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ABSTRACT

Harnessing solar power is essential for addressing the dual challenges of global warming and the depletion
of traditional energy sources. However, the fluctuations and intermittency of photovoltaic (PV) power pose
challenges for its extensive incorporation into power grids. Thus, enhancing the precision of PV power prediction
is particularly important. Although existing studies have made progress in short-term prediction, issues persist,
particularly in the underutilization of temporal features and the neglect of correlations between satellite cloud
images and PV power data. These factors hinder improvements in PV power prediction performance. To overcome
these challenges, this paper proposes a novel PV power prediction method based on multi-stage temporal feature
learning. First, the improved LSTM and SA-ConvLSTM are employed to extract the temporal feature of PV power
and the spatial-temporal feature of satellite cloud images, respectively. Subsequently, a novel hybrid attention
mechanism is proposed to identify the interplay between the two modalities, enhancing the capacity to focus on the
most relevant features. Finally, the Transformer model is applied to further capture the short-term temporal patterns
and long-term dependencies within multi-modal feature information. The paper also compares the proposed
method with various competitive methods. The experimental results demonstrate that the proposed method
outperforms the competitive methods in terms of accuracy and reliability in short-term PV power prediction.
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1 Introduction
1.1 Background

Progress in the growth of photovoltaic (PV) energy production is vital for easing the present-day
energy shortage and mitigating environmental impacts [1]. However, integrating large-scale PV systems
into the grid introduces potential challenges to the security and stability of the power system. This is
primarily due to the inherent fluctuations and intermittency of PV generation, which can lead to issues
such as frequency deviations and harmonic distortions [2]. Hence, it is crucial to develop an accurate
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prediction method to tackle these issues and guarantee the stability and reliability of the electrical
power system.

1.2 Related Works
The variability and unpredictability of photovoltaic (PV) energy output are largely due to

changing weather patterns. Consequently, traditional forecasting techniques frequently include mete-
orological data as key variables in their models. Literature [3] utilized multi-scale permutation entropy
to characterize the power state under diverse weather conditions, thereby reducing the forecasting
sequence’s susceptibility to meteorological influences. Literature [4] introduced a dual-similarity day
selection model that categorizes weather into three distinct classes, enhancing the data’s quality and
reliability. However, some studies have proved that the movement of clouds is the main reason for
fluctuations in PV power generation [5–7]. Data regarding cloud conditions can be derived from both
terrestrial and satellite imagery, which is particularly useful for extensive short-term or medium-term
weather predictions, as well as for hourly forecasts [8]. These images provide a wealth of details, such as
the spatial layout, luminosity, and shape [9]. Satellite cloud images, with their broader space-time field
of view compared to ground-based sky images, are particularly well-suited for long-horizon prediction
tasks [10]. Consequently, incorporating satellite cloud imagery into the study of short-term PV power
prediction is of significant importance.

Many studies have conducted in-depth research on image-driven photovoltaic power methods.
Convolutional Neural Networks (CNNs), frequently utilized as image feature extractors within the
domain of computer vision, have garnered widespread application in cloud studies. Literature [11]
applied various deep fully CNNs as feature extractors, demonstrating that the different depths of the
fully CNNs can enhance the predictive accuracy and stability of the model. Literature [12] used the
CNNs with residual structure to extract the image features, which preserves as much valid information
as possible for the prediction task. Furthermore, several studies have identified that the spatial-
temporal features of historical multiple images can further enhance prediction performance. Literature
[7] introduced an auto-encoder (CAE) that employs three-dimensional CNNs (3DCNN) to address
the shortcomings of conventional forecasting models, such as the constraints on the length of input
image sequences and the limitations of linear image extrapolation. Literature [13] presented a 3D
convolutional long-short-term memory (ConvLSTM)-CNN hybrid framework, which extracts spatial-
temporal features from multiple images across various color spaces to improve forecasting perfor-
mances. Nevertheless, due to the structural limitations of models such as 3DCNN and ConvLSTM,
spatial-temporal feature information extraction may not be fully adequate. Therefore, it is necessary
to further refine the architecture of such models to achieve performance improvements.

