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ABSTRACT: Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and
economic efficiency of smart grids. Although numerous studies have employed various methods to forecast wind
power, there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of
the Transformer model for wind power prediction. To improve the accuracy of short-term wind power forecast, this
paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer, which is based
on seasonal and trend decomposition using LOESS (STL) and iTransformer model optimized by improved arithmetic
optimization algorithm (IAOA). First, to fully extract the power data features, STL is used to decompose the original
data into components with less redundant information. The extracted components as well as the weather data are
then input into iTransformer for short-term wind power forecast. The final predicted short-term wind power curve
is obtained by combining the predicted components. To improve the model accuracy, IAOA is employed to optimize
the hyperparameters of iTransformer. The proposed approach is validated using real-generation data from different
seasons and different power stations in Northwest China, and ablation experiments have been conducted. Furthermore,
to validate the superiority of the proposed approach under different wind characteristics, real power generation data
from southwest China are utilized for experiments. The comparative results with the other six state-of-the-art prediction
models in experiments show that the proposed model well fits the true value of generation series and achieves high
prediction accuracy.

KEYWORDS: Short-term wind power forecast; improved arithmetic optimization algorithm; iTransformer algorithm;
SimuNPS

1 Introduction
In recent years, there has been a significant advancement in the development of renewable energy

sources [1]. Wind energy, in particular, has gained prominent attention due to its accessibility and efficient
energy output [2,3]. As a result, wind power generation has become a key role in the new energy landscape
in many countries [4]. However, due to the inherent variability and intermittency of wind power generation
[5–7], developing an accurate prediction of wind power generation is essential to ensure the safe and stable
operation of power systems [8]. According to the prediction time, the short-term wind power forecast (WPF)
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involves forecasting active power from 00:00 the next day to 72 h in advance [9]. These predictions can help
power companies enhance generation plans, and ensure the safe and stable operation of the power system
while reducing spare capacity and operating costs.

Classified by the prediction method, WPF techniques can be typically categorized into the following
three aspects: physical, statistical, and hybrid methods [10,11]. Specifically, physical methods utilize local
wind data including wind speed, wind direction, and other meteorological data from numerical weather
prediction to predict wind power [12,13]. Physical methods in the field of wind power prediction have become
relatively mature. For example, reference [14] and reference [15] both used numerical weather forecasts as
input data and predicted the short-term wind power generation by Kalman filtering and machine learning
(ML) method, respectively. However, creating numerical weather forecast models is usually a complex, costly,
and time-consuming process, which makes them impractical for predicting short-term wind speeds [16].
On the other hand, statistical methods extract the relationship between historical wind and generation data
for short-term WPFs [17]. ML methods in statistic methods, such as artificial neural networks (ANN) [18],
support vector machines (SVM) [19], and random forests (RF) [20], leverage large historical datasets to
capture complex nonlinear relationships and temporal patterns, which has become a promising way for
WPF in the past decades [21]. Reference [22] uses an extreme learning machine (ELM) algorithm for WPF,
which has higher predictive accuracy compared to the ARMA-based forecasting method. The hybrid model
proposed in reference [23] integrated autoregressive moving average (ARMA) and long short-term memory
(LSTM) methods. Wherein the discrete wavelet transform was used to extract key time and frequency
domain information from wind speed data. The results indicated that the prediction accuracy of the proposed
algorithm is higher than that of a single model. Reference [24] introduces a spatial-temporal integrated WPF
model. It combines the improved convolutional neural network (CNN) and the bidirectional long short-
term memory (BiLSTM) networks to improve prediction accuracy. This effectively illustrates the advantages
of ML methods in the field of wind power forecasting.

In addition to the development of a better prediction model, decomposing the complex information
contained in time series to reduce the computational complexity of prediction [25] is also an important
research direction of short-term WPF. Reference [23] and reference [26] used the combination of the optimal
variational mode decomposition (VMD), improved complete ensemble empirical mode decomposition, and
permutation entropy to deal with the volatility and complexity of wind power time series. In reference [27],
the sparrow search algorithm was used to optimize differential evolution parameters and then combined
with BiLSTM neural networks to improve prediction performance. Nowadays, most hybrid algorithms in
the field of WPF contain ML algorithms, however, the performance of ML methods is highly dependent on
the proper adjustment of their hyperparameters. Reference [28] used Scikit-opt, Optuna, and Hyperopt to
optimize the hyperparameters of CNN and LSTM models. The swarm intelligence optimization algorithm
is commonly used to optimize the hyperparameters of the model because of its good optimization ability.
Reference [29] used the improved dung beetle optimizer algorithm to optimize the parameters of the VMD,
to fully extract the data features. Reference [30] optimizes the RF for short-term wind power forecasting
by utilizing the carnivorous plant algorithm, and the experimental results demonstrate that metaheuristic
algorithms can effectively enhance the predictive performance of forecasting algorithms. Inspired by the
mixed operations of addition, subtraction, multiplication, and division in arithmetic, researchers proposed
an arithmetic optimization algorithm (AOA) [31], and the experimental results show that this algorithm
outperforms traditional optimization algorithms in terms of search capability and iteration speed. With the
proposal and improvement of multi-head attention, its excellent parallel computing ability has the potential
to significantly improve the effectiveness of training and reasoning. Therefore, models such as Transformer
are gradually applied in the field of forecasting. Reference [32] introduced a quadratic weighted temporal
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attention mechanism-LSTM model, which has shown superior performance and stability compared with
traditional models including extreme gradient boosting (XGBoost) and RF. It can be seen that the multi-head
attention mechanism has great potential in the field of wind power prediction.

