and C currents, respectively; Iav denotes the three-phase
average current.

The average load factor S3, is the average output apparent power as a percentage of the rated capacity
and is expressed as:

S3 =
Sav

STN
(2)

where, STN is the rated capacity; Sav is the average output apparent power.
The power factor S4, which reflects the operational efficiency of the transformer, is expressed as:

S4 =
P√

Q2 + P2
(3)

where, P denotes active power; Q denotes reactive power.
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3) Response subsystem: the response indicators reflect that the factory floor improves the resource
utilization efficiency reduces the energy cost by changing the existing conditions, and presents different
degrees of response results. Therefore, the proportion of high energy consumption transformers R1 and the
energy efficiency class of important energy consumption equipment R2 can be used as response indicators.

4 Energy Efficiency Assessment Model Based on Fuzzy Borda Method

4.1 Data Preprocessing
Since the evaluation indicators include cost indicators and benefit indicators, the correlation between

the two and the energy efficiency level is the opposite. Therefore, before using the evaluation model to
assess the energy efficiency of the factory floor, the raw data should be unified in type and de-scaled for the
convenience of calculation.

Firstly, the raw data are used to establish the evaluation matrix L. Let m be the number of workshops to
be evaluated. n be the number of energy efficiency evaluation indexes. lij denotes the raw data of workshop
i corresponding to the jth evaluation index.

The indicator types are then harmonised. The data remain unchanged when the original indicator is in
the benefit category. When the raw indicator falls under a cost category, the conversion formula is as follows:

l ′i j =max l j − li j (4)

where, l ′i j is the converted indicator value.
Finally, the data for each indicator were standardised to avoid the impact of different scales on the results:

gi j = l ′i j/
�
���

m
∑
i=1

l ′i j
2 (5)

where, gij is the standardised indicator value.

4.2 Single Evaluation Methodology Set
In the selection of evaluation methods, this study adopts the GRA, EWM, and TOPSIS as a set of

individual evaluation methods. Each method has its advantages, allowing for the assessment of energy
efficiency from different perspectives. The grey relational analysis is suitable for systems with incomplete data
and uncertain information; the entropy weight method can objectively determine the weights of indicators,
reducing subjectivity; and the TOPSIS method ranks the evaluation objects based on their proximity to the
ideal solution, intuitively reflecting the performance differences among the evaluated entities.

4.2.1 GRA Evaluation
The grey correlation method first determines the ideal optimal objective based on the actual situation.

The degree of correlation is then determined by comparing the geometric curves and their shapes with the
optimal goal. If the curves and their shapes change in a consistent trend, the degree of correlation between
the two is high; on the contrary, it is low. Finally, according to the degree of correlation of each objective, it
is ranked and the advantages and disadvantages of each objective are judged. The specific evaluation process
is as follows:

1) The preprocessed data are noted as x1 , x2, . . . , xm . Where xi = [gi (1) , gi (2) , . . . , gi (n)],
i = 1, 2, . . . , m. Let x0 be the desired optimal objective, then the correlation coefficient between x0 and xi
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with respect to the kth element is:

εi (k) =
△(min) + ρ△ (max)
△i (k) + ρ△ (max) (6)

△(k) = ∣x0 (k) − xi (k)∣ (7)

△(min) =min
i
[min

k
(∣x0 (k) − xi (k)∣)] (8)

△(max) =max
i
[max

k
(∣x0 (k) − xi (k)∣)] (9)

where, k = 1, 2, . . . , n, σ is the resolution factor, generally takes 0.5.
2) The correlation between the ith workshop and the ideal optimal workshop is:

γi =
1
n

n
∑
k=1

εi (k) (10)

3) Rank the energy efficiency level of each workshop according to the size of γi .