Moreover, PV power has a significant temporal correlation, so many studies focus on temporal
feature extraction [14–16]. Literature [17] proposed an improved gated recurrent unit containing
RepeatVector and TimeDistributed layer, which significantly boosts the precision of PV power
forecasting. Literature [18] utilized the Coati optimization algorithm to update the hyperparameters
of the long-short-term memory (LSTM), which leads to a distinctive improvement of 16%∼36%
compared to other baseline methods. Literature [19] has demonstrated that the fusion of LSTM and
temporal convolutional neural network (TCN) exhibits enhanced capability in capturing temporal
features in comparison to using LSTM and TCN separately. Literature [20] proposed a causal
convolutional Transformer, which enhances the extraction of both global and local features by
integrating a linear embedding module and a causal convolutional module. The aforementioned
methods fully demonstrate the importance of temporal features. A reasonable model combination is
a feasible solution to further improve the performance. The combination of LSTM and Transformer
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has proven its effectiveness [21,22]. Literature [23] employed pre-trained LSTM models to acquire
weather forecasting results, which were utilized as auxiliary inputs for the Transformer to mitigate
forecast result uncertainty. In literature [24], LSTM and informer were used in parallel to extract local
and global temporal features, which significantly boosts the accuracy and effectiveness of the sequence
modeling task.

1.3 Research Gaps and Contributions
While the LSTM-Transformer model has demonstrated effectiveness in enhancing the precision

of PV power prediction, there remain unresolved issues that warrant improvement. One such issue
pertains to the exclusive utilization of the LSTM-Transformer structure for historical PV power
feature engineering. Given the analogous temporal correlations present in historical satellite cloud
images, there is potential value in extending the application of the LSTM-Transformer structure to the
feature engineering of images. Furthermore, it should be recognized that both LSTM and ConvLSTM
models, as previously discussed in the literature [25], are prone to the challenges of vanishing gradients
and inadequate capabilities in capturing long-range dependencies. These challenges can significantly
impede the training efficacy and overall performance of models incorporating the LSTM-Transformer
architecture.

Moreover, the approach to predict utilizing historical PV data and satellite cloud images involves
two distinct modal inputs, each with specific feature extractors. This setup presents challenges in
effectively capturing the complementary and redundant aspects of multi-modal data. Consequently,
the fusion of multi-modal features has garnered significant attention within the machine learning
domain [9]. Traditional feature fusion techniques such as concatenation [26] and addition [27] have
limitations as they do not fully account for the interaction information between modalities and cannot
adjust fusion strategies dynamically. Over the past few years, the attention mechanism has become
a key technique for tackling challenges in feature fusion [28,29]. Therefore, there is a growing need
for advancing feature fusion methods based on the attention mechanism for enhancing PV power
prediction accuracy.

Motivated by the aforementioned gaps, this study proposes a short-term photovoltaic power
prediction method based on multi-stage temporal feature learning. The key contributions of this study
are outlined as follows:

• As a key module of the prediction method, an improved LSTM model was developed. Within
the improved LSTM, a bidirectional dynamic residual mechanism was proposed to effectively
enhance the modeling capability of time-series dynamics and alleviate the vanishing gradient
problem.

• A novel hybrid attention mechanism was introduced to comprehensively integrate multi-modal
features. This mechanism includes a channel-wise self-attention module designed to emphasize
crucial information within each modality, complemented by a residual cross-attention module
that explores correlations across different modalities.

• An end-to-end deep learning method for short-term PV power prediction was established. The
proposed method was sufficiently validated and compared with various competitive methods,
which further confirms the proposed method exhibits higher generalization and robustness.
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2 Methodology
2.1 Overall Framework

As shown in Fig. 1, the proposed method consists of three components: the feature extraction
module, the feature fusion module, and the temporal analysis module. Initially, the feature extraction
module employs an improved LSTM and SA-ConvLSTM to extract the temporal feature of PV
power and the spatial-temporal feature of satellite cloud images, respectively. Following this, the
feature fusion module introduces a novel hybrid attention mechanism that delves into the coupling
correlations. Finally, the temporal analysis module based on Transformer architecture is applied to
capture short-term temporal patterns and to model long-term dependencies.