Combined with previous studies, this paper innovatively proposes STL-IAOA-iTransformer hybrid pre-
diction model for short-term WPF. Locally estimated scatterplot smoothing (LOESS) is a method to estimate
nonlinear relationships [33]. To extract important features from the data effectively, seasonal and trend
decomposition using LOESS (STL) is selected to decompose the data. To find the best hyperparameters to
improve the prediction performance, the parameters of the iTransformer prediction model are optimized by
a swarm intelligence optimization algorithm. However, swarm intelligence algorithms frequently suffer from
uneven initial population distribution and a tendency to converge on local optimal solutions, accordingly
improvements to AOA are proposed to address these limitations. Ultimately, the STL-IAOA-iTransformer
hybrid prediction model is proposed for short-term WPF to achieve better forecasting results. In summary,
the main innovations of this study are as follows:

(a) A new prediction approach named STL-IAOA-iTransformer is proposed for short-term WPF. It uses
the iTransformer algorithm with IAOA-tuned parameters to improve the prediction accuracy;

(b) IAOA is proposed to find the best hyperparameters for iTransformer. It employs adaptive adjustment of
search strategy and stochastic differential mutation strategy to improve its optimization search ability;

(c) The performance of the proposed algorithm from the geographical and temporal aspects is verified
under actual wind power generation data in Xinjiang. The effectiveness and stability of the proposed
algorithm are respectively verified through an ablation experiment and sensitivity analysis. Six state-
of-the-art and commonly used prediction algorithms are also selected to compare and analyze the
proposed algorithm.

This paper is laid out as follows. Section 2 describes the various preprocessing operations made on the
data set in detail. Section 3 outlines the detailed mechanisms employed by IAOA and iTransformer. Section 4
presents the case study and result analysis. Finally, Section 5 provides a comprehensive summary of the
entire work.

2 Data Source and Preprocessing
Incorrect or missing data may arise from a variety of sources in the data collection phase, including nat-

ural phenomena and manual influences. To ensure more precise and effective short-term WPF, preprocessing
is a necessary step. This section details the data preprocessing methods in this paper.

2.1 Data Source
Xinjiang, located in northwest China, possesses unique terrain and abundant wind resources. It

accounts for nearly 40% of China’s total onshore wind energy resources. The comprehensive cost of 600
to 750 kW of wind turbines produced in Xinjiang is approximately 7000 yuan per kilowatt, significantly
lower than that of foreign wind turbines. Currently, mass 750 kW wind turbines have been installed in
Xinjiang, and a 1.2 MW direct drive wind turbine prototype has been successfully connected to the bulk
power systems. Therefore, this study utilizes the proposed algorithm to conduct a case study in Xinjiang. Fig. 1
shows the average wind speed at 100 m altitude in Xinjiang, and it can be seen from Fig. 1 that Xinjiang has
a high average wind speed and contains many wind resources, which is suitable for wind power generation.
Therefore, the data from Xinjiang power station is chosen to study in this paper.
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Figure 1: Average wind speed at 100 m altitude in Xinjiang

The data studied in this paper is derived from an unpublished historical wind power dataset of four
power stations within a wind farm in the Xinjiang region of China in 2019. Among these power stations,
the installed capacity of power station #1, power station #2, and power station #3 is 201 MW each, while
power station #4 has an installed capacity of 300 MW. At the same time, the data set contains 13 key local
meteorological parameters, including wind speed, wind direction, temperature, air pressure, and humidity,
as well as wind power data of each power station. All data are recorded at 15-min intervals, providing high-
resolution time series information. To enable the model to better capture seasonal patterns and trends, the
annual data of each power station in this paper is divided into four sub-datasets based on seasonal changes,
reflecting the potential impact of different seasons on wind power generation. The first 98% of each sub-
dataset is utilized as the model training data, while the remaining 2% is reserved for testing.

2.2 Outlier Detection
Abnormal data may occur during the data collection, and those data need to be processed [34,35].

In addition, wind power generation is uncertain and intermittent. It is difficult to define the specific
distribution of power data. Therefore, due to the advantage of avoiding over-reliance on the risk of specific
distribution patterns, a boxplot method is selected to accurately identify outlier values in the data through
the interquartile range IQR. Wherein IQR refers to the interquartile distance, that is the distance between
the upper and lower quartiles.

The box plot is a graph used to show the distribution of data, which can effectively detect outliers in
the data. The box plot consists of five numerical points, namely, minimum, lower quartile Q1, median, upper
quartile Q3 and maximum. If there are outliers in the data, then these outliers will be drawn as independent
points, and away from other data points. Therefore, it can easily identify these outliers by observing the box
plot because they do not conform to the distribution of normal data points. This is the principle of box plot
detection of outliers.

When using a boxplot for outlier detection, the threshold range of outliers is usually determined
according to the IQR. If a value is less than the lower limit (Q1 − 1.5 × IQR) or greater than the upper limit
(Q3 + 1.5 × IQR), it is considered an outlier.
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Subsequently, the detected outliers are replaced with missing values, and then the missing values are
uniformly processed.