4.2.2 EWM Evaluation
The concept of entropy first originated in thermodynamics, which is used to describe the degree of

disorder or chaos of a system and quantitatively evaluated through statistical mechanics. The entropy weight
method can determine the weight of each index according to the information contained in each original
data, which can avoid subjective arbitrariness to a certain extent and is an objective evaluation method. It
is widely used due to its easy calculation and reliable results. The specific steps of entropy weight method
evaluation are as follows:

1) Standardising the raw data so that both benefit and cost indicators have larger values as they become
more energy efficient, as described in Section 3.1.

2) Calculate the information entropy of each indicator e j.

e j = −
1

ln m

m
∑
i=1

xi j ln xi j (11)

xi j = gi j/
m
∑
i=1

gi j (12)

3) Calculation of the weights of the indicators y j.

y j = d j/
n
∑
j=1

d j (13)

where, d j is the coefficient of variation, d j = 1 − e j, and e is the base of the natural logarithm.
4) Find the value Bi = gi j × y j of the score of each workshop, and rank them in descending order of the

score to get the evaluation results.
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4.2.3 TOPSIS Evaluation
The TOPSIS method ranks the different evaluation objectives according to their proximity to positive

and negative ideal solutions, which allows objective evaluation of the objectives. The steps of energy efficiency
evaluation of plant floor based on the TOPSIS method are as follows:

1) A matrix of weighted criteria is formed. The formula for calculating the weights of the indicators is
shown below:

w j = S j/g j/
n
∑
j=1
(S j/g j) (14)

g j =
1
m

m
∑
i=1

gi j (15)

S2
j =

1
m − 1

×
m
∑
i=1
(gi j − g j)

2
(16)

where, w j is the weight of the indicator; g j is the mean of each indicator; and S2
j is the variance.

Determine the weighted normalised decision matrix as shown below:

qi j = w j × gi j (17)

2) Calculate the closeness. It may be assumed that the positive ideal solution E+ and the negative ideal
solution E− are shown below:

E+ = {max
j

qi j} = {q+1 , q+2 , . . . , q+n} (18)

E− = {min
j

qi j} = {q−1 , q−2 , . . . , q−n} (19)

The distance of the evaluation object to the positive and negative ideal solutions is then calculated. The
distances d 1

i and d2
i of the evaluation object to the positive and negative ideal solutions are, respectively:

d 1
i =
�
���

n
∑
j=1
(qi j − q+j )

2
(20)

d2
i =
�
���

n
∑
j=1
(qi j − q−j )

2
(21)

Find the proximity of each workshop assessment indicator Di .

Di = d 1
i/ (d2

i + d 1
i) (22)

3) The final ranking of the energy efficiency level of each workshop is based on the size of Di .
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4.3 Fuzzy Borda Method of Portfolio Evaluation
4.3.1 Evaluation of the Fuzzy Borda Method

The fuzzy Borda method is a multi-criteria decision-making approach based on fuzzy logic, which
conducts comprehensive evaluations by considering the scores and rankings of each evaluation object across
different evaluation methods. Energy efficiency assessment in factory workshops involves multiple complex
factors, often characterized by uncertainty and fuzziness. The fuzzy Borda method can effectively handle
the uncertainties and ambiguities in evaluation indicators, especially when dealing with multiple evaluation
methods and criteria, providing a comprehensive and objective evaluation result. Additionally, the fuzzy
Borda method has advantages in ensuring the consistency and reliability of evaluation results. Calculating
the fuzzy Borda scores for each evaluation object reduces biases that may arise from individual evaluation
methods, enhancing the stability and credibility of the evaluation results.

The fuzzy Borda method takes into account both the scores and ordinal values of each single evaluation
method when performing the combined evaluation. If y is the total number of single evaluation methods used
and xq

p is the score of the p (1 ≤ p ≤ m)th workshop in the q (1 ≤ q ≤ y)th evaluation method, the calculation
steps of the combination evaluation method based on the fuzzy Borda method are as follows:

1) Calculation of affiliation λpq . In this paper, affiliation is calculated by using the formula for change in
extreme deviation:

λpq =
xpq −minp (xpq)

maxp (xpq) −minp (xpq)
× 0.9 + 0.1 (23)

2) Calculate the fuzzy frequency fph and fuzzy frequency ωph of the h (1 ≤ h ≤ m) ranking of the p
evaluation object, and the calculation formula is as follows:

fph =
y

∑
q=1

δq
ph λpq (24)

In the formula, if the workshop p ranks in the h position under the evaluation method q, it is denoted
δq

ph = 1, and the rest is denoted 0.

ωph = fph/
m
∑
h=1

fph (25)

3) The conversion score Ch for the place h is calculated by the following formula:

Ch =
1
2
× (n − 1) × (n − h + 1) (26)

4) The fuzzy Borda score Fp of the workshop p is calculated as follows:

Fp =
m
∑
h=1

ωphCh (27)

5) The energy efficiency level of each workshop is sorted according to the size of Fp.
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4.3.2 Consistency Test
1) Kendall-W prior consistency test. Different single evaluation methods will have different evaluation

results, through the consistency test, the decision maker can be clear about which methods have consistent
evaluation results and can be evaluated in combination. The Kendall-W coefficient is tested for consistency
by constructing a statistic, T2 = y (m − 1)W , with the following formula:

W =
12

m
∑
p=1

S2
p

y2m (m2 − 1) −
3 (m + 1)

m − 1
(28)

Sp =
y

∑
q=1

lpq (29)

where, lpq is the ranking of workshop p in evaluation method q during the evaluation process.
The method mainly performs consistency testing by determining whether T2 obeys the T2 distribution

with (m − 1) degrees of freedom. Firstly, given the significance level α, then look up the table and carry
out the correlation calculation, if T2 > T2

α (m − 1) is obtained, then the evaluation methods are generally
considered to be consistent at the significance level α.

2) Spearman post hoc consistency test. After obtaining the combined evaluation results, the Spearman
rank correlation coefficient method is usually used to test the validity of the results. The Spearman rank
correlation coefficient between the results of each single evaluation method and the results of the combined
method is calculated, denoted as rq, and the test statistic is calculated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ = 1
y

y
∑
q=1

rq , m < 10

tα = ( 1
y

y
∑
q=1

rq)

�
����(m − 2) /

⎛
⎝

1 − ( 1
y

y
∑
q=1

rq)
2⎞
⎠

, m ≥ 10
(30)

where, tα is the t distribution with m − 2 degrees of freedom.
When the statistic is greater than a critical value, it means that it passes the post hoc test for

portfolio evaluation, indicating a strong link between the portfolio evaluation method and the single
evaluation method.

4.4 Energy Efficiency Assessment Modelling
The solution flow of the proposed energy efficiency evaluation model for factory workshops based on the

fuzzy Borda method is shown in Fig. 2. Firstly, according to the characteristics of energy use in the factory, the
evaluation index system based on DSR is established. Then a single evaluation method is selected to evaluate
the workshop. Subsequently, the evaluation results are compared. If the results are inconsistent, a consistency
test is carried out, and after the test is passed, the fuzzy Borda method is selected to carry out a combined
evaluation of the results obtained from a single evaluation method, and then a post hoc consistency test is
carried out on the test results. If the test passes, the optimal evaluation result of the energy efficiency level of
the plant is obtained.
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Figure 2: Flow chart of portfolio evaluation model based on fuzzy Borda method

5 Case Study

5.1 Energy Efficiency Assessment System Established
To verify the validity of the assessment model proposed in this paper, 10 workshops in a factory were

selected for energy efficiency assessment analysis. Firstly, based on the DSR selection of evaluation indicators
to establish a factory floor energy efficiency assessment system, the system-specific indicators and types of
indicators as shown in Fig. 3.