Figure 1: The proposed method

2.2 Feature Extraction Module
Both PV power and satellite cloud images have significant temporal characteristics, so making

good use of these characteristics is crucial to improve the accuracy of PV power prediction. This
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module involves utilizing improved SA-ConvLSTM to capture spatial-temporal features from satellite
cloud images and employing improved LSTM to identify temporal patterns from historical PV
power. To bolster the effectiveness of SA-ConvLSTM and LSTM, a bidirectional dynamic residual
mechanism is introduced in our study.

2.2.1 SA-ConvLSTM

The SA-ConvLSTM is an enhanced version of the ConvLSTM, designed to improve the capacity
to capture extensive spatial dependencies. This improvement is realized through the incorporation
of a self-attention component within the ConvLSTM framework, as depicted in Fig. 2. In contrast
to conventional ConvLSTM networks, SA-ConvLSTM introduces a Self-Attention Memory module
(SAM) that refines the self-attention mechanism to retain features with long-term spatial and temporal
dependencies, as shown in Fig. 3. Consequently, this modification improves the model’s capability to
capture spatial-temporal features. The operational framework of SA-ConvLSTM can be articulated
as follows:

x̂t = SA(xt), ĥt−1 = SA(ht−1)

it = σ
(

Woi ∗ x̂t + Whi ∗ ĥt−1 + bi

)
ft = σ

(
Wof ∗ x̂t + Whf ∗ ĥt−1 + bf

)
ct = ft ⊗ ct−1 + it ⊗ tanh

(
Woc ∗ x̂t + Whc ∗ ĥt−1 + bc

)
gt = σ

(
Wog ∗ x̂t + Whg ∗ ĥt−1 + bg

)
ht = gt ⊗ tanh (ct)

(1)

where x̂t, ĥt, ct represent the input value, output value, and cell state at t-th timestep, respectively; SA is
the self-attentional memory module; it, ft, gt represent the input gates, forget gates, and output gates;
Wxi, Whi, bi, Wxf , Whf , bf , Wxc, Whc, bc, Wxg, Whg, bg are trainable parameter; σ (·) is activation function,
⊗ is Hadamard product.

Figure 2: The structure of SA-ConvLSTM
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Figure 3: The structure of the self-attention memory module

2.2.2 Bidirectional Dynamic Residual Mechanism

In comparison to recurrent neural networks (RNN), while LSTM demonstrates superior per-
formance in tasks involving time series prediction, challenges persist such as the occurrence of
vanishing gradients and limitations in long-distance modeling capabilities. Given these problems,
this study introduces a novel bidirectional dynamic residual (BDR) mechanism tailored for LSTM
and its variants, illustrated in Fig. 4. By incorporating residual structures in both horizontal and
vertical orientations, a rapid pathway is established for transmitting crucial feature information,
thereby addressing issues related to vanishing and exploding gradients, and augmenting the network’s
representational and learning capacities. The fundamental component of BDR is depicted in Fig. 5,
and its formulation can be articulated as follows:
v1

t−1 = v0
t−1 + [

σ
(
Wh1 ∗ h1

t−1 + Wv1 ∗ v0
t−1 + bv1

) ⊗ tanh
(
Wh2 ∗ h1

t−1 + Wv2 ∗ v0
t−1 + bv2

)]
z1

t−1 = z1
t−2 + [

σ
(
Wh3 ∗ h1

t−1 + Wz1 ∗ z1
t−2 + bz1

) ⊗ tanh
(
Wh4 ∗ h1

t−1 + Wz2 ∗ z1
t−2 + bz2

)] (2)

where W h1, W h2, W h3, W h4, W v1, W v2, W z1, W z2, bv1, bv2, bz1, bz2 are trainable parameters. The superscript
and subscript of v0

t−1, v1
t−1, z1

t−1, z1
t−2, h1

t−1 is the layer number of LSTM and timestep. Then, the h0
t will be

converted to:

h̃1
t−1 = Concat([Concat([h1

t−1, z1
t−2]), Concat([h1

t−1, v0
t−1])]) (3)

2.3 Feature Fusion Module
This study presents a fusion module designed to integrate multi-modal features, incorporating

a channel-wise self-attention mechanism and a residual cross-attention mechanism. The process,
illustrated in Fig. 6, involves two sequential steps for each moment. Initially, the channel-wise self-
attention mechanism is applied to the single modality feature, followed by the derivation of fusion
features through the residual cross-attention mechanism.
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Figure 4: The improved LSTM with the bidirectional dynamic residual mechanism

Figure 5: The basic unit of the bidirectional dynamic residual mechanism

Figure 6: The multi-modal feature fusion module
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As shown in Fig. 7, the channel-wise self-attention mechanism is developed to establish corre-
lations among the features present within each channel of each individual modality. Through the
allocation of weights to the features, the prediction methods enable a better understanding of the
importance of each channel. Specifically, these weights are employed to calibrate and combine the
features of each channel, thereby augmenting the comprehension and depiction of the features inherent
to the individual modality. The fundamental concept underlying the channel-wise self-attention
mechanism can be articulated as follows:

S(Q, K, V) = Softmax
(

QKT

√
dk

)
V (4)

where dk is the dimension of K. The
√

dk is adopted for smoothing the backward gradients. Softmax
is an exponential normalization function. Q, K, V can be derived from a single modality feature by
non-linear projection.

Figure 7: The self-attention and residual cross-attention

The residual cross-attention mechanism, commonly employed in natural language processing and
computer vision domains, aids in establishing connections between features from different modalities.
This enables the information from one modality to influence the processing of another, thereby
improving the model’s capability to capture interrelations between the diverse modal features and
enhancing the overall representation quality. The residual cross-attention mechanism is formulated
as:

C(Q, K, V) = Softmax
(

QKT

√
dk

)
V + F (5)

where K and V are obtained from image features feature by non-linear projection. Q is obtained from
power features feature F by non-linear projection.

2.4 Temporal Analysis Module
As the core of the temporal analysis module, Transformer model incorporates an attention

mechanism to overcome the challenge of limited parallelization in RNNs when processing lengthy
temporal sequences. As shown in Fig. 8, a Transformer block consists of various components including
multi-head attention modules, multi-layer perceptron modules, layer normalization, and residual
connections [30]. As a key component of Transformer, the multi-head attention provides benefits
such as the parallel focus on various input segments, enhancing attention, and capturing complex
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dependencies. The multi-head attention mechanism can be represented as:

MultiHead (Q, K, V) = Concat (head1, . . . , headh) W O, headi = Attention
(
QW Q

i , KW K
i , VW V

i

)
(6)

where W Q
i ∈ R

dmodel×dk , W K
i ∈ R

dmodel×dk , W V
i ∈ R

dmodel×dv , and W O ∈ R
hdv×dmodel are parameters of the linear

projections; dmodel represents the output dimension. In our proposed method, the input of Transformer
is the fused feature acquired by the aforementioned feature fusion module. Utilizing the Transformer
architecture, the model is capable of capturing both short-term temporal dynamics and long-term
dependencies, which are essential factors for accurately predicting PV power output.

Figure 8: The structure of Transformer

3 Results and Discussions
3.1 Experimental Settings
3.1.1 Data Source

The satellite cloud image data utilized in this study were sourced from the Himawari-8 satellite
operated by the Japan Meteorological Agency. The PV power dataset was obtained from the Desert
Knowledge Australia (DKA) Solar Centre, with the PV power data representing a capacity of
263.0 kW and collected at 10-min intervals during the period of 2016–2017.