2.3 Rectification of Missing Values
There are several ways to deal with the missing values in the data set, including direct deletion, special

value interpolation, dummy variable, mean value filling, and regression filling. The direct deletion method
is simple and easy to operate, but it has a great negative impact on the later data analysis. Given the type of
data set in this paper, neither the dummy variable method nor the regression filling method is applicable.
Considering the continuity of wind-related data, the mean filling method does not easily maintain the
continuity of the data set, so the last observation carried forward method is selected to fill in the missing data.

2.4 Seasonal and Trend Decomposition Using LOESS
STL is a robust method for decomposing time series data Yt into trend Tt , seasonal St , and residual Rt

components [36]. STL is highly desirable for time series decomposition due to its following advantages: first,
it can handle any type of seasonality. Second, it can be easily adjusted by trend-cycle smoothening. Third, it
is robust to outliers. Finally, it allows the seasonal component to change over time [37–39].

STL is an iterative regression algorithm, which consists of two internal and external cyclic mechanisms.
The inner cycle mainly calculates trend components and seasonal components. The seasonal component is
fitted by locally weighted regression and the trend component is obtained by a low-pass filtering algorithm.
The outer loop is used to obtain the residual components, and the robustness weights are calculated in each
loop to reduce the influence of outliers on the inner loop. The main steps of the inner loop are as follows:

(a) Detrending. At iteration k + 1 of the inner loop, remove the trend component obtained by the previous
iteration, and get Ydetrend

t = Yt − T(k)
t ;

(b) Seasonal smoothing. Smooth the seasonal term which is denoted as C(k+1)
t ;

(c) Low-pass filtering of the smoothed seasonality. The result sequence of the previous step is processed
by moving the average and obtaining the sequence L(k+1)

t using local weighted regression;
(d) Detrending of the smoothed seasonality. Remove the smoothed seasonal item sub-series as S(k+1)

t =
C(k+1)

t − L(k+1)
t ;

(e) Deseasonalizing. Remove seasonal items and subtract the seasonal component Ydeseason
t = Yt − S(k+1)

t ;
(f) Trend smoothing. Smooth the data after removing the seasonal term and trend term. Obtain the trend

component T(K+1)
t by local weighted regression.

In the outer loop, residual component Rt is calculate as R(k+1)
t = Yt − S(k+1)

t − T(k+1)
t . Where the large

values in Rt are considered outliers and their weights are calculated. In the subsequent inner loop iteration,
these weights are utilized to reduce the impact of anomalies detected in the previous iteration of the
outer loop.

Time series decomposition models are divided into additive and multiplicative models. Since the wind
power curve mostly shows a seasonal pattern with a period of one day, the additive time series decomposition
method is chosen over the multiplicative time series decomposition in this paper. The flow of the STL
algorithm is shown in the Fig. 2.
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Figure 2: Flowchart of STL algorithm

3 STL-IAOA-iTransformer Forecast Model
In this section, IAOA will be introduced and the iTransformer model optimized by IAOA will

be presented.

3.1 Improved Arithmetic Optimization Algorithm
3.1.1 Arithmetic Optimization Algorithm

AOA is inspired by the four mixed operations in arithmetic [31]. The algorithm selects an optimization
strategy through a mathematical function accelerator and divides the whole process into exploration and
development. That is, global exploration by multiplication, and division operation and local development by
addition and subtraction operation [31,40]. The specific steps of AOA are as follows:

(a) AOA generates a uniformly distributed random population. The initial population can be obtained by
the following formula:

Oi , j = Rand × (Ub − Lb) + Lb (1)

where Ub is the upper bound value of particle position, Lb is the lower bound value of particle position,
Rand is the random number between [0, 1], and Oi , j is the position of the ith solution in the j
dimensional space.
Judging from the value of math optimizer accelerated (MOA) function and retrograde global search
or local development:

MOAt =Min + (Max −Min) × a (2)

a = t/T (3)

where MOAt is the current value of accelerator function, Min is the minimum value of the acceleration
function and Max is the maximum value of the acceleration function, respectively; a is the linear
convergence factor; t is the current number of iterations; T is the maximum number of iterations.
When r1 < MOAt , r1 is the random number between [0, 1], the function will enter the global
exploration stage, otherwise, it will enter the local development stage.

(b) Multiplication or division strategies are chosen based on the random number r2. These two strategies
have high discretization, which is conductive to the exploration of the example in the algorithm space.
The calculation formula is as follows:

O(t + 1) =
⎧⎪⎪⎨⎪⎪⎩

Ob (t) ÷ (MOP + ε) × ((Ub − Lb) × μ + Lb), r2 < 0.5
Ob (t) ×MOP × ((Ub − Lb) × μ + Lb), otherwise

(4)
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where r2 is the random number between [0, 1]; O(t + 1) is the position of the next generation particle;
Ob (t) is the position of the particle with the best fitness at present; μ is the control coefficient of the
search process; ε is a small integer number; MOP is the probability of the mathematical optimizer,
which is calculated as follows:

MOP (t) = 1 − (a)
1
α (5)

where MOP (t) is the probability of the current mathematical optimizer; α is the iterative sensitivity
coefficient, and the higher value, the greater the influence of the number of iterations on MOP (t).

(c) Finally, AOA is developed locally by addition strategy and subtraction strategy. Both of these strategies
have significant low dispersion and can easily approach the target, which accelerate the process of
finding the optimal solution, as

O(t + 1) =
⎧⎪⎪⎨⎪⎪⎩

Ob (t) −MOP × ((Ub − Lb) × μ + Lb), r3 < 0.5
Ob (t) +MOP × ((Ub − Lb) × μ + Lb), otherwise

(6)

where r3 is a random number between [0, 1].

3.1.2 Improved Arithmetic Optimization Algorithm
In AOA, MOA and MOP are used to adjust global search and local search, respectively. It can be

seen from Eqs. (2) and (6) that both MOA and MOP change with the linear convergence factor a. So, the
transformation of search and utilization ability of MOA and MOP depends on a in the optimization process.
It can be seen from Eq. (3) that with the continuous increase of iteration number, a will gradually increase to
1 linearly. However, the optimization process of MOA and MOP is complicated and changes non-linearly, so
the linear update strategy of a cannot fully reflect the actual conditions of the optimization process of MOA
and MOP. To address this, this study introduces nonlinear convergence factor b whose formula is as follows:

b = sin(η t
T

π + φ) (7)

where η and φ are relevant parameters.
At this point, the MOA and MOP can be updated as follows:

MOA′t =Min + (Max −Min) × b (8)

MOP′ (t) = 1 − (b)
1
α (9)

When AOA is locally developed in the later period, the convergence accuracy will gradually become
low and it is easy to fall into the local optimal solution. At this point, in order to improve the convergence
accuracy and make the algorithm jump out of the local optimum, the adaptive weight strategy is adopted.

The mathematical expression of the adaptive adjustment of search strategy is as follows:

ω = 1 − et/T − 1
e − 1

(10)

O (t + 1) = ω ⋅ Ob (t) ÷ (MOP′ + ε) × ((Ub − Lb) × μ + Lb) (11)

O (t + 1) = ω ⋅ Ob (t) ×MOP′ × ((Ub − Lb) × μ + Lb) (12)
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O (t + 1) = ω ⋅ Ob (t) −MOP′ × ((Ub − Lb) × μ + Lb) (13)

O (t + 1) = ω ⋅ Ob (t) +MOP′ × ((Ub − Lb) × μ + Lb) (14)

Stochastic differential mutation strategy formulated as

O (t + 1) = r1 × (Ob (t) − O (t)) + r2 × (O′(t) − O (t)) (15)

where O′(t) is a random individual in population.
In order to speed up the convergence and prevent the population from falling into the local optimum,

each individual will update its position twice in each location updating process. Firstly, the first position
update is carried out according to the original AOA, and then, the second position update is carried out
according to the adaptive weight to obtain the best position before and after its change. These two strategies
complement each other and improve the ability of the algorithm to find the optimal solution.

In summary, the following improvements are made to AOA:

(a) Form an initial population, containing N randomly generated individuals, and initialize the
parameters;

(b) Initialize the population in the solution space, and set t = 1;
(c) Make judgment, when t ≥ T, output the optimal solution; When t < T, the fitness of each individual is

calculated and the optimal individual position is recorded;
(d) Calculate the value of b according to Eq. (7), and update MOA and MOP according to Eqs. (8) and (9),

respectively;
(e) Randomly generate a value p within [0, 1]. Update the position of different individuals as follows;
(f) According to Eq. (15), the population is perturbed by random differential variation, so that t = t + 1;
(g) When the number of iterations is close to the predetermined maximum value, output the final

optimization parameters; otherwise, return to step (b) and set t = t + 1.

The flow chart of IAOA is as follows (Fig. 3):
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Figure 3: Flowchart of IAOA

3.2 iTransformer Model
In recent years, Transformer has shown its advantages in addressing time series prediction such as

WPF [41]. Unlike deep learning techniques used to handle traditional sequential data, such as recurrent
neural network (RNN) and LSTM, the Transformer model stands out for its unique feature of attention
without recursion. In the context of supervised learning tasks like prediction, only the encoder component
is pertinent. iTransformer is a variant of the traditional Transformer architecture. It addresses the problem
of embedding multiple variables into a single time token. Instead, it embeds each variable of a time series
independently as a variable token. This approach allows embedded tokens to better capture the global features
of the time series and exploit the correlations between multiple variables more effectively.

3.2.1 Transformer Model Architecture
The main structure of the original Transformer is Encoder-Decoder architecture, supplemented by

position coding, an ascending embedding layer, and a fully connected output layer. The schematic diagram
is shown in Fig. 2. Due to its strong global information modeling capability, the Transformer is often used
for long-period timing prediction problems.

Essentially, the self-attention mechanism is the information query mechanism [42]. Transformer’s
multi-head attention mechanism processes input time series data into Query (Q), Key (K), and Value (V) by
initially randomly setting WQ , WK , and WV weight matrices. Each attention can be given an output matrix
Attention (Q , K , V). The self-attention mechanism can uncover relationships between values in a sequence
and extract its global information. Its calculation formulas are shown in Eqs. (16) and (17):

Q = XWQ , K = XWK , V = XWV (16)

Attention(n) (Q , K , V) = Softmax(QKT
√

dk
)V (17)
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where X is the input sequence; WQ , WK , and WV are the initialized weight matrices of Q, K, and V vectors,
respectively. Softmax (⋅) is normalization calculation function; dk is the dimension of the input vectors K.

