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ABSTRACT

The lithium battery is an essential component of electric cars; prompt and accurate problem detection is vital in
guaranteeing electric cars’ safe and dependable functioning and addressing the limitations of Back Propagation
(BP) neural networks in terms of vanishing gradients and inability to effectively capture dependencies in time series,
and the limitations of Long-Short Term Memory (LSTM) neural network models in terms of risk of overfitting. A
method based on LSTM-BP is put forward for power battery fault diagnosis to improve the accuracy of lithium
battery fault diagnosis. First, a lithium battery model is constructed based on the second-order RC equivalent
circuit and the electro-thermal coupling model, and various lithium battery failures are simulated to examine the
fault characteristics. Then, the lithium battery charging and discharging experiments collect, clean, and process
the battery data. By constructing a neural network LSTM-BP model, we verified the superiority and accuracy of
the LSTM-BP neural network model by comparing the LSTM model and BP model vertically and by comparing
the Recurrent Neural Network (RNN) model, the Gated Recurrent Unit (GRU) model, and the Residual Neural
Network (ResNet) model of a more advanced architecture horizontally. Finally, the lithium battery fault diagnosis
process is summarized through the threshold quantitative criteria, and different faults are diagnosed and analyzed.
The results show that the LSTM-BP neural network not only overcomes the limitations of the LSTM neural network
and BP neural network but also improves the ability to process sequence data and reduces the risk of overfitting.
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1 Introduction

Lithium batteries have gained popularity in academics and industry due to their environmental
benefits, low cost, and smooth discharge. They are frequently employed in electric vehicles, medical
equipment, and other applications [1]. However, in actual operation, due to constraints of electrical
power, thermal energy, and safety administration technology, lithium batteries may fail in different
ways during operation, which can rapidly degrade their performance or even trigger internal short
circuits, resulting in safety hazards [2].

The data-driven approach accomplishes the fault diagnosis of lithium batteries by extracting the
corresponding features and predicting the output labels from the battery data measured by charging
and discharging experiments [3]. This strategy does not involve the construction of sophisticated
lithium battery models, and it has a high forecast accuracy [4,5]. Huang et al. indicated a transformer-
based lithium battery fault diagnosis, modelling by denoising the converter network and validating
the model’s performance using aged battery packs and battery data to verify the validity of the
model [6]. The transformer model suffers from the limitations of lack of structured information
processing and long model training time. Yang et al. indicated an artificial neural network (ANN)
based method around the fueled-by-data strategy for lithium battery problem detection, using only
the voltage information to figure out the voltage of the short-circuiting battery. By employing a three-
dimensional electro-thermal interface model, the voltage predicts the battery’s internal and external
temperature distribution and the battery’s maximum temperature change rate. Ultimately, its stability
and accuracy are validated by two experiments: constant voltage charging and constant voltage
discharge [7]. ANN has the limitation that the model effect depends on the choice of hyperparameters.
Heinrich et al. suggested an original driven-by-data battery health state forecast method based on the
actual conducting of battery assessments. A neural network model of the constructed LSTM is used to
recreate the electrical reaction through capacity test, incremental capacity study, and peak energy test,
which allows the health state estimation with precision in terms of resistance and residual capacity
estimation [8]. Hong et al. established an LSTM recurrent neural network for multi-step voltage
prediction. For the first time, LSTM was applied to the voltage and fault prediction of lithium batteries
[9]. Li et al. proposed a method that combines the LSTM and Convolutional Neural Network (CNN)
for thermal runaway prediction modelling. CNN thermal runaway prediction model, the optimized
LSTM-CNN model can accurately predict the battery temperature and achieve the prediction of
lithium battery thermal runaway failure [10]. The LSTM-CNN model is ineffective in diagnosing other
monolithic faults in lithium batteries.