3.1.2 Performance Metrics

To assess the effectiveness of the proposed method, we employ the following evaluation metrics:
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), and Coefficient of Determination (R2). Here are the mathematical representations of
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these metrics:

RMSE =
√√√√ 1

N

N∑
i=1

(
ŷi − yi

)2
(7)

MAE = 1
N

N∑
i=1

∣∣ŷi − yi

∣∣ (8)

MAPE = 1
N

N∑
i=1

∣∣ŷi − yi

∣∣
yi

× 100% (9)

R2 = 1 −

N∑
i=1

(
ŷi − yi

)2

N∑
i=1

(
yi − yi

)2
(10)

where yi, ŷi, yi represent the actual output, forecast output, and mean value of actual output
respectively.

3.1.3 Competitive Methods and Experiment Setting

To ensure the results’ objectivity and reliability, this paper conducted ten experiments and averaged
the results. Five competitive methods were adopted for comparisons to validate the effectiveness of the
proposed method for short-term PV power prediction, as shown in Table 1.

Table 1: Configurations of each method

Methods Feature extractors for
PV power

Feature extractors for satellite
image

Feature extractors
for fusion feature

S1 Transformer SA-ConvLSTM Transformer
S2 LSTM ConvLSTM Transformer
S3 LSTM SA-ConvLSTM LSTM
S4 LSTM SA-ConvLSTM Transformer
S5 Improved LSTM Improved SA-ConvLSTM LSTM
Proposed Improved LSTM Improved SA-ConvLSTM Transformer

All these methods were developed using Tensorflow and Keras. Parameter optimization was
conducted using the Adam optimizer, with the mean square error (MSE) function employed as the loss
metric. Training for each method spanned 100 epochs with a batch size of 512. To avoid overfitting,
an early stopping strategy with a patience parameter set to 5 epochs was implemented. Additionally,
the starting learning rate was set to 0.001.

3.2 Performance Evaluation
3.2.1 Comparisons of the Proposed and Competitive Methods

Based on historical PV power data and satellite cloud images, this paper predicts the photovoltaic
power in the next hour, and the prediction results are shown in Table 2. The R2 of the proposed method
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is 0.935, and RMSE and MAE are 2.4%∼11.9% and 8.0%∼34.7% higher than competitive methods,
respectively. S2 exhibits the weakest performance, potentially attributed to ConvLSTM’s failure to
fully leverage the spatial-temporal features of satellite cloud images. Compared with S4, the proposed
method improves the ability to capture temporal features by introducing BDR mechanisms into
LSTM and SA-ConvLSTM, resulting in significant performance differences between these methods.
In addition, by comparing with S3, S4, and S5, it can be shown that making full use of model
complementarity is one of the important ways to improve model performance.

Table 2: Performance of the proposed and competitive methods

Methods RMSE (kW) MAE (kW) MAPE (%) R2

S1 19.755 10.732 24.422 0.919
S2 20.192 11.872 22.821 0.915
S3 18.414 8.748 21.557 0.925
S4 19.650 10.039 22.617 0.920
S5 18.225 8.429 19.235 0.931
Proposed 17.782 7.753 17.926 0.935

3.2.2 Comparisons of Different Horizons

Table 3 displays the evaluation metrics for the proposed method and comparative methods across
various time horizons. These methods were assessed over three prediction horizons: 2, 3, and 4 h.
In general, the accuracy of predictions tends to diminish as the horizon extends. As shown in
Table 3, the R2 of the proposed method decreases from 0.909 when predicting 2 h ahead to 0.878
when predicting 4 h ahead, primarily due to the insufficiency of historical data to fully capture all
changes in future time steps. Despite this decrease, the proposed method consistently outperforms
the five competitive methods across all three prediction horizons. Furthermore, it is evident that the
performance superiority of the proposed method becomes more pronounced with longer prediction
horizons, suggesting that the proposed method exhibits better robustness and stability.

Table 3: Performance of the proposed and competitive methods in different horizons

Horizon Metrics S1 S2 S3 S4 S5 Proposed

2-h RMSE (kW) 25.531 24.126 22.511 23.554 21.924 20.989
MAE (kW) 12.981 13.244 12.015 12.463 12.212 10.597
MAPE (%) 30.404 26.546 25.934 23.581 22.687 21.967
R2 0.865 0.879 0.895 0.885 0.900 0.909

3-h RMSE (kW) 27.394 26.529 24.530 27.143 25.086 23.286
MAE (kW) 15.271 14.704 13.031 15.298 13.497 11.864
MAPE (%) 33.224 28.431 27.844 30.921 26.993 24.025
R2 0.845 0.854 0.876 0.848 0.869 0.888

(Continued)
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Table 3 (continued)

Horizon Metrics S1 S2 S3 S4 S5 Proposed

4-h RMSE (kW) 28.494 26.802 28.369 29.427 26.713 24.331
MAE (kW) 16.289 14.438 16.003 16.627 15.225 12.641
MAPE (%) 35.356 32.966 34.863 36.746 30.558 26.536
R2 0.832 0.842 0.834 0.821 0.853 0.878

3.2.3 Comparisons of Different PV Power Stations

In order to provide additional evidence of the effectiveness of the proposed method, we con-
ducted an evaluation of its performance using the PV power generation data obtained from two
supplementary locations within the DKA Solar Centre. Specifically, the analysis included Farm #1
situated at Yulara Service Station, boasting a total power capacity of 226.8 kW, and Farm #2 located
at Connellan Airport, with a power capacity of 105.9 kW. Compared to other methods at Farm #1,
Table 4 demonstrated that the proposed method exhibited enhancements in RMSE and MAE by 3.3%
to 11.5% and 7.6% to 27.2%, respectively. While the proposed method did not surpass all competitive
methods at Farm #2, it still demonstrated a competitive performance across the board. Across
both PV datasets, the proposed method consistently showed higher predictive accuracy compared
to the competitive methods, suggesting that it has superior performance and stronger generalization
capabilities.

Table 4: Comparisons between the proposed and competitive methods for different stations

Station Metrics S1 S2 S3 S4 S5 Proposed

#1 RMSE (kW) 9.526 9.351 9.224 9.426 8.713 8.427
MAE (kW) 5.277 5.025 5.240 4.970 4.156 3.840
MAPE (%) 22.664 22.367 21.687 21.134 19.268 17.867
R2 0.915 0.918 0.920 0.917 0.929 0.933

#2 RMSE (kW) 19.923 18.296 17.756 17.243 17.946 16.953
MAE (kW) 11.458 9.386 8.672 7.804 9.426 8.502
MAPE (%) 23.365 21.426 20.129 16.756 20.785 16.735
R2 0.908 0.922 0.927 0.931 0.925 0.934

3.2.4 Comparisons with Other Recent Methods

To substantiate the effectiveness of our proposed method, we compared it with three state-of-
the-art deep learning methods. Model 1 (M1) integratess 3DCNN and one-dimensional CNNs to
separately capture the spatial-temporal dynamics of cloud formations and the historical PV power
generation data [31]. Model (M2) operates by simultaneously analyzing several satellite cloud images,
employing normalization, convolutional operations, and attention mechanisms to process the data
[32]. Model (M3) utilizes the high-resolution net (HRNet) to preserve high-frequency details in satellite
images for more accurate prediction [33].
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The overall comparison results for PV power prediction are presented in Table 5. According to
the prediction results, the prediction performance of the proposed method is better than the three
recent methods. Although recent methods have effectively improved on the traditional methods, the
proposed method seems to be able to make better use of the feature in the original data due to the multi-
stage temporal feature learning method. Furthermore, the prediction curves for different methods
(Fig. 9) indicate that our proposed method exhibits the lowest levels of error. On the clear-sky days,
all the methods achieve high accuracy. When considerable weather change is involved, the proposed
method exhibits the best prediction accuracy among all methods, which shows that the improved
SA-ConvLSTM can better capture the spatial-temporal characteristics of clouds for prediction.
By comparing with recent methods, the proposed method is again proven to have competitive
performance in the short-term prediction of photovoltaic power.

Table 5: Comparisons between the proposed and other recent methods

Methods RMSE (kW) MAE (kW) MAPE (%) R2

M1 21.551 12.174 25.802 0.905
M2 18.946 9.832 22.784 0.925
M3 22.327 13.302 26.368 0.897
Proposed 17.782 7.753 17.926 0.935

Figure 9: Prediction curves of the proposed and other recent methods

3.3 Discussions of the Proposed Method
3.3.1 Sensitivity Analysis

Selecting the optimal hyperparameters is essential for boosting both the precision and the ability
of the proposed method to apply to various situations. We considered several key hyperparameters for
each component, including the number of LSTM layers, the number of SA-ConvLSTM layers, and the
embedding dimension and number of heads in the Transformer. These optimal hyperparameters were
determined through sensitivity analysis on these vital hyperparameters, as illustrated in Fig. 10. The
proposed method’s performance varied within a small range under different hyperparameter settings,
except for the embedding dimension of the Transformer, which demonstrated its strong robustness.

3.3.2 Convergence Analysis

The importance of conducting a convergence analysis is paramount for guaranteeing the stability
and dependability of the model training process, as well as for bolstering the model’s ability to
generalize effectively in practical applications. As depicted in Fig. 11, the training and validation loss
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of the proposed method demonstrates that it achieves stability by the fifth epoch. Based on the early-
stopping strategy (patience = 5), the proposed model finally converged at the 13th epoch, with training
and validation losses of 0.0087 and 0.0076, respectively. This rapid convergence confirms the proposed
method’s efficient and robust learning capability.

Figure 10: Visualization of the impact of hyperparameters

Figure 11: Convergence analysis of the proposed method

3.3.3 Running Time Analysis

The running time of all methods for training and testing is shown in Table 6. Due to the
combination of LSTM and SA-ConvLSTM, the proposed method needs more time at each training
epoch. Compared with other comparison methods, better learning capability makes the proposed
method converge faster, so the total training time is shorter. Given that the prediction duration (7.76 s)
remains significantly less than the interval between predictions (60 min), the proposed method proves
to be viable for real-time implementation.
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Table 6: Comparison of running times for various prediction methods

Method Training time/epoch (s) Total training time (s) Testing time (s)

S1 7.65 159.09 6.36
S2 9.22 317.99 4.20
S3 11.66 244.08 6.43
S4 8.82 213.43 6.47
S5 12.06 228.06 8.31
Proposed 13.53 180.11 7.76

4 Conclusion

Improving the accuracy of PV power prediction holds significant importance. While existing
research has made strides in short-term prediction accuracy, challenges persist due to the underutiliza-
tion of temporal features and lack of consideration for the relationship between satellite cloud image
and PV power generation. These limitations hinder the improvement of PV power prediction perfor-
mance. Therefore, this study introduces a novel LSTM-Transformer hybrid framework for short-term
PV power prediction. The methodology incorporates a bidirectional dynamic residual mechanism in
LSTM and SA-ConvLSTM to enhance temporal feature capability and model stability. Furthermore,
a novel hybrid attention mechanism is proposed to capture multi-modal complementarities and reduce
redundancy. Last, the transformer is applied to further capture the short-term time series patterns and
long-term dependencies.

Experiments have demonstrated that the proposed method outperforms competitive methods in
short-term prediction. Moreover, its effectiveness in making predictions across multiple steps and
locations illustrates its broad generalization and robustness. Nevertheless, there are still obstacles that
need to be overcome. For instance, in predicting ultra-short-term outcomes, satellite cloud images may
not offer adequate cloud data. One potential solution is to combine both satellite and ground-based
cloud images as inputs to enhance predictive accuracy over different time frames. Additionally, the
lack of interpretability in deep learning-based forecasting models hinders the ability to analyze their
decision-making processes. A promising avenue for enhancing interpretability is to integrate physical
principles into these methods.
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