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ABSTRACT: A centralized-distributed scheduling strategy for distribution networks based on multi-temporal and
hierarchical cooperative game is proposed to address the issues of difficult operation control and energy optimization
interaction in distribution network transformer areas, as well as the problem of significant photovoltaic curtailment due
to the inability to consume photovoltaic power locally. A scheduling architecture combining multi-temporal scales with
a three-level decision-making hierarchy is established: the overall approach adopts a centralized-distributed method,
analyzing the operational characteristics and interaction relationships of the distribution network center layer, cluster
layer, and transformer area layer, providing a “spatial foundation” for subsequent optimization. The optimization
process is divided into two stages on the temporal scale: in the first stage, based on forecasted electricity load and demand
response characteristics, time-of-use electricity prices are utilized to formulate day-ahead optimization strategies; in
the second stage, based on the charging and discharging characteristics of energy storage vehicles and multi-agent
cooperative game relationships, rolling electricity prices and optimal interactive energy solutions are determined among
clusters and transformer areas using the Nash bargaining theory. Finally, a distributed optimization algorithm using
the bisection method is employed to solve the constructed model. Simulation results demonstrate that the proposed
optimization strategy can facilitate photovoltaic consumption in the distribution network and enhance grid economy.

KEYWORDS: Photovoltaic consumption; distribution area; optimal scheduling; cooperative game

1 Introduction
With the economic development and the rapid rise of the new energy industry, China’s total installed

photovoltaic power generation capacity has reached 773 million kilowatts by October 2024, and it is expected
to exceed 1.2 billion kilowatts for wind and photovoltaic power generation combined by 2030, according
to authoritative sources such as the National Energy Administration and relevant industry reports [1].
However, with the rapid development of distributed power sources, their large-scale and dense integration
into the grid has increased the difficulty of distribution network operation control and reduced the system’s
ability to accommodate distributed photovoltaic power. Therefore, it has become an inevitable trend to
further research more effective strategies for optimizing the allocation of distribution network resources and
exploring new energy consumption strategies that balance regional optimization and energy interaction in
the distribution network.

Currently, the optimization strategies for new energy consumption in distribution networks generally
focus on a two-stage optimization approach for resources such as source, grid, load, and storage across
multiple time scales. Taking into account the complementary effects among controlled distributed energy
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resources, energy storage systems, and controllable loads across different time scales, and integrating the
concept of demand-side management, an innovative source-storage-load coordination strategy has been
developed [2]. This strategy effectively leverages the advantages of energy storage systems in terms of
rapid power response, while also incorporating the flexible adjustment capabilities of controllable loads,
thereby significantly promoting the integration of renewable energy into the local grid. Li et al. proposed
a full-time coordinated optimization operation strategy for microgrids that coordinates sources, loads, and
storage, considering the operational status of resources and their interactions, to maximize renewable energy
consumption and minimize system costs [3]. Jiang et al. proposed an optimal scheduling model with the
goal of promoting the integration of wind and solar power, taking into account the characteristics of active
distribution networks and distributed energy resources. This model aims to minimize the operational costs
over a complete scheduling period. The design of this model helps reduce operational costs throughout the
scheduling period, thereby effectively improving economic efficiency [4]. Li et al. established a multi-level
control framework, which is divided into global optimal scheduling, cluster optimization control, and local
absorption control. This framework can effectively address the challenges posed by distributed photovoltaic
systems, while enhancing the operational efficiency and reliability of the distribution network. It adapts to
changes in the operational status of the distribution network and also promotes the large-scale application
and development of renewable energy [5]. To solve the problem regarding the large-scale grid-connected
consumption of a high proportion of new energy sources, Xu et al. developed a concentrating solar power
(CSP)-photovoltaic (PV)-wind power day-ahead and intraday-coordinated optimal dispatching method
considering source load uncertainty. These models typically aim to optimize system generation costs and
ensure the safe and stable operation of the distribution network. Multi-objective optimization scheduling
models have been established across multiple time scales, providing strong support for the optimal operation
of active distribution networks [6]. Dong et al. utilized electricity prices to control electric vehicles and
energy storage systems, effectively improving the issues of renewable energy integration and severe voltage
fluctuations in the distribution network [7]. Current research generally focuses on enhancing the capacity for
renewable energy integration through the use of controllable loads, energy storage devices, electric vehicles,
and multi-level optimization frameworks across multiple time scales. However, there is a lack of methods
that also consider the spatial scale for photovoltaic integration.

In the research on energy management and scheduling strategies in distribution networks, Wu et al.
proposed a real-time optimal control and dispatching strategy for multi-microgrid energy based on storage
collaborative. This model considers the energy storage device as an energy management controller, enabling it
to participate in the energy collaborative dispatch of multi-microgrid. This enables the energy storage device
in the microgrid not only to actively participate in the optimal scheduling of energy, but also to make the
energy in the storage device be reasonably distributed in the multi-microgrid system, to maximize the full
absorption of renewable energy in the multimicrogrid, thereby reducing the dependence of the microgrid
on the distribution network, and significantly improving the elasticity and reliability of the multi-microgrid
system [8]. Zhong et al. applied the Analytical Target Cascading (ATC) method, using the tie-line power as
a coupling variable, to decouple the distribution network and microgrid models for achieving distributed
optimization. However, they did not consider active electricity trading nor did they discuss the issue of
benefit distribution [9]. Zhu et al. established a multi-agent optimal scheduling model for electricity trading
among different groups using a Stackelberg game approach, where the system operator acts as the leader
and the load aggregator as the follower [10]. Based on the Stackelberg game, Zareia et al. established an
optimal configuration model for a multi-microgrid system with operators as the leaders and distribution
networks as the followers. However, the strategies formulated by the leaders to maximize their own interests
may sacrifice the overall system efficiency or the interests of other stakeholders [11]. Chen et al. established a
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cooperative operation model based on the Nash bargaining theory. Cooperative game theory focuses on the
overall interests, and through cooperative game theory, the handling of electric energy can take into account
both individual and overall interests [12,13].