Each attention in Transformer is calculated in parallel to obtain output matrix Attention(n) (Q , K , V),
and then the output result of the multi-head attention mechanism can be obtained by splicing and
multiplying the corresponding weight matrix, as shown in Eq. (18).

output = Concat(Attention(n) (Q , K , V))Woutput (18)

where Concat (⋅) is output matrix concatenation function; Woutput is the weight matrix corresponding to the
output matrix.

3.2.2 iTransformer Model’s Mechanism
In the realm of time series forecasting, traditional Transformer models often encounter issues of

performance degradation and a surge in computational complexity, especially when dealing with sequences
that have large lookback windows. Moreover, these models, when handling multivariate sequence predic-
tions, frequently merge variables with different physical meanings into a single token, which may cause
the predictive model to overlook the intrinsic correlations between variables. These limitations restrict
the generalization capabilities of traditional Transformer models in time series forecasting tasks involving
multiple input variables.

Conversely, the iTransformer model introduces an innovative solution that optimizes performance
by overturning the structure of traditional Transformers. The iTransformer model abandons the complex
encoder-decoder architecture found in traditional Transformer prediction models, retaining only the
encoder component, which includes an embedding layer, a projector, and stackable transformer blocks,
thereby making the model structure more concise and efficient. In this model, the feature embedding layer
first independently maps the historical observation sequences of each variable to generate unique feature
representations. Secondly, the self-attention mechanism is responsible for capturing the correlations between
different variables. Then, the normalization layer ensures that the feature channels of all variables are in a
similar distribution state, reducing the impact caused by the differences in the range of variable values. Lastly,
the feed-forward network is responsible for extracting shared temporal features from historical observations
and future predictions, transforming these features into forecast outputs. By maintaining the independence
of variables, the iTransformer expands the model’s receptive field, making it perform more admirably in
long-term sequence forecasting tasks. Overall, the comparison between traditional Transformer models and
the iTransformer model can be visually presented through Fig. 4.
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Figure 4: Comparison of transformer and iTransformer models

3.3 STL-IAOA-iTransformer Forecast Model
In this paper, a combined prediction model of STL-IAOA-iTransformer is used to conduct short-term

WPF. Weather data such as wind speed and temperature are taken as input, and the wind power is taken
as output. Firstly, the input data will be preprocessed to identify and handle outliers, and subsequently, the
power data will be decomposed by STL, and multiple components obtained after decomposition will be used
as the input of the prediction model. Secondly, all data will be input into the IAOA-iTransformer model for
training, and the well-trained model will be used for actual power prediction. The prediction results of all
components are obtained, and the final prediction results are obtained by superimposing all subsequences.
The whole implementation process is shown in Fig. 5.
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4 Case Studies
In this section, the STL-IAOA-iTransformer model proposed in this paper will be used to predict short-

term wind power generation related to a wind farm in northwest China. The prediction results will be
compared with other methods to verify the superiority of this method.
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4.1 Model Evaluation Index
Root mean square error (RMSE) and mean absolute error (MAE) are used to measure the performance

of each model. The indicators are calculated as follows:

RMSE =
√

1
n∑

n
i=1 ( ŷi − yi)2, i = 1, 2, . . . , n (19)

MAE = 1
n∑

n
i=1 ∣ ŷi − yi ∣ , i = 1, 2, . . . , n (20)

where ŷi and yi are the ith prediction value and true value, respectively. In short-term WPF, the smaller the
two evaluation indicators, the more accurate the predicted result is.

The Diebold-Mariano (DM) test is commonly used to compare the forecasting results of two prediction
models to determine which model provides better forecasts. The null hypothesis assumes that the two models
have the same forecasting results, while the alternative hypothesis suggests that the forecasting results of the
two models are different. When the significance level is set at 0.05, if the p-value is greater than 0.05, we fail
to reject the null hypothesis, implying that the two models have the same effectiveness. If the p-value is less
than 0.05, we reject the null hypothesis, indicating that the two models have different effects. When the null
hypothesis holds, a DM test value greater than 0 indicates that Model 2 is superior to Model 1, while a DM
test value less than 0 indicates that Model 1 is superior to Model 2.

4.2 Model Parameter Setting
In order to demonstrate the superiority of the proposed model, LSTM, back propagation neural

network (BP), ELM, SVM, Transformer, iTransformer, SLT-transformer, AOA-transformer, and SLT-AOA-
iTransformer algorithms are selected as comparative models. The simulations are conducted in Python. The
model training ratio in the STL-IAOA-iTransformer combined model is 0.98. Besides, SimuNPS is applied to
study the refined mathematical model of WPF. And the example of experimental environment configuration
and hyperparameters configuration information are shown in Table 1.

Table 1: Example of experimental environment configuration and hyperparameters configuration information

Example experimental environment configuration information
Operating

system
Microsoft Windows 10

Professional
Development language Python

3.9.10
Framework torch 2.3.0 + Tensorflow 2.15.0

+ Keras 2.15.0
Memory 64 GB

CPU 13th Gen Intel(R) Core(TM)
i5-13400

Number of logical processors 16

General hyperparameters for the LSTM, SVM, ELM, Transformer, and AOA models
Method Parameters Value Parameters Value
LSTM The number of hidden units 25 learning rate drop

factor
0.15

Learning rate drop period 400 Epoch 100
BP The number of hidden units 5 Learning rate 0.001

Epoch 100

(Continued)
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Table 1 (continued)
ELM Architecture of network 100*100 The number of

layers
2

General hyperparameters for the LSTM, SVM, ELM, Transformer, and AOA models
Method Parameters Value Parameters Value

SVM Default C 30 Epsilon 0.01
Kernel RBF

Transformer The number of parallel attention
heads

5 The number of
encoder layers

2

Dropout 0.5 Epoch 100
STL- Population size 50 Batch size 32

iTransformer Epoch 100 Optimizer Adma
Learning rate 0.03 Dropout 0.5

IAOA- α 5 μ 0.5
iTransformer Population size 50 Batch size 32

Epoch 100 Optimizer Adma
Learning rate 0.03

STL-AOA- α 5 μ 0.5
iTransformer Population size 50 Batch size 32

Epoch 100 Optimizer Adma
Learning rate 0.03

STL-IAOA- α 5 μ 0.5
iTransformer Population size 50 Batch size 32

Epoch 100 Optimizer Adma
Learning rate 0.03

4.3 Simulation Results and Analysis
This part will introduce and analyze the prediction results obtained by various methods in different

seasons and different power stations.

4.3.1 STL Decomposition
Fig. 6 shows the decomposition results of STL for the wind power data of power station #1 in the

spring of 2019. The first series shows the original series, the second series shows the trend component, the
third series shows the seasonal component and the fourth series shows the loss component. As observed
in Fig. 7, the seasonal component exhibits a high frequency of change and a seasonal change trend. The
data at each moment is strongly correlated with changes in the previous period, which demonstrates long-
term dependence. Considering the complex variation of seasonal components and the strong temporal
correlation, the time-encoded IAOA-iTransformer model that can extract global information is selected
for prediction.
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Figure 6: Results of STL decomposition (Take the data from spring 2019 as an example)

4.3.2 Prediction Results under Different Seasons
The annual historical power data of a wind farm in northeast China from January to December 2019

is selected for seasonal prediction. The STL decomposition analysis above shows that wind power output
exhibits strong volatility and randomness with a notable seasonality. Based on the wind power generation
data sets in different seasons, the STL-IAOA-iTransformer model and the other 6 models including LSTM,
BP, ELM, SVM, Transformer, and STL-AOA-Transformer are selected to carry out prediction experiments
respectively. The experimental results are shown in Fig. 7, and RMSE and MAE of prediction results of
different algorithms in different seasons are shown in Fig. 8.

It is evident from Figs. 7 and 8 that the test sequence displays fluctuating characteristics, suggesting that
the actual wind sequence possesses nonlinear traits. All six prediction models can effectively capture the
changing trend of the original wind power generation. Generally, there is a significant deviation between the
prediction results obtained using the LSTM model and the actual wind power generations. The prediction
results obtained by ELM, SVM, Transformer, and STL-AOA-Transformer models outperform those of the
LSTM model. As illustrated in Fig. 7, the prediction curves of the STL-IAOA-iTransformer model and BP
model closely align with the original wind power generation curve compared to other models. Furthermore,
the prediction error results in Fig. 8 indicate that the prediction outcomes of the STL-IAOA-iTransformer
model are notably superior to those of other models.

Table 2 demonstrates that the proposed algorithm STL-IAOA-iTransformer surpasses all other algo-
rithms in terms of both RMSE and MAE measurements. For instance, the average RMSE of the proposed
model is decreased by 57.60%, 17.80%, 24.63%, 43.44%, 27.81%, and 26.30% compared to LSTM, BP, ELM,
SVM, Transformer, and STL-AOA-Transformer models, respectively. Similarly, the average MAE of the
proposed model is decreased by 59.45%, 20.70%, 28.83%, 47.24%, 28.56%, and 27.20% compared to other
algorithms. These findings suggest that the STL-IAOA-iTransformer algorithm exhibits a strong correlation
between the predicted outcomes and the actual power curve.
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Figure 7: Comparison of prediction results of multiple algorithms in different seasons
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Figure 8: RMSE and MAE of prediction results of multiple algorithms in different seasons
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Table 2: RMSE and MAE of prediction results of multiple algorithms in different seasons

Method Spring Summer Autumn Winter Average

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
LSTM 44.82 36.78 37.68 28.92 41.40 32.41 29.75 17.96 38.41 29.02

BP 25.88 20.47 22.30 14.90 19.13 15.75 11.95 8.24 19.82 14.84
ELM 29.73 23.09 23.15 16.63 18.87 15.04 14.69 11.38 21.61 16.54
SVM 39.78 31.31 32.45 27.04 28.52 20.70 14.43 10.17 28.79 22.30

Transformer 26.78 20.95 26.30 19.51 20.82 16.66 16.35 8.77 22.56 16.47
STL-AOA-Transformer 32.65 25.73 22.06 16.02 19.74 15.82 13.95 7.09 22.10 16.17

STL-IAOA-iTransformer 22.86 16.36 18.31 13.47 15.67 12.13 8.31 5.11 16.29 11.77

4.3.3 Prediction Results under Different Power Stations
The historical power data of different power stations of a wind farm in Xinjiang from March to May

2019 in spring is selected to verify the performance of different models. The comparison of the predicted
wind power and the real power of different prediction methods is shown in Fig. 9, and RMSE and MAE of
prediction results of different algorithms in different seasons are shown in Fig. 10.

Based on the data presented in Fig. 9, it is evident that there is a certain regularity in the wind power
output of various power stations during the same season. The proposed model in this study demonstrates
both adaptability and superiority in accurately predicting power output across different locations. A visual
inspection of Fig. 9 reveals that the STL-IAOA-iTransformer model closely aligns with actual wind power
generation in simulation experiments conducted for different wind power stations. Furthermore, Fig. 10
illustrates that the RMSE and MAE of the STL-IAOA-iTransformer model are notably lower compared to
other algorithms used for comparison, and the data in Table 3 also strongly confirms this conclusion. The
results show that the average RMSE of the proposed model is decreased by 58.21%, 13.80%, 24.59%, 61.09%,
36.97%, and 25.57% compared to LSTM, BP, ELM, SVM, Transformer, and STL-AOA-Transformer models,
respectively. Similarly, the average MAE of the proposed model is decreased by 63.47%, 16.93%, 25.41%,
69.20%, 37.52%, and 24.08% compared to these algorithms. Through this comprehensive analysis of short-
term WPFs, it is evident that the algorithm proposed in this study outperforms other comparative methods.

4.3.4 Prediction Results under Different Power Locations
This paper selects Xinjiang, China, as the research subject, mainly based on two considerations. First,

from an academic research perspective, Xinjiang is located in Northwest China and has distinct climatic
characteristics, such as large diurnal temperature differences and dramatic wind speed variations. These
features make Xinjiang a challenging object for wind power generation forecasting. In the field of wind power
forecasting, Xinjiang’s unique climatic conditions provide abundant research materials, thus possessing high
academic research value. Secondly, from an engineering practice perspective, Xinjiang is not only rich in
wind resources but also has vast land and a sparse population, making it an important base for wind power
generation in China, with many wind power stations built here. Wind power generation in Xinjiang is of great
significance to the local energy structure and economic development. Therefore, improving the accuracy of
wind power generation forecasting has practical application value in optimizing the allocation of wind power
resources, reducing energy costs, and enhancing the stability of the power grid.
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Figure 9: Comparison of prediction results of multiple algorithms in different power stations
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Figure 10: RMSE and MAE of prediction results of multiple algorithms in different stations

Table 3: RMSE and MAE of prediction results of multiple algorithms in different stations

Method Station #1 Station #2 Station #3 Station #4 Average

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
LSTM 49.87 40.82 40.25 31.84 26.06 19.99 23.59 19.02 34.94 27.92

BP 26.27 20.13 24.32 18.07 26.75 21.36 23.2 20.32 25.14 19.97
ELM 32.3 26.03 26.44 19.2 28.12 23.47 23.21 16.97 27.52 21.42
SVM 41.7 33.31 37.69 30.47 37.75 30.56 25.18 21.24 35.58 28.90

Transformer 39.61 29.81 31.51 24.95 26.41 22.16 23.48 17.02 30.25 23.48
STL-AOA-Transformer 36.38 26.87 26.05 19.31 24.74 19.82 23.77 18.76 27.74 21.19

STL-IAOA-iTransformer 20.23 17.61 22.34 13.88 23.24 19.07 22.54 17.75 22.09 17.08

To verify the applicability and forecasting effectiveness of the methods proposed in this paper under
different climatic conditions, this paper also selects data from a wind power station in a certain area of
Southwest China as comparative test data for experiments. Such a choice helps to evaluate the universality
and robustness of the proposed methods, as the climatic conditions in the Southwest region significantly
differ from those in Xinjiang, which is crucial for verifying the generalization capability of the model.

Fig. 11 shows the forecast result sequences of various algorithms in the experiment, and Table 4 presents
the forecast errors of each algorithm. Table 4 lists the statistical data of forecast errors for different methods,
which can quantitatively assess the performance of the forecasting models. From Table 4, it can be seen
that the forecasting results of STL-IAOA-iTransformer are distinct from other algorithms and exhibit good
performance. By comparing the STL-iTransformer model with the iTransformer model, it is evident that
the RMSE and MAE of the STL-iTransformer model’s prediction results are both smaller than those of
the iTransformer model. Therefore, it can be concluded that the model with STL decomposition has better
predictive accuracy. The experimental results indicate that STL-IAOA-iTransformer has good universality.
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Figure 11: Comparison of prediction results of ablation experiment algorithms

Table 4: RMSE and MAE of prediction results of multiple algorithms

Method RMSE MAE
LSTM 2.17 1.69

BP 2.26 1.84
ELM 3.05 2.31
SVM 2.18 1.80

Transformer 3.07 2.48
iTransformer 2.76 2.31

STL-iTransformer 2.68 1.98
IAOA-iTransformer 2.46 2.00

STL-AOA-Transformer 2.16 1.56
STL-IAOA-iTransformer 1.62 1.16

4.3.5 Ablation Experiment
This study conducts ablation experiments to verify the roles of STL decomposition and IAOA in

prediction, as well as to assess the improvements made to AOA. The experimental design for the ablation
models is as follows:

(a) Transformer: represents the basic Transformer model.
(b) iTransformer: represents the basic iTransformer model, which does not include STL decomposition

or IAOA.
(c) STL-iTransformer: represents the model with STL decomposition added to the iTransformer.
(d) IAOA-iTransformer: represents the model with IAOA added to the iTransformer.
(e) STL-AOA-iTransformer: represents the model with both STL decomposition and AOA added to

the iTransformer.
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(f) STL-IAOA-iTransformer: represents the model with both STL decomposition and IAOA added to
the iTransformer.

Fig. 12 presents a comparison of the prediction results of ablation experimental algorithms across
different seasons. The accuracy of wind power prediction conducted through ablation models is shown
in Table 5. Table 5 displays the RMSE and MAE values for the proposed prediction model and the ablation
models in predicting wind power data. In the ablation study, the average running time of the iTransformer
was 23.1249 s. After applying STL decomposition, the average running time of STL-iTransformer was reduced
to 22.3828 s. This not only decreased the computational time but also enhanced the predictive accuracy,
demonstrating the necessity of STL decomposition.

Figure 12: Comparison of prediction results of ablation experiment algorithms in different seasons
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Table 5: RMSE and MAE of prediction results of ablation models

Method Spring Summer Autumn Winter Average

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Transformer 42.78 35.30 34.97 24.46 48.09 38.44 19.41 9.91 36.31 27.03
iTransformer 41.71 35.50 34.77 21.20 41.86 32.27 13.74 6.62 33.02 23.90

STL-iTransformer 40.74 35.29 34.11 23.50 42.83 31.59 18.03 9.25 33.93 24.91
IAOA-iTransformer 39.23 31.66 32.35 22.22 34.23 25.61 18.87 9.95 31.17 22.36

STL-AOA-Transformer 36.47 26.57 25.71 19.79 31.96 27.20 14.41 10.19 27.14 20.94
STL-IAOA-iTransformer 20.48 14.78 22.00 15.96 15.67 12.13 8.71 6.02 16.71 12.22

Table 6 presents the results of the DM test using the forecast outcomes of various algorithms in
spring as an example. Taking the DM test results between STL-iTransformer and STL-AOA-iTransformer
as an example, the p-value is less than 0.05, leading to the selection of the alternative hypothesis, which
indicates that the two forecast sequences are not the same. The DM test value is greater than 0, suggesting
that the forecast sequence of STL-AOA-iTransformer is closer to the actual sequence compared to that
of STL-iTransformer, and thus has better predictive performance. The DM test reveals the superiority of
STL-IAOA-iTransformer algorithm proposed in this paper.

Table 6: DM test table results of ablation models

Summer Transformer iTransformer STL-
iTransformer

IAOA-
iTransformer

STL-AOA-
iTransformer

STL-IAOA-
iTransformer

Transformer 1 0.33 1.57 4.52 4.40 3.95*
(0.73) (0.12) (1.11) (1.88) (0.00)

iTransformer 1 1.01 2.84* 3.72* 3.58*
(0.32) (0.00) (0.00) (0.00)

STL- 1 2.77* 4.16 3.85*
iTransformer (0.01) (05.02) (0.00)

IAOA- 1 3.81* 3.45*
iTransformer (0.00) (0.00)

STL-AOA- 1 1.76*
Transformer (0.00)
STL-IAOA-
Transformer

1

Note: * indicates p < 0.05; The p-values are in parentheses.

4.3.6 Sensitivity Analysis of IAOA
A robust machine learning model often exhibits low sensitivity to parameters. Taking the spring data

from power station #4 as an example, a parameter sensitivity test was conducted on the constructed IAOA
using the control variable method, while keeping the other parameters, as well as the training and test
datasets, unchanged. The selected sensitivity testing parameters include learning rate, epoch, α, and μ. These
parameters were varied by ±20% to retrain and test the model, allowing us to compare any changes in testing
accuracy, and the results are shown in Fig. 13. Overall, IAOA demonstrates relatively weak sensitivity to the
aforementioned parameters. Even when these parameters fluctuate by ±20%, the MAE of the tests remains
around 17 MW.
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Figure 13: Comparison of test accuracy of STL-IAOA-iTransformer

5 Conclusions
To enhance the accuracy of short-term WPF, this study presents a hybrid power prediction model that

combines data decomposition with the optimization of neural network algorithm hyperparameters using an
improved heuristic algorithm. Moreover, to verify the effectiveness of the STL-IAOA-iTransformer model
proposed in this paper, simulation experiments are carried out using the data of a wind power plant in
Xinjiang, China, and the prediction results are compared with those of other state-of-art six comparison
algorithms. The following conclusions are drawn through analysis:

(a) The traditional AOA improved by nonlinear convergence factor, adaptive adjustment of the search
strategy, and stochastic differential mutation strategy, can effectively avoid falling into local optimal
value and achieve better optimization effect, and the stability of the IAOA algorithm has been verified
through sensitivity analysis;

(b) The STL-IAOA-iTransformer model proposed in this paper more effectively mines data characteristics
and enhances prediction accuracy. Compared with other methods, the MAE of the proposed model
decreased by 94.58%, 15.49%, 25.88%, 73.42%, 57.65%, and 44.30% on average in the forecast results of
four different stations.

However, the model presented in this paper still has certain limitations. For instance, data requires pre-
processing before prediction, and STL decomposition necessitates determining parameter settings through
multiple attempts and domain knowledge. Therefore, the future work of this study can be summarized as
follows:

(a) Seasonal adjustment of algorithm parameters: Future studies could horizontally observe the prediction
results of the same algorithm under different seasons to identify significant variations in prediction
effects across seasons.

(b) Simplification of meteorological information: Given the high complexity of meteorological informa-
tion in both time and space, future research could focus on reducing the complexity of input data.

(c) Integration of multiple data sources: WPF is influenced by a multitude of factors. Future work could
involve the combination of various data sources, such as meteorological data, wind farm operational
data, and geographic information data.
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