Then the corresponding raw indicator data were collected according to the selected indicators. Type
unification and de-quantification were also carried out to obtain standardised energy efficiency indicator
data, as shown in Table 1.
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Factory workshop energy efficiency assessment indicator system
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Figure 3: Factory workshop energy efficiency assessment indicator system

Table 1: Standardised indicator data

Workshop Annual power
consumption

Annual
production

value

Voltage
compliance rate

Current imbalance rate

1 0.2982 0.3046 0.2865 0.2354
2 0.3102 0.3005 0.3097 0.2672
3 0.3337 0.3715 0.3818 0.4081
4 0.3674 0.4032 0.3712 0.4412
5 0.3184 0.3373 0.3076 0.2981
6 0.2724 0.2607 0.2924 0.0000
7 0.0000 0.2268 0.3178 0.3283
8 0.2307 0.2864 0.2008 0.2214
9 0.3096 0.2773 0.2219 0.1532
10 0.3189 0.3391 0.2716 0.3817

Workshop Average load
factor

Power factor Percentage of
energy-intensive

transformers

Energy efficiency classes
for energy-consuming

equipment
1 0.1981 0.3247 0.3008 0.2981
2 0.1657 0.3150 0.3039 0.2981
3 0.2453 0.3244 0.3873 0.4472
4 0.5122 0.3113 0.3107 0.4472
5 0.2444 0.3067 0.3034 0.2981
6 0.1940 0.3179 0.2591 0.2981
7 0.1582 0.3134 0.2373 0.2981

(Continued)
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Table 1 (continued)

Workshop Annual power
consumption

Annual
production

value

Voltage
compliance rate

Current imbalance rate

8 0.3803 0.3110 0.0000 0.1491
9 0.2491 0.3034 0.1897 0.0000
10 0.4137 0.3024 0.3307 0.4472

5.2 Single Evaluation Method Scoring and Ranking
Three single evaluation methods, GRA, EWM, and TOPSIS methods, were used to evaluate the energy

efficiency level of the factory workshop, respectively, and the scoring and ranking results are shown in Table 2.

Table 2: Single evaluation method scoring and ranking

Workshop GRA EWM TOPSIS

Score Ranking Score Ranking Score Ranking
1 0.9120 6 0.1047 4 0.5534 6
2 0.9128 5 0.0893 6 0.5581 5
3 0.9310 2 0.1504 2 0.7323 3
4 0.9391 1 0.1732 1 0.9200 1
5 0.9168 4 0.0948 5 0.6180 4
6 0.9022 7 0.0766 8 0.4218 8
7 0.9020 8 0.0654 9 0.4858 7
8 0.8992 9 0.0775 7 0.4185 9
9 0.8976 10 0.0490 10 0.3651 10
10 0.9285 3 0.1192 3 0.8353 2

The scores obtained from each of the three single evaluation methods were normalised and the results
obtained are shown in Fig. 4.

As can be seen from Table 2 and Fig. 4, there are slight differences in the results obtained by the different
single evaluation methods in ranking the energy efficiency levels of workshops due to the different main
ideas of each method. Workshop 4 and Workshop 9 have the same ranking under the three single evaluation
methods, which are 1st and 10th, respectively. This indicates that Workshop 4 has the best level of energy
efficiency under all three evaluation methods, while Workshop 9 has the worst level of energy efficiency. The
other 8 workshops have different rankings under different evaluation methods.
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Figure 4: Comparison chart of scores of different evaluation methods

5.3 Fuzzy Borda Portfolio Evaluation
Due to the differences in the results obtained by a single evaluation method, the evaluation results of

the three methods were combined using the fuzzy Borda method. Based on the comparison of the calculated
fuzzy Borda numbers of each workshop, the final ranking of the workshop’s energy efficiency level can
be determined.

Before performing the combined evaluation, the compatibility of the single evaluation methods needs
to be tested. Kendall correlation coefficient was first calculated for the ordinal values of the three evaluation
methods to reveal the intrinsic correlation between them. The results are shown in Fig. 5.
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Figure 5: Kendall’s correlation coefficient chart

As can be seen in Fig. 5, the correlation coefficients between the results obtained from each single
evaluation method and the results of the other 2 single methods range from 0.733 to 0.911, which indicates
that there is a certain degree of correlation between the 3 evaluation methods. Then the Kendall-W coefficient
consistency test was performed on the ordinal values of the three single evaluation methods, and the Kendall-
W coefficient of synergy W = 0.957 was calculated and obtained at a significant level α = 0.05, T2 = 25.84 >
T2

0.05 (9) = 16.92. That is, the three evaluation methods satisfy the consistency requirement at a significant
level α = 0.05, and can be combined for evaluation.
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After the successful completion of the consistency test, the results obtained from the above three single
evaluation methods were assessed in combination using the fuzzy Borda combination evaluation method.
Firstly, based on Eq. (23), the affiliation degrees corresponding to each of the 10 workshops under the three
evaluation systems were calculated. The specific values are shown in Table 3.

Table 3: Workshop affiliation

Workshop GRA EWM TOPSIS
1 0.352 0.302 0.351
2 0.805 0.765 0.683
3 0.461 0.363 0.419
4 1.000 1.000 1.000
5 0.415 0.514 0.344
6 0.211 0.127 0.310
7 0.402 0.218 0.338
8 0.152 0.181 0.232
9 0.100 0.100 0.100
10 0.761 0.755 0.780

Substituting the affiliation degree calculated in the above table into Eqs. (24) and (25) can calculate the
fuzzy frequency of the ith workshop located in the hth (1 ≤ h ≤ 10th) place and its value is shown in Table 4.

Table 4: Fuzzy frequency for each workshop

Workshop Ranking

1 2 3 4 5 6 7 8 9 10
1 0.000 0.000 0.000 0.000 0.286 0.311 0.512 0.000 0.000 0.000
2 0.000 0.495 0.495 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.494 0.353 0.000 0.000 0.000 0.000 0.000
4 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.506 0.361 0.393 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.534 0.534 0.000
7 0.000 0.000 0.000 0.000 0.000 0.296 0.488 0.000 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.466 0.466 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
10 0.000 0.505 0.505 0.000 0.000 0.000 0.000 0.000 0.000 0.000

According to Eq. (26), the conversion score of “rank” h (1 ≤ h ≤ 10) is calculated, and its value is shown
in Table 5.

By substituting the fuzzy frequencies and conversion scores of each workshop into Eq. (27), the fuzzy
Borda numbers of the 10 workshops can be calculated. Based on these values, the workshops were ranked
according to their scores from highest to lowest, and the results are shown in Table 6. The higher the score,
the higher the ranking of the workshops.
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Table 5: Sort conversion score table

Ranking 1 2 3 4 5 6 7 8 9 10
Score 45 36 28 21 15 10 6 3 1 0

Table 6: Portfolio evaluation method scoring and ranking

Workshop 1 2 3 4 5 6 7 8 9 10
Score 15.15 11.70 32.78 45.00 19.15 3.52 4.15 2.32 0.00 31.22

Ranking 5 6 2 1 4 8 7 9 10 3

In Table 5, it is evident that Workshop 4 exhibits the highest composite score of 45.00, signifying its
superior energy efficiency and securing the top rank among the evaluated workshops. Conversely, Workshop
9 is identified with the lowest combined score, placing it at the 10th position and indicating the poorest energy
efficiency. The hierarchical order of energy efficiency for the 10 workshops, as determined by the integrated
assessment, is presented in descending order as follows: 4 > 3 > 10 > 5 > 1 > 2 > 7 > 6 > 8 > 9. This ranking
underscores the relative performance of each workshop in terms of energy efficiency, with Workshop 4
demonstrating the most optimized energy use and Workshop 9 requiring the most significant improvements.

A comparison of the overall workshop rankings obtained from the three single evaluation methods and
the combined evaluation model is shown in Fig. 6.
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Figure 6: Ranking chart of different evaluation methods

As can be seen in Fig. 6, Workshops #3, #4, and #10 ranked high under both single and combined
evaluations, and Workshops #6, #7, #8, and #9 ranked low under both single and combined evaluations. The
ranking of the evaluation results of the fuzzy Borda method based on the combination idea differs less from
the ranking of the results of the three single evaluation methods. However, it is impossible to judge whether
the combined evaluation results are closely related to the results of the single evaluation methods only from
the data. Therefore, Spearman’s post hoc test was conducted on the evaluation results of the combination
evaluation model, and the specific results are shown in Fig. 7.
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As illustrated in Fig. 7, the correlation coefficients between the fuzzy Borda method and single evalua-
tion methods—GRA, EWM, and TOPSIS—have achieved high values of 0.976, 0.939, and 0.976, respectively.
Given that the sample size of the evaluated objects is 10, the results of the computed test statistic t = 10.209 >
t0.01(8) = 3.355 show that this outcome successfully surpasses the consistency test’s significance threshold,
meeting the standard requirements for post hoc testing. Consequently, it can be inferred that there is a
strong consistency between the results of the three individual evaluation methods and those of the integrated
evaluation model based on the fuzzy Borda approach, thereby demonstrating the robustness and reliability
of the comprehensive evaluation method.

This high degree of consistency not only validates the effectiveness of the combined evaluation model
but also provides an essential decision-support tool for workshop management in factories. In practical
applications, factory management can leverage this method to fully utilize the synergistic advantages of
the three individual evaluation methods, thus enabling a more comprehensive and rational assessment
of energy usage within workshops. This facilitates the identification of workshops that excel in energy
utilization (such as Workshops #3, #4, and #10) and those that require improvement (such as Workshops #6,
#7, #8, and #9). As a result, management can develop targeted energy-saving measures to enhance overall
energy efficiency and promote the achievement of sustainability goals. Furthermore, through continuous
application of this evaluation model, factories can monitor long-term trends, and adjust strategies to address
evolving production demands and technological advancements, ensuring optimal allocation and utilization
of resources.

6 Conclusion
This paper develops a set of energy efficiency evaluation indicators tailored for factory workshops and,

based on this indicator system, establishes an energy efficiency evaluation model for workshops using the
fuzzy Borda method. This model appropriately assesses the energy efficiency levels of various workshops
within the factory. The primary contributions and innovations of this paper are as follows:

1) Drawing on the production and operational characteristics of the factory and integrating the core
principles of the DSR model, a multi-dimensional energy efficiency assessment system has been constructed.
This system takes into account the three key dimensions of driving forces, status, and response, and conducts
an in-depth refinement of the assessment indicators under each dimension. This ensures that the assessment
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system can comprehensively capture and reflect the overall energy efficiency status of the factory workshops,
providing a comprehensive and precise perspective for energy efficiency management.

2) Taking into full account the differences in results from various evaluation methods during the
assessment process, a factory workshop energy efficiency evaluation model based on the fuzzy Borda method
has been proposed. This model not only integrates evaluation values and ranking results to ensure the
comprehensiveness of the assessment but also employs Kendall’s coefficient of concordance for a priori
consistency testing, thereby ensuring the scientific and rigorous nature of the evaluation process. It not
only accurately identifies workshops with superior energy efficiency performance but also clearly highlights
those that require improvement. The application of the evaluation results facilitates the precise identification
of weak points in energy management within workshops, providing robust data support and a theoretical
foundation for subsequent improvements in energy efficiency. Moreover, this promotes the formulation and
implementation of targeted measures, thereby effectively enhancing overall energy efficiency levels.

While the method proposed in this paper holds significant practical value, it is accompanied by
certain limitations. Specifically, the energy efficiency evaluation index system employed in this study,
though encompassing key dimensions, could benefit from further expansion and optimization. Moreover,
the current model is primarily geared towards assessing energy efficiency performance over past periods
and lacks the capability for real-time evaluation. Therefore, in future research, it is recommended to
broaden the scope of energy efficiency evaluation indices to achieve a more comprehensive and accurate
assessment of workshop energy efficiency levels. Additionally, the integration of real-time data collection
and analytical technologies could be considered to develop an energy efficiency monitoring system with
real-time assessment capabilities.
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Nomenclature
DSR Driver-state-response
GRA Grey relation analysis
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IES Integrated energy system
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