Compared to the aforementioned research works, the main contributions of this paper can be
summarized as follows:

(1) Specificity of the hierarchical structure: A scheduling architecture combining a two-stage
centralized-distributed approach with a three-level decision-making hierarchy is proposed. This architecture
enables the selection of optimal scheduling methods tailored to the operational characteristics and optimiza-
tion goals of each level, including the distribution network center level, the cluster level, and the transformer
area level. It better adapts to the complexity and dynamism of distribution networks, enhancing scheduling
flexibility and response speed.

(2) Flexibility in guiding user electricity consumption with two-stage electricity prices: A multi-
temporal scale scheduling method guided by two-stage electricity prices is proposed. By setting different
electricity prices for different stages of the day-ahead and real-time markets, users are effectively guided
to adjust their electricity consumption behavior to adapt to the uncertainty of renewable energy, reduce
peak-to-valley differences, optimize power resource allocation, and ultimately help reduce costs and improve
economic benefits.

(3) Integration of overall economy and local energy balance: A cooperative game model for the overall
economic efficiency of the distribution network and energy balance within regional areas, focusing on energy
interaction, is proposed. This model not only emphasizes the optimization of overall costs but also stresses the
balanced distribution of energy within clusters and transformer areas, addressing the shortcoming of existing
research that often neglects energy distribution balance. It provides a more comprehensive consideration of
both the economic efficiency and energy distribution of system operation.

Chapter 2 introduces the basic framework of the model, which adopts a centralized-distributed schedul-
ing architecture. It is divided into day-ahead and real-time scales in terms of time, and into center level,
cluster level, and transformer area level in terms of space. The aim is to achieve gradual refined control of
various resources, autonomous optimization of clusters, and balance between the overall economy of the
distribution network and energy allocation among clusters. Chapter 3 utilizes Monte Carlo simulation to
predict wind and solar scenarios in the distribution network, and analyzes user demand response behavior,
price relationships, and charging and discharging characteristics of energy storage. Based on these analyses,
demand response models and schedulable load models for energy storage vehicles are established. Chapter 4
constructs a two-stage scheduling model based on energy management. In the day-ahead stage, centralized
scheduling is adopted, where transformer area resources are directly classified for demand response and
scheduling plans are formulated. In the real-time stage, distributed scheduling is employedfter dividing the
distribution network into clusters, cooperative game theory based on the Nash bargaining theory is used to
consider overall economy and energy allocation among clusters. Chapter 5 presents case study solutions and
analyses, using a 33-node distribution network as a typical example. It verifies that the strategy proposed in
this paper can meet the energy demands of transformer areas while achieving optimal overall economy and
photovoltaic utilization under cluster energy interaction.

2 Basic Framework of the Multi-Temporal and Hierarchical Model
The overall model framework of this paper is shown in Fig. 1. The distribution network follows the

basic principles of “layered and partitioned, gradually refined, and locally balanced.” It adopts a centralized-
distributed scheduling architecture, which is divided into day-ahead and real-time scales in terms of time,
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and into center level, cluster level, and transformer area level in terms of space. This ensures the rapidity and
accuracy of optimization control.

Figure 1: The overall framework of the model

The center level is equipped with electricity consumption devices such as photovoltaic panels, wind
turbines, basic user loads, and energy storage vehicles for charging and discharging within the distribution
network. Clusters are divided based on the distance between transformer areas and electricity consumption
habits, with multiple transformer areas forming a single cluster. Each cluster has a designated leading node.
When there is excess photovoltaic output within a cluster, information can be exchanged with neighboring
clusters through the leading node, allowing excess energy to be transmitted to other clusters. Conversely,
when a cluster is experiencing a shortage of energy, it can also contact neighboring clusters through the
leading node to receive energy, achieving energy complementarity.

3 Distribution Network Scenery Scene and Schedulable Model

3.1 Distributed Power Output Model
Illumination has strong temporal regularity characteristics, and studies have shown that the solar

illumination intensity at a certain moment follows a Beta distribution [14]:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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In the Eq. (1), f (r (t)) represents the Gamma function; rmax (t) represents the maximum illumination
intensity at time t, α and β are the shape parameters of the Beta distribution.

The wind speeds in wind farms are random, and repeated analysis of actual measured wind speed data
has shown that they follow a Weibull distribution [15]:
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Probability distribution functions are described as follows:

F (v) = P (V ≤ v) = 1 − exp [−(v
c
)

k
] (3)

In Eq. (2), c and k are the scale parameter and shape parameter of the Weibull distribution, respectively.
Using the Monte Carlo sampling method, a set of photovoltaic output scenarios is randomly generated.

For the large number of generated photovoltaic scenarios, if each one is calculated and analyzed individually,
the computational load would be significant. To reduce the long-term computational burden on the power
grid, an improved backward reduction method is selected for scenario reduction. This method ensures that
the reduced set of scenarios retains the smallest probability distance from the original scenarios, resulting in
typical photovoltaic output scenarios.

3.2 Electricity Load Model and Demand Response Characteristics
The analysis of the relationship between user demand response behavior and price often employs a

demand elasticity matrix, which is composed of own-price elasticity coefficients and cross-price elasticity
coefficients for different time periods [16].

P0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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0 lk ,2 L 0
M M M
0 0 L lk ,t
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et , j =
ΔPt/P0

Δπt/π0
(6)

In the equation, P0 represents the load diagonal matrix, where the diagonal elements are the predicted
load values and the off-diagonal elements are 0. The vector ηk ,t reflects the time periods and load levels of
the original load. E (t, j) represents the demand elasticity matrix, where the diagonal elements are the own-
elasticity coefficients et , j j, the off-diagonal elements are the cross-elasticity coefficients, and the vector εt , j
represents the self-influence degree at time period t. is the change of electricity price at time t after demand
response; is the initial electricity price at time t. ΔPt represents the change in load at time t after demand
response, Δπt represents the change in electricity price at time t after demand response, π0 represents the
initial electricity price at time t.

π j=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

πh
t

πp
t

πv
t

j ∈ t (7)

In Eq. (7), π j represents the electricity price at time t, categorized according to the time periods
determined by load forecasting. πp

t , πh
t , and πv

t represent the time-of-use electricity prices during peak,
off-peak, and valley periods, respectively.
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When different types of electrical loads respond to the same electricity price, they can be classified into
shiftable loads and reducible loads based on their characteristics [17]. The following sections provide models
for these two types of loads, respectively:

(1) Transferable load
Shiftable loads refer to loads that users can adjust based on their own electricity usage needs in

response to electricity prices. By utilizing a pricing mechanism that guides usage during peak, off-peak, and
valley periods, loads can be shifted from peak periods to valley periods. Similarly, the demand response
characteristics can be described using the price elasticity matrix. The change in shiftable load at time t after
the response is:

Ptran
t = Ptran

0 [
24
∑
t=1

Etran (t, j) πt − π0

π0
] (8)

In the Eq. (8), Ptran
0 represents the initial shiftable load at time t, Etran (t, j) represents the price elasticity

matrix for shiftable loads.
(2) Reduced load
When analyzing the change in electricity price during the demand response period to decide whether

to reduce one’s own load, the price elasticity matrix is used to describe the demand response characteristics.
The change in reducible load at time t after the response is:

ΔPcut
t = Pcut

0 [
24
∑
t=1

Ecut (t, j) πt − π0

π0
] (9)

In the Eq. (9), Pcut
0 represents the initial reducible load at time t, and Ecut (t, j) represents the price

elasticity matrix for reducible loads.

3.3 Schedulable Load Model of Electric Vehicle
Energy storage vehicle is a kind of special load which mainly uses battery as its own power to meet

the traffic demand of users. At the same time, the battery of the energy storage vehicle can be used as an
energy storage device to discharge during peak grid load or demand response. Therefore, when formulating
a charging and discharging strategy optimization model that conforms to the operation economy of energy
storage vehicles [18], on the one hand, the use preference of energy storage vehicle users, that is, the charging
and discharging habits of energy storage vehicles, on the other hand, it is necessary to consider the electricity
price incentives provided by the distribution network.

Assuming there are M energy storage vehicles (ESVs) in the area, the operating status of the m-th ESV
at time t can be represented by a 0–1 variable. Where Xc

t ,m and Xdis
t ,m represent the charging status of energy

storage vehicle m at time t. When Xc
t ,m = 1 is true (i.e., equals 1), the energy storage vehicle is connected to

the grid and charging at that moment. When Xdis
t ,m = 1 is true, the energy storage vehicle is in a discharging

state. If both Xc
t ,m and Xdis

t ,m are equal to 0, it indicates that the energy storage vehicle is in an idle state (not
charging).

Based on the aforementioned parameter configuration, the cost of charging and discharging for energy
storage vehicles is:
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CEV = πprice
t (∑

t
Xc

t ,mPc
t ,m Tc

m −∑
t

Xdis
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t ,mTdis
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− λEV [0.95∑
t
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t
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In Eq. (10), Pc
t ,m and Pdis

t ,m represent the charging and discharging power of the energy storage vehicle at
time t. πprice

t represents the intra-day charging price at time t. Xc
t ,m and Xdis

t ,m are variables that take on values
of 0 or 1, representing the charging and discharging status of the energy storage vehicle. Electric vehicles have
two variables. Tc

m and Tdis
m represent the charging and discharging durations for the energy storage vehicle

when connected to the charging station.
The constraints for electric vehicles are provided in Appendix A.

4 A two-Stage Scheduling Model Considering Energy Management
This paper proposes a two-stage scheduling and control architecture with multi-temporal and hierar-

chical layers for distribution substations. In the day-ahead stage, the distribution network center layer is used
as the optimization scenario, aiming to achieve voltage stability and optimal economic performance. The
electricity usage plan is optimized and the scheduling results are transmitted to the intra-day stage. In the
intra-day stage, collaboration and autonomy among substations and clusters are considered, with the goals
of optimizing economic performance and balancing energy. Optimization scheduling and energy sharing
are implemented, as shown in Fig. 2.
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Figure 2: Two-stage scheduling architecture
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4.1 Day-Ahead Optimization Model Considering Time-of-Use Electricity Price
Based on medium- and long-term forecasting data of wind, solar, and load, the demand response

elasticity matrix model is invoked in the day-ahead stage to formulate an economic dispatch plan for the
overall operation of the distribution network for the next day, with a one-hour time interval for each of the
24 periods. Taking into account various loads as flexible resources and assuming no wind curtailment by
default, a penalty cost for solar curtailment and a demand response cost are added to the objective function.

4.1.1 Objective Function
The optimized operation model under demand response considers the stability, economy, and efficiency

of the power system. By leveraging mechanisms such as time-of-use electricity pricing and the transferable
and reducible load characteristics on the user side, it aims to minimize costs and maximize benefits.
The minimum value of the sum of electricity purchase cost Cbuy, generator set operation cost Ctp, light
abandonment penalty cost Cpv, energy storage operation cost Com, demand response cost Cdr and electric
vehicle charging and discharging cost Cev is:

min C = Cbuy + Ctp + Cpv + Com + Cdr + Cev (11)

Cbuy =
24
∑
t=1

pt ⋅ Pbuy
t (12)

Ctp =max (∣l E
t ∣) λtp (13)

Com =
Ni

∑
i ,t

λom (Pch
i ,t + Pdis

i ,t ) (14)

Pess
t =

24
∑
t=1

Ptran
t + Pcut

t (15)

Cpv = λpv

24
∑
t=1

Ppv
t − Puse

t (16)

Cdr = λtran

24
∑
t=1
(∣Ptran

t ∣) + λcut

24
∑
t=1
(∣Pcut

t ∣) (17)

In the equation, Pbuy
t , Ppv

t , Puse
t and Pess

t represent the purchasing power, photovoltaic output, photo-
voltaic consumption and load output, respectively; l E

t for generating unit output; λtp, λom, λtran, and λcut
are power generation operation cost coefficient, energy storage operation cost coefficient, load transfer cost
coefficient and load reduction cost coefficient, respectively.

4.1.2 Constraints
The constraints for this section [19] are provided in Appendix B.

4.2 Intraday Optimization Model Considering Cooperative Game
Based on the proposed multi-level and multi-temporal scale optimization model framework, this

section constructs a cooperative game model [20] for substations and clusters. The model calculates
appropriate energy exchange quantities on a 15-min time scale according to the time-of-use electricity prices
calculated in the day-ahead stage, and implements rolling pricing in the intra-day stage. This ensures minimal
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solar curtailment for each cluster while maximizing cooperative benefits. Distributed optimized scheduling
is adopted for the intra-day stage.

4.2.1 Objective Function
Since the stations in this paper do not directly interact with the distribution network, the cluster

composed of multiple stations is first used to cooperate on sub-problem 1:
Each cluster takes the minimum cost as the objective function:

min CMG = Cdr + Cbat + Ccpv + Cpv + Cev (18)
Cdr = pt ⋅ (PE,c

t ,n ⋅ ηE,c
t − PE,dis

t ,n /ηE,dis
t ) (19)

Cbat =
96
∑
t=1
(rin

t Pin
t − rout

t Pout
t ) (20)

Ccpv = 0.03
96
∑
t=1

Ppv (t) (21)

Cpv = ηpv

96
∑
t=1

Ppv
t − Puse

t (22)

In the equation, Cdr is the cost of energy storage; Cbat is the interaction cost between clusters; Ccpv is the
cost of photovoltaic use; Cpv is the cost of discarding light; energy storage’s charging power and discharging
power, respectively, are PE,c

t ,n and PE,dis
t ,n ; in energy storage, ηE,c

t and ηE,dis
t are the charge and discharge

efficiency, respectively; clusters transfer energy across each other based on coefficients rin
t and rout

t ; Pin
t and

Pout
t are the inter-cluster energy transmission power; ηpv is the penalty coefficient of light abandonment.

4.2.2 Constraints
The constraints for this section are provided in Appendix C.

4.2.3 Intra-Day Optimal Scheduling Based on Nash Negotiation Theory
The basic framework is shown in Fig. 3, and the game steps [21] are as follows:
Step 1: Address the cooperative game problem based on the Nash bargaining theory, and divide the

problem into two sub-problems: overall benefit optimization (P1) and cooperative benefit allocation (P2).
Step 2: With the cluster layer as the leader and each substation as a follower, engage in a cooperative

game. Incorporate the penalty cost for solar curtailment as part of the economic benefit, and aim for optimal
overall economic benefit at the cluster layer (P1). Obtain the optimized rolling electricity prices.

Step 3: Based on the results from sub-problem 1, implement the cooperative benefit allocation (P2) and
ultimately calculate the interaction results among clusters that minimize the solar curtailment rate.

Nash bargaining belongs to cooperative game theory, where participants negotiate to achieve Pareto
optimality and maximize benefits.

Eq. (23) is the standard form of the Nash bargaining model [22], and the solution to the product
represents the Pareto equilibrium solution for cooperation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
V
∏
v=1
(C0 − Cv)

s.t. C0 ≥ Cv

(23)
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In Eq. (23), C0 is the breaking point of the negotiation; Cv is the total cost after Nash negotiation.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
3
∑
n=1
(C0 − CMG

n )
s.t. formula (A1) − (A5) , formula (C17) − (C23)

(24)
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Figure 3: Cooperative game theoretic framework

In Eq. (24), CMG
n is the optimal solution of the cluster ‘s own operation after participating in cooperation.

Assuming that this paper sets up three clusters, the energy supplied and accepted by each cluster in the
cooperative game during the optimization process is as follows:

Eout
n =

96
∑
t=1

max (−Pex
n ,t , 0) n = 1, 2, 3 (25)

E in
n =

96
∑
t=1

max (Pex
n ,t , 0) n = 1, 2, 3 (26)

Pex
n ,t = ∣Pin

t − Pout
t ∣ (27)

In the equation: Eout
n and E in

n are the energy supplied and received by cluster n, respectively, Pex
n ,t is the

integrated transmission power of cluster n at time t.
The ability of each cluster to influence electricity prices in the distribution network due to energy

exchange in the cooperative game is as follows:

μn = Dn − κ Dn

1−
3
∑
n=1

Dn

n = 1, 2, 3 (28)

Dn =
dn

3
∑
n=1

dn

(29)

dn = eEout
n /E

out
max − e−E in

n /E
in
n (30)

In the equation: κ is the compensation coefficient, dn is the energy transmission correlation of cluster
n; Dn is the contribution in the overall proportion.

The energy allocation problem for solving subproblem 2 is:

min Ctotal =
3
∑
n=1

ln [(
96
∑
t=1
(μn ,t ⋅ ∣Eout

n ,t − E in
n ,t ∣) + CMG

n ) − C0] (31)
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The advantage of this quantification method is that the larger the proportion of energy supply allocated
to a cluster, the greater its impact on the intra-day rolling electricity prices. This allows for the determination
of revised electricity prices to guide user consumption and enhance user satisfaction.

4.3 Optimal Scheduling Model Solution
In this paper, the bisection distributed optimization algorithm, as used in Reference [23], is employed

to solve the problem. The solution process using the bisection method is shown in Fig. 4.

lower bound

Xd-2

Xd-1

Xd  Xd-2

Xd+1  Xd-1

Xd+2= Xd
upper bound

Figure 4: Dichotomy solution process

In the process of solving using the bisection method, the lower and upper bounds are continuously
updated in each iteration, causing the solution interval to gradually narrow. The optimal solution is locked
in by judging whether the results of two consecutive calculations are equal. If they are equal, the bisection
method is used to further narrow the solution interval. If they are not equal, constraints are added, and the
solution interval is updated.

Let xd ,t be the rolling electricity price at time t in the d iteration, and let xd ,t be the upper bound at this
time, then:

Add constraints when xd ,t ≠ xd−2,t :

xd−1,t ≤ xd+1,t ≤ xd ,t (32)

Add constraints when xd ,t = xd−2,t :

xd+1,t = (xd−1,t + xd ,t) /2 (33)

In each iteration, the convergence is judged according to Eq. (34). When the convergence condition is
met, the loop is exited and the equilibrium solution is output.

∣πprice
d+1,t − πprice

d ,t ∣ /π
price
d ,t ≤ ξ (34)

In Eq. (34): πprice
d ,t is the rolling electricity price at time t in the d iteration; ξ is the dichotomy to solve

the convergence coefficient.

5 Example Analysis
The problem addressed in this paper is a mixed-integer nonlinear programming problem. A centralized-

distributed scheduling architecture is constructed, and a two-stage regulation method, namely day-ahead
and intra-day regulation, based on this architecture is proposed. Firstly, Monte Carlo simulation and
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an improved backward reduction method are utilized to obtain day-ahead wind and solar power load
forecasting data. The relationship between price-based demand response and electricity prices is analyzed,
and a demand elasticity matrix is constructed. The optimization variable is the time-of-use electricity price,
and the day-ahead objective function is solved. Secondly, the output time-of-use electricity prices and the
day-ahead electricity consumption plan are input into the intra-day stage, where sub-problems 1 and 2 are
modeled using the Nash bargaining approach. Finally, under the constraints of wind and solar power output,
energy balance, equipment energy conversion, energy storage devices, and user electricity consumption, the
CPLEX and Gurobi solvers are invoked on the MATLAB platform to find the solution. The solution process
is illustrated in Fig. 5.

Figure 5: Solving procedure

5.1 Simulation Data Setting
Taking the IEEE 33-node distribution network as the research object, there are six distributed photo-

voltaic (PV) systems installed at nodes 7, 9, 15, 27, 29, and 32, with capacities of 1100, 1100, 600, 1000, 900, and
600 kW, respectively. Wind turbines are installed at nodes 12, 21, and 30, with capacities of 600, 1100, and 900
kW, respectively. The grouping situation is shown in Fig. 6.

Using the Monte Carlo sampling method, a set of random scenarios is generated. Subsequently, an
improved backward reduction method is employed to reduce these scenarios to six wind and solar power
output scenarios. As shown in Fig. 7, a is a photovoltaic scene simulation, and b is a wind power scene
simulation. The scenario with the highest probability, Scenario 4, is selected as the experimental data. The
demand response loads are connected to nodes 1, 16, and 23, with fixed, shiftable, and curtailable load
proportions of 50%, 30%, and 20%, respectively. Electric vehicle charging stations are connected to nodes 13,
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19, and 31. The parameter values used in the model are based on Reference [24], with a convergence coefficient
set to 0.01 and an initial electricity price of 0.11.
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Figure 7: Wind and solar output after scene reduction

5.2 Analysis of Simulation Results
5.2.1 Day-Ahead Result Analysis

The time-of-use electricity prices for each time period are shown in Table 1. The day is divided into
three periods, each lasting eight hours, and the electricity prices for each period are set based on the
load conditions.

Table 1: Day-ahead period division and its time-of-use electricity price

Time interval Peak period Usual period Valley period
Time 08:00–12:00, 17:00–21:00 13:00–16:00, 22:00–24:00 00:00–08:00

Electrovalence 0.18 0.11 0.05

As shown in Fig. 8, the distribution network prioritizes the consumption of renewable energy to meet
user demand and utilizes energy storage to maintain supply-demand balance, thereby reducing operating
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costs. From 00:00 to 08:00, photovoltaic output is minimal, nearly zero, and the system relies on wind power
and energy storage charging to meet user electricity demand. This period is considered the off-peak period.
From 13:00 to 16:00 and 22:00 to 24:00, the system relies on wind power, photovoltaic power, and energy
storage discharge to meet load supply. This period is considered the mid-peak period. From 08:00 to 12:00 and
17:00 to 21:00, the system may not be able to fully meet load demand solely through wind power, photovoltaic
power, and energy storage discharge. During some of these periods, electricity will be purchased from the
upstream distribution network. This period is considered the peak period.
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Figure 8: Day-ahead equipment power plan

After adopting time-of-use electricity prices, the 24-hour voltage amplitude for the day-ahead period is
shown in Fig. 9. From 13:00 to 16:00, due to the peak electricity usage period, the voltage fluctuation is the
greatest. However, under the influence of demand response and day-ahead constraints, the voltage deviation
is controlled within 7%.
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Figure 9: Day-ahead node voltage

Under the influence of time-of-use electricity prices, users respond by shifting their load to flatten the
peak and fill the valley. The comparison of loads before and after optimization is shown in Fig. 10. It can
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be seen that after optimization, the load curve exhibits a significant peak shaving and valley filling effect,
especially during the peak period from 08:00 to 11:00 when the load is substantially reduced. Therefore,
the day-ahead strategy not only reduces the electricity costs for users but also alleviates the pressure on the
microgrid during peak periods and promotes the absorption and utilization of excess renewable energy.
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Figure 10: Load curve before and after optimization

5.2.2 Results of Intra-Day Operation
Fig. 11 shows the intra-day rolling electricity prices for 96 time periods. In the game theory-based mode,

due to the presence of more targeted hourly prices, the energy transmission of each cluster is not only used
to meet user demand but also increases photovoltaic consumption, thereby reducing the internal electricity
costs of the clusters.
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Figure 11: Intraday rolling electricity price

Fig. 12 compares the load curves before and after the guidance of intra-day rolling electricity prices.
It can be observed that, due to the shorter time scale of the intra-day prices compared to the day-ahead
prices, the overall load curve becomes smoother, and the peak-to-valley difference is reduced, compensating
for the low electricity usage at 22:00 in the day-ahead plan. However, the overall adjustment in electricity
load is relatively small. This is because the intra-day electricity prices are used to make finer adjustments
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on a shorter time scale based on the scheduling plan formulated the day before, avoiding significant cost
differences between the day-ahead plan and actual conditions.
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Figure 12: Day-ahead and intra-day load curves

Fig. 13 illustrates the electricity exchange situation among three clusters after adopting a cooperative
game approach. Here, a represents the input power of the clusters, and b represents the output power. If the
parties do not engage in cooperative gaming, there will be significant curtailment of excess wind and solar
power when they are abundant, and all clusters will need to purchase electricity from the upstream grid
during peak load periods. Energy surpluses will only occur during certain periods, making it impossible
to achieve mutual energy support. Therefore, under the strategy proposed in this paper, the clusters and
distribution transformers coordinate and cooperate, improving the matching degree of supply and demand
for exchanged power among the clusters. This, in turn, reduces the costs of purchasing electricity from the
upstream grid and the costs associated with curtailing wind and solar power.
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Fig. 14 displays the convergence time of the algorithm. As shown in the figure, the intra-day distributed
algorithm converges at the 16th iteration and reaches the game equilibrium point.
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Figure 14: Iterative convergence process of distributed optimization

5.2.3 Comparison and Analysis of Schemes
To further demonstrate the effectiveness of the proposed strategy, this section sets up three compari-

son scenarios:
Scenario 1: Adopt the centralized-distributed two-stage optimization strategy proposed in this paper.
Scenario 2: Adopt a two-stage centralized optimization strategy [25].
Scenario 3: Do not consider cooperative gaming within the day, only conduct minimal energy exchange

without formulating rolling electricity prices [26].
Fig. 15 shows the charging and discharging power of energy storage at various times for the three

scenarios. It can be seen that, based on the adoption of time-of-use electricity prices in all three scenarios,
the energy storage systems are able to respond to electricity prices by discharging during peak periods and
charging during off-peak periods. Compared to Scenarios 2 and 3, Scenario 1 exhibits higher charging and
discharging power of energy storage during peak and off-peak periods from 08:00–10:00 and 22:00–23:00.
This allows for a faster response to fluctuations and fully utilizes its regulatory capability to reduce the
peak-to-valley difference in the load curve.
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Figure 15: Three schemes of energy storage charge and discharge power
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Fig. 16 presents a comparison of the final load curves using the three optimization scenarios. It can be
observed that Scenario 1, adopted in this paper, has the smallest peak-to-valley difference and a relatively
smoother curve. Scenario 2, which employs centralized scheduling, has an overall peak-to-valley difference
that is smaller than Scenario 3, but it is more prone to small load peaks and potential curtailment of renewable
energy. Scenario 3 has the largest peak-to-valley difference and is not superior to the Scenario 1 applied in
this paper.
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Figure 16: Load curves of three schemes

Fig. 17 shows a comparison of the curtailed solar power among the three scenarios. As illustrated in
the figure, Scenario 2, which only adopts a centralized approach, may experience situations where local
actions cannot be taken swiftly. Scenario 3, which does not consider intra-day gaming and only reduces
excess photovoltaic output through minimal energy exchange among clusters, still results in significant
curtailment of solar power within the three clusters. In contrast, under the cooperative mechanism proposed
in Scenario 1 of this paper, with the goal of economic efficiency, the operation of loads, energy storage, and
other equipment is first optimized through intra-day rolling electricity prices to consume excess photovoltaic
output. Then, information is exchanged among clusters, and energy sharing among them is utilized to
effectively promote the consumption and utilization of photovoltaic power.

Table 2 presents a comparison of the optimization results for the three scenarios. In comparison to
Scenario 2, Scenario 1 adopts a centralized-distributed approach, which avoids the situation where the
overall system cannot fully consider the device resources within the distribution transformers, as seen in the
centralized approach. As a result, information and energy interaction between clusters will be moretimely,
so the cost of scheme 1 in cluster interaction is $435.62 more than that of scheme 2, it results in a saving of
$1267.91 for power generation, storage, and charging and discharging of electric vehicles, $482.01 and $300.4,
and the total cost of scheme 1 is saved by $1621.37. Compared to Scheme 3, since Scheme 1 considers the
cooperative game relationship between clusters and stations, the cost of Scheme 1 is $1084.38 less than that
of Scheme 3, and the cluster interaction cost, power generation cost, energy storage cost, electric vehicle
charging and discharging cost and loss cost are saved by $391.67, $212.11, $97.62 and $141.76, respectively. This
is due to the introduction of Nash negotiationtheory, while ensuring the total cost reduction, the scheduling
cost of each cluster is also reduced to a certain extent.
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Figure 17: Comparison of the amount of light abandoned by the three schemes

Table 2: Comparison of optimization results of three schemes

Cost/$ Scheme 1 Scheme 2 Scheme 3
Total cost 7590.95 9212.32 8675.33

Cluster interaction cost 2127.86 1692.24 2519.53
Power-production cost 1757.68 3025.59 1998.90

Energy storage cost 2353.64 2835.65 2565.75
EV charging and discharging cost 823.92 1124.32 921.54

Discarding penalty cost 527.85 634.52 669.61

In terms of the penalty cost for curtailed solar power, compared to Scenarios 2 and 3, Scenario 1 reduces
the penalty cost by 39.78% and 47.16%, respectively. This is because the centralized-distributed approach
allows for scheduling decisions to be made within small clusters, enabling local consumption of renewable
energy generation. Additionally, the introduction of the intra-day cooperative game model enables the
determination of optimal energy exchange amounts, reducing curtailed solar power when there is excess
photovoltaic output and reducing electricity purchases when photovoltaic output is insufficient.

6 Conclusion
This paper proposes a two-stage energy management optimization and scheduling strategy based on

a centralized-distributed approach for a distribution system that includes three decision-making levels:
the distribution network center layer, the cluster layer, and the transformer area layer. Through simulation
verification, it has been demonstrated that both the photovoltaic absorption rate and the overall economic
efficiency of the clusters can be improved. The main conclusions are as follows:

(1) The proposed centralized-distributed three-level decision-making scheduling architecture, guided
by two-stage electricity prices for day-ahead and intra-day, is well-suited for overall centralized scheduling
on a day-ahead basis due to the broad scope and slow response time of the central layer, aiming to
reduce the operational costs of the distribution network. The cluster layer and transformer area layer,
characterized by their fast response times and ability to facilitate energy interactions, are more appropriate
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for intra-day distributed scheduling among regions. The advantage of this architecture lies in its ability to
allocate scheduling tasks based on the characteristics and response speeds of different levels, achieving more
refined and efficient energy management. This enables better adaptation to the uncertainty of renewable
energy sources such as photovoltaic, optimizes load distribution, and enhances the economic efficiency and
reliability of the system.

(2) In the day-ahead stage, by reasonably dividing the load curve into peak, off-peak, and shoulder
periods, and calculating the own-price elasticity and cross-price elasticity coefficients, the electricity demand
price elasticity coefficient matrix is computed to determine the day-ahead time-of-use electricity prices,
thereby achieving peak shaving and valley filling of the load curve. This effectively regulates the electricity
load on a day-ahead basis to better match it with photovoltaic output. The calculation results show that the
overall curtailment rate of the distribution network is reduced by 39.78%. However, with a one-hour time
step, there may still be mismatch between load and output in certain periods. This means that although day-
ahead time-of-use electricity price regulation improves the overall matching between photovoltaic output
and load, further refined regulation may be needed in specific periods to optimize the matching effect.

(3) In the intra-day stage, a cooperative game model is established based on the Nash bargaining theory.
The problem is first divided into two sub-problems: overall benefit optimization and cooperative benefit
distribution. Then, the Nash bargaining theory is used to solve these sub-problems separately, resulting in
intra-day optimized electricity prices. This approach ensures coordinated operation of electricity use at the
cluster and transformer area levels while enabling cooperation and energy sharing among clusters. Compared
to centralized scheduling, the total cost is reduced by 17.6%, and the curtailment rate of each cluster is reduced
by at least 73%. This effectively improves the overall benefit of the distribution network and the photovoltaic
absorption performance.

Acknowledgement: This paper is supported by the research was funded by the Jilin Province Science and Technology
Development Plan Project (20230101344JC).

Funding Statement: This research was funded by the Jilin Province Science and Technology Development Plan Project
(20230101344JC).

Author Contributions: Conceptualization, Guoqing Li, Jianing Li, Kefei Yan and Jing Bian; Resources, Jianing Li and
Jing Bian; Writing—original draft, Jing Bian and Jianing Li; Supervision, Jing Bian and Jianing Li; Funding acquisition,
Guoqing Li; Writing—editing, Guoqing Li, Jianing Li, Kefei Yan and Jing Bian. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: Not applicable.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

Appendix A
In order to meet the constraints, there are three charging states: charging, discharging, and not charging

or discharging:

Xc
t ,m + Xdis

t ,m ≤ 1 (A1)

The charging and discharging power meet the upper and lower limit constraints:

Pmin
c ,m ≤ Pc ,m ≤ Pmax

c ,m (A2)
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Pmin
dis,m ≤ Pdis,m ≤ Pmax

dis,m (A3)

In the equation, Pmin
c ,m and Pmax

c ,m are the minimum and maximum charging rates of electric vehicles,
respectively. At the same time, the battery capacity of electric vehicles should be between 0.2 and 0.95:

0.2 ≤ soct ,m ≤ 0.95 (A4)

At the same time, based on the driving demand of electric vehicles, the initial capacity equation
constraint for electric vehicles to reach the charging station is as follows:

soct ,m = soc0,m + 0.95∑
t

Xc
t ,mPc

t ,m Tc
m − (∑

t
Xdis

t ,mPdis
t ,m Tdis

m )/0.95 (A5)

Through the above model establishment method for the optimization problem of electric vehicle
charging and discharging strategy, the charging cost of the user can be minimized, and the operation
efficiency of the power grid and the user ‘s satisfaction can be improved.

Appendix B
Wind and solar output constraints:

Pwt
t ≤ Pwt

t ,e (A6)
Ppv

t ≤ Ppv
t ,e (A7)

Node voltage constraint:

Vmin ≤ V ≤ Vmax (A8)

Branch current constraint:

Imin ≤ I ≤ Imax (A9)

Distribution network power flow constraints:

N i

∑
j=1
[Vi Vj (Gi j cos θi j + Bi j sin θi j)] = Pi (A10)

Energy storage capacity constraints:

cess
t+1 = cess

0 +
24
∑
t=1
(cess,ch

t ⋅ cess,ch
max − cess,dis

t /cess,dis
max ) (A11)

Demand response constraints:

PL
t = Ppre

t + Ptran
t − Pcut

t (A12)
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−Ptran
t ,max ≤ Ptran

t ≤ Ptran
t ,max (A13)

24
∑
t=1

Ptran
t = 0 (A14)

0 ≤ Pcut
t ≤ Pcut

t ,max (A15)

Power balance constraints:

Pbuy
t + Pwt

t + Ppv
t + Pess

t − Puse
t = PL

t (A16)

In the equation: Pwt
t and Ppv

t are the wind and solar forecast output; Ppre
t is the predicted electric load;

node voltage limits, Vmin and Vmax, are taken at 0.93 and 1.07, respectively; there are two limits to the node
current, Imin and Imax, taking 1 and 1.11; cess

t+1 is the energy storage capacity at t+1 time. cess
0 is the initial

energy storage capacity; the charge and discharge of energy storage at time t are represented by cess,ch
t and

cess,dis
t . cess,ch

max and cess,dis
t are the maximum charge and discharge capacity of energy storage; PL

t for the
user ’s electricity consumption.

Appendix C
Energy storage charge and discharge constraints:

SE
n ,t = SE

n ,t−1 ⋅ (1 − ηE) + PE
c ,n ,t ⋅ ηE

c ,t − PE,dis
n ,t /ηE,dis

t (A17)

SE
n ,1 = SE

n ,96 (A18)

SE
n ,min ≤ SE

n ,t ≤ SE
n ,max (A19)

0 ≤ PE,c
n ,t ≤ PE,c

n ,t ,max ⋅ xE
n ,t (A20)

Cluster n cost constraints:
96
∑
t=1
(μn ,t ⋅ ∣Eout

n ,t − E in
n ,t ∣) + CMG

n ≥ C0 (A21)

Cluster n interacts with other clusters with power constraints:

0 ≤ PE,dis
n ,t ≤ PE,dis

n ,t ,max ⋅ (1 − xE
n ,t) (A22)

The energy interaction equation constraint between clusters:

Eout
n + E in

n = 0 (A23)

In the equation: When time t reaches SE
n ,t , cluster n has the capacity to store energy; ηE is the self-power

loss coefficient of energy storage; It is the maximum and lowest limits of energy storage, respectively, that are
described by SE

n ,min and SE
n ,max; PE,c

n ,t ,max and PE,dis
n ,t ,max are the maximum charging and discharging constraints

of electric energy storage; xE
n ,t is the 0–1 variable representing charging.
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