In summary, merging two neural networks to achieve defect detection for a lithium battery has
a lot of research potential [11]. This study provides an LSTM-BP-based fault inspection method
for power batteries, which combines LSTM and BP. BP is responsible for calculating the gradient
of the loss function, which overcomes the limitation of the overfitting risk of LSTM, and LSTM
is accountable for dealing with temporal dependence in sequential data, overcoming the limitations
of BP, which suffers from gradient vanishing and does not capture temporality effectively [12]. The
LSTM-BP model can predict lithium battery output labels faster and more accurately, overcoming
the limitations of other neural network models that take too long to train and depend on selecting
hyperparameters to diagnose lithium battery faults reliably.
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2 Lithium Battery Data Processing and Equivalent Circuit Modeling
2.1 Lithium Battery Experimental Platform Construction and Battery Data Acquisition

In this paper, the capacity of a 21.673 AH ternary lithium battery is placed in the constant
temperature and humidity equipment for charging and discharging cycle experiments, data transfer
from the battery performance tester to the adjusted parameterized continuous temperature and
humidity equipment, the battery experimental platform host computer from the battery performance
tester to carry out lithium battery charging and discharging experimental data acquisition, and
ultimately exported in excel file format [13]. The lithium battery experiment platform is shown in
Fig. 1.

Figure 1: Lithium battery charge/discharge cycle experimental platform

By building a lithium battery charging and discharging cycle experiment platform for lithium
battery data collection, this lithium battery charging and discharging cycle experiment started at 10:15
on 04 April 2022, and stopped the experiment at 13:27 on 10 May 2023. The number of battery
experimental cycles was 3565, the capacity of lithium batteries decayed from 100% to 80%, and the
capacity decayed from 21.673 to 17.057 AH. A total of 596,703 sets of battery charge and discharge
data were collected. Partial lithium battery data and column labels are shown in Fig. 2.

2.2 Lithium Battery Data Processing
With the cycle of charging and discharging of lithium batteries, the capacity of lithium batteries

will gradually decay, and the battery data will gradually show a certain error. For more effective battery
fault diagnosis, this paper uses the battery cycling experiments before the 1775 cycles of battery data.
At this time, the capacity of lithium batteries is 18.795 AH, which is 86.7% of the rated capacity of the
battery charging and discharging data of 303,349 groups of batteries.
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Figure 2: Partial lithium battery data and column labels

(1) Rate of change of voltage

Calculate the voltage change rate of each cycle according to the test time and voltage in the
experimental data [14]. The voltage change rate calculation formula is shown below:

Vt = VT+1 − VT

ΔT
(1)

where: Vt is the rate of change of the battery voltage, VT+1 is the voltage value at the next cycle test
time, VT is the voltage value at the current cycle test time, and ΔT is the cycle test time [15].

(2) Rate of change of temperature

Based on the test time and temperature in the experimental data of the lithium battery charge/dis-
charge cycle, calculate the temperature change rate for each cycle of the lithium battery charge/dis-
charge cycle [16]. The formula for calculating the temperature change rate is shown below:

Tt = TT+1 − TT

ΔT
(2)

where: Tt is the temperature change rate of the battery, TT+1 is the temperature value at the next cycle
test time, TT is the temperature value at the current cycle test time, and ΔT is the cycle test time.

(3) Open Circuit Voltage (OCV)

The lithium battery charge/discharge cycle data find the points where the current is 0, and the
voltage corresponding to these points is the open-circuit voltage. Screening the data of voltage and
SOC when the battery data current is equal to 0, the functional relationship between OCV and SOC is
obtained by polynomial fitting [17]. After many attempts, the ninth-degree polynomial has the highest
fitting accuracy and can describe the relationship between battery OCV and SOC [18]. The formula
of the polynomial is shown below:

OCV = k0 + k1 ∗ SOC + k2 ∗ SOC2 + k3 ∗ SOC3 + k4 ∗ SOC4 + k5 ∗ SOC5

+ k6 ∗ SOC6 + k7 ∗ SOC7 + k8 ∗ SOC8 + k9 ∗ SOC9 (3)

The SOC-OCV fitting curves of lithium batteries in charging and discharging states are different.
The polynomial values of lithium battery charging state are: k0 = 3.3762, k1 = 4.4381, k2 =
−51.2568, k3 = 400.2459, k4 = −1891.5004, k5 = 5410.129756, k6 = −9245.370676, k7 = 9186.2165,
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k8 = −4891.018942, k9 = 1078.947329, and the SOC-OCV fitting curves and error curves for the
lithium battery in the state of charge are shown in Fig. 3.

Figure 3: SOC-OCV fitting curves and error curves for lithium batteries in the state of charge

The polynomial values of lithium battery in discharge state are: k0 = 2.797240, k1 = 12.932791, k2

= −147.9821, k3 = 949.3929, k4 = −3602.9845, k5 = 8434.9677, k6 = −12300.3565, k7 = 10884.024795,
k8 = −5348.501875, k9 = 1119.765249, and the SOC-OCV fitting curves and error curves in the
discharged state of the lithium battery are shown in Fig. 4.

Figure 4: SOC-OCV fitting curves and error curves for lithium batteries in the state of discharge
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The lithium battery data is preprocessed using the experimental data collected by the battery
experimental platform. Some of the experimental data are shown in Table 1.

Table 1: Lithium battery cycling indicator partial data set table

Cycle Current Voltage (V) Temperature (°C) SOC Capacity (AH) Resistance Vt Tt OCV (V)
56 21.002 4.2001 32.76 0.879 18.838 16.4445 0.984 0.5 3.8547
57 20.901 4.2000 32.76 0.879 19.146 15.3747 −0.006 0.0 3.9144
58 16.729 4.2000 32.75 0.893 19.404 15.2002 0.000 −0.1 3.9428
59 14.356 4.2000 32.65 0.905 19.627 15.6070 0.000 0.1 3.9870
60 12.545 4.2000 32.63 0.916 19.823 14.8350 0.000 −1.1 4.0228
61 11.016 4.2000 32.53 0.925 19.996 14.6046 0.000 −0.2 4.0162
62 9.68 4.2000 32.43 0.933 20.147 15.2481 0.000 −1.0 4.0720
63 8.506 4.1998 32.44 0.940 20.280 14.7861 −0.012 0.1 4.0707
64 7.493 4.2000 32.49 0.946 20.397 14.6518 0.012 0.5 4.0958

2.3 Lithium Battery Equivalent Circuit Model
(1) Second-order RC model

The second-order RC model comprises two capacitors and three resistors [19]. The second-order
RC equivalent circuit model is shown in Fig. 5.

ocU

0R

I
U

1C
2C

1R 2R

Figure 5: Second-order RC equivalent circuit model

Through the equivalent circuit diagram, the terminal voltage calculation formula is as follows:

U = Uoc − IR0 − U1 − U2 (4)

where: Uoc is the supply voltage, U1 is the voltage of the internal resistance R1, U2 is the voltage of the
internal resistance R2, and I is the terminal current [20].

The second-order RC model can more accurately simulate the steady state and transient charac-
teristics of the battery during the process, which is closer to the battery’s performance [21]. In this
paper, the second-order RC model is constructed, combined with the lithium battery data set after
the previous data processing, to conduct the fault simulation analysis of lithium battery overcharging,
over-discharging, increasing internal resistance, and decreasing capacity.
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(2) Electro-thermal coupling model

The electro-thermal coupling model is based on the relationship between the internal reactions
of the battery with different temperature distributions and temperature variations [22]. The thermal
model is coupled with the second-order RC equivalent circuit model built in the previous section [23],
and the framework of the electro-thermal coupling model is constructed, as shown in Fig. 6.

Figure 6: Electro-thermal coupling model

The electro-thermal coupling model is calculated as follows:

ρC
∂T
∂t

= ∇ · (λ∇T) + q (5)

q = I (E − U) + IT
∂E
∂T

(6)

where: ρ is the density of the cell, C is the specific heat capacity, T is the cell temperature, λ is the

thermal conductivity, q is the rate of heat generation, I (E − U) is the Joule heat power, and IT
∂E
∂T

is

the reversible reaction heat power [24].

Considering the needs of this paper, the electro-thermal coupling model combined with the
lithium battery dataset can simulate the lithium battery thermal runaway fault [25], for the lithium
battery thermal runaway fault occurs when the lithium battery temperature, voltage, current, and other
parameters of the lithium battery can be observed to change.

3 Lithium Battery Failure Analysis
3.1 Lithium Battery Overcharge Failure

The overcharge fault occurs when the lithium battery voltage to the cutoff voltage does not stop
charging, so the charging voltage continues to rise. A simulation of the overcharge fault, the lithium
battery overcharge voltage change curve, is shown in Fig. 7.

Fig. 7 analysis can be obtained. The Failure Node is the crucial point of the overcharge fault
simulation, which has a horizontal coordinate of 166.7 and a vertical coordinate of 4.10. The standard
battery stops charging after charging up to 4.10 V, and the voltage no longer rises. The overcharge
fault battery continues to charge after charging up to 4.10 V, and the voltage continues to increase.
The discharge rate of the overcharged faulty battery is higher than that of the standard battery.
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Figure 7: Lithium battery overcharge voltage change curve

3.2 Lithium Battery Over-Discharge Failure
The over-discharge fault is a lithium battery that continues discharging even after being discharged

to the cutoff voltage. Over-discharge will make the battery current unstable. The simulation simulates
the over-discharge fault and lithium battery over-discharge voltage change curve shown in Fig. 8.

Figure 8: Lithium battery over-discharge voltage change curve

Fig. 8 analysis can be obtained. The Failure Node is the crucial point of the over-discharge fault
simulation, which has a horizontal coordinate of 90 and a vertical coordinate of 3.6749. The standard
battery stops discharging after discharging up to 3.6749 V. The voltage is no longer decreasing, and
the over-discharge fault battery continues to discharge after discharging up to 3.6749 V. The voltage
continues to decline. The time it took for the battery to charge to the cutoff voltage showed no
significant difference.

3.3 Lithium Battery Internal Resistance Increase Failure
Increased internal resistance failure occurs when the lithium battery use time is too long, resulting

in increased resistance and increasing the discharge rate of the lithium battery. Increased internal
resistance can raise lithium battery temperature, limiting battery life. Simulation of internal resistance
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increases fault, and lithium battery internal resistance increases the voltage change curve, as shown in
Fig. 9.

Figure 9: Lithium battery resistance increases the voltage change curve

Fig. 9 analysis can be obtained. The Failure Node is the crucial point for the simulation of the fault
of increased internal resistance, and its horizontal coordinate is 90 and vertical coordinate is 4.049. The
standard and faulty batteries with increased internal resistance are charged at the same rate, and the
charging voltage of the defective battery is more than the standard lithium battery charging voltage.
The rate and the discharge cutoff voltage are lower than the standard battery discharge cutoff voltage.

3.4 Lithium Battery Capacity Reduction Failure
Capacity reduction problems are caused by battery age, unregulated use, and self-discharge, all of

which contribute to battery capacity deterioration. The decline in battery capacity reduces its range
and service life and indirectly causes additional battery issues. The lithium battery capacity reduction
voltage change curve is shown in Fig. 10.

Figure 10: Lithium battery capacity reduction voltage change curve

Fig. 10 analysis can be obtained. The Failure Node is the crucial point of the capacity reduction
fault simulation, which has a horizontal coordinate of 16.72 and a vertical coordinate of 4.10. Standard
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batteries and capacity reduction faulty batteries are charged at the same rate. The defective batteries
have a greater charging rate and reach the charging cutoff voltage of 4.10 V faster. After standing
for the same amount of time, when discharged, the capacity reduction faulty batteries have a faster
discharging rate than the standard battery discharge rate, which is more rapid.

3.5 Lithium Battery Thermal Runaway Failure
Thermal runaway failure is a lithium battery due to electrical, mechanical, and thermal abuse,

resulting in rapid changes in the self-temperature rise of the battery. The temperature of the battery rises
sharply, resulting in fire, explosion, and other phenomena. Simulation to simulate thermal runaway
failure, lithium battery thermal runaway change curve shown in Fig. 11.

Figure 11: Lithium battery thermal runaway

Fig. 11 analysis can be obtained. Failure Node 1 is the first key point of thermal runaway fault
simulation. Its horizontal coordinate is 63.229, the vertical coordinate is 50, and the normal operating
temperature of the battery is 20°C to 50°C. When the battery temperature rises to Failure Node 1,
the battery begins to enter the thermal accumulation stage, the visible voltage rate of change begins
to increase rapidly, and the temperature of the battery starts to rise. Failure Node 2 is the second key
point of thermal runaway fault simulation. Its horizontal coordinate is 124, and its vertical coordinate
is 200. When the battery temperature rises to Failure Node 2, the battery begins to enter the thermal
runaway stage, and the visible voltage instantly drops to 0 V, and the temperature increases rapidly.

4 Neural Network
4.1 Long Short-Term Memory Neural Networks

LSTM neural network can solve the disadvantages of gradient vanishing [26], short-term memory
limitation, and low computational efficiency in Recurrent Neural Network (RNN) [27]. The structure
of the LSTM neural network is shown in Fig. 12.

The computational relational equation for the LSTM is described below:

ft = σ
(
Wf • [ht−1, xt] + bf

)
(7)

it = σ (Wi • [ht−1, xt] + bi) (8)
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Ot = σ (Wo [ht−1, xt] + bo) (9)

Ct = tanh (Wc • [ht−1, xt] + bc) (10)

Ct = ft ∗ Ct−1 + it ∗ Ct (11)

where: Wf , Wi, Wo and Wc is the weight matrix, bf , bi, bo and bc is the bias term. σ is the sigmoid
function, and tanh is the hyperbolic tangent function [28].

A A

Figure 12: LSTM neural network structure

4.2 Backpropagation Neural Networks
The BP neural network computes the error of the neural network when it propagates forward from

the input to the output and adjusts the weights and thresholds when it propagates backwards from the
output to the input [29]. The structure of the BP neural network is shown in Fig. 13.
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Figure 13: BP neural network structure

The formulae for the BP neural network for the selection of the number of nodes in the hidden
layer, the forward transfer process, and the backward transfer process are as follows:

h = √
m + n + a (12)

Sj =
m−1∑
i=0

wijxi + bj (13)

E (w, b) = 1
2

n−1∑
u=0

(
dj − yj

)2
(14)
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where: m, h, and n are the number of nodes in the input, hidden, and output layers, a is the conditioning
constant, E is the error, and wij is the weight [30].

4.3 LSTM-BP
LSTM is used to process the time series data of lithium battery features, and BP is used to

process the data of other features. The combination of LSTM and BP can better fit the complex
data distribution of lithium batteries, realize the fusion of information between different features, and
improve the prediction accuracy of the LSTM-BP model on the complex data of lithium batteries. The
design of the LSTM-BP structure is shown in Fig. 14.
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Figure 14: LSTM-BP structure design

LSTM extracts the time series features of the lithium battery dataset using a multi-layer neural
network, BP extracts other features of the lithium battery dataset through a fully connected layer and
connects LSTM and BP through the fusion layer of the neural network model, and finally generates
predicted values through the fully connected layer and carries out the fault diagnosis of lithium battery.

5 Neural Network Model Prediction
5.1 Neural Network Model Parameter Selection and Training

This paper uses the mean absolute error (MAE) to assess the validity of parameter selection. The
three indicators of mean square error (MSE) [31], root mean square error (RMSE), and mean absolute
error (MAE) are used to assess the validity of the model [32], which is calculated as follows:

MAE = 1
n

n∑
i=1

∣∣(yi − ŷi

)∣∣ (15)

MSE = 1
n

n∑
i=1

(
yi − ŷi

)2
(16)

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(17)

where: yi is the predicted value and ŷi is the actual value.

In order to prevent the model from over-fitting problems, this paper divides the lithium battery
dataset into training, validation, and testing sets according to the ratio of 7:2:1 and selects Adam
as the optimizer. Compared with the traditional gradient descent algorithm, this paper chooses the
momentum gradient descent algorithm, which can solve the defect of gradient instability. In addition,
dropout and batch normalization methods are used to randomly discard some neurons to improve
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the generalization ability of the model. When the model is trained, the input sequence length is 1, the
dropout parameter is 0.3, the number of training iterations is 200, and the batch size is 32, the model
works best [33].

The number of neurons and the number of network layers affect the performance of the neural
network model. By training the model on the training set, the number of neurons and the number
of network layers can be determined. If the number selection is inappropriate, the model will have
problems such as over-fitting and gradient explosion [34]. This means that the model can not learn
the relationship between data perfectly. We use the initialization cross-validation method for model
parameter combination and apply MAE to evaluate and select the optimal parameter combination.
The results of different parameter combinations are shown in Table 2.

Table 2: The results of different parameter combinations

Serial number LSTM network
layer

LSTM number
of neurons

BP network
layers

BP number of
neurons

MAE

1 3 (256,128,64) 2 (256,128) 0.0019
2 3 (256,128,128) 2 (256,128) 0.0064
3 3 (256,128,64 2 (256,256) 0.0089
4 3 (256,128,64) 3 (256,128,64) 0.0093
5 3 (256,128,128) 3 (256,128,128) 0.0116
6 2 (256,128) 3 (256,128,64) 0.0121
7 2 (256,128) 3 (256,128,128) 0.0143
8 2 (256,128) 2 (256,128) 0.0203

The analysis in Table 2 shows that when the LSTM Network Layers are 3, the LSTM Number
of Neurons are 256, 128, and 64, respectively, and the BP Network Layers are 2. The BP Number of
Neurons is 256 and 128, respectively. At this time, the MAE is the smallest, and the model has the best
training effect.

5.2 Different Neural Network Models Predict Output Labels
Through the collection and processing of lithium battery data, and reasonable training and

parameter selection of the neural network model, this paper builds an LSTM-BP model in Python, and
uses the LSTM-BP model to compare the LSTM model and the BP model vertically, and compares the
more advanced architecture of the RNN model, the GRU model, and the ResNet model horizontally,
and utilizes the three indexes of MSE, RMSE and MAE to evaluate the effectiveness of the model.
MSE, RMSE, and MAE metrics will be used to evaluate the effectiveness of the model. The different
neural network models for capacity prediction are shown in Fig. 15. The different neural network
models for open circuit voltage prediction are shown in Fig. 16. The different neural network models
for internal resistance prediction are shown in Fig. 17. The predicted rate of temperature change for
different neural network models are shown in Fig. 18. The predicted voltage change rate for different
neural network models is shown in Fig. 19.



722 EE, 2025, vol.122, no.2

Figure 15: Capacity prediction of different neural network models

Figure 16: Open circuit voltage prediction of different models

Figure 17: Resistance prediction of different neural network models
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Figure 18: Temperature change rate prediction of different neural network models

Figure 19: Voltage change rate prediction of different neural network models

The different neural network models were compared horizontally and vertically using the LSTM-
BP model, and the effectiveness of the different neural network models was evaluated using three
indexes: MSE, RMSE, and MAE. The evaluation indexes of different neural network models are
shown in Table 3.

Table 3: Evaluation indexes of different neural network models

Mould MSE RMSE MAE

BP 0.02154 0.1472 0.1643
LSTM 0.00976 0.0988 0.0872
RNN 0.02779 0.1667 0.1561
GRU 0.02419 0.1555 0.1179
ResNet 0.01532 0.1237 0.1049
LSTM-BP (ours) 0.00231 0.0481 0.0313
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According to the analysis in Table 3, it can be seen that the three evaluation indexes of the LSTM-
BP model are smaller than those of other neural network models, which can prove that the LSTM-BP
model has higher prediction accuracy and effectiveness.

5.3 Threshold Quantitative Criteria
Through the data processing of the lithium battery dataset and equivalent circuit model fault

simulation, the battery charging cutoff voltage can be obtained as 4.1002 V, and the discharge cutoff
voltage is 3.6749 V. According to the thermal runaway fault simulation, the maximum variation of
the voltage change rate can be obtained as 0.003 V/s. The battery enters the thermal accumulation
stage at a temperature of 20°C to 50°C with a standard temperature change rate of less than 0.009°C/s
[35]. Based on the above conclusions, it is determined that the lithium battery has a single charging
and discharging cutoff time of 3244 s. In the accumulation stage, the temperature exceeds 50°C, and
the temperature change rate is more significant than 0.009°C/s. Li battery experimental platform for
lithium batteries for a single charge and discharge, the charging cutoff time of 3244 s. The charging
cutoff time for different models and capacities of lithium batteries is different. The charging cutoff
time threshold set in this paper is only for the lithium batteries in this paper and can not be realized
for all lithium battery models [36]. Based on the above conclusions, to determine the six characteristics
of lithium batteries in this paper threshold. The threshold quantitative criteria are expressed in Table 4.

Table 4: Threshold quantitative standard

Features Thresholds

Charge cutoff voltage/V 4.1002
Discharge cutoff voltage/V 3.6749
Rate of voltage change/V s−1 ±0.003
Rate of temperature change/°C s−1 0.009
Temperature maximum/°C 50
Charge cutoff time/s 3244

5.4 Lithium Battery Troubleshooting Process
According to the accuracy of the LSTM-BP neural network model prediction and the set threshold

quantitative criteria, the lithium battery fault diagnosis process is summarized as shown in Fig. 20.

Through the six characteristic thresholds of lithium batteries and the different manifestations of
lithium batteries under different faults, you can use the lithium battery fault diagnosis flowchart to
diagnose different faults of lithium batteries.
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Figure 20: Lithium battery fault diagnosis process

6 Lithium Battery Troubleshooting

Randomly selected lithium battery fault samples and standard samples for comparative diagnostic
analysis. The diagnostic analysis of the overcharging fault is shown in Fig. 21.

Figure 21: Diagnostic analysis of overcharging faults

According to the diagnostic analysis of the overcharge fault battery data in Fig. 21, it was finally
concluded that the charging cutoff voltage was 4.3794 V, with an increase of 4.3%; the discharge cutoff
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voltage did not show any significant difference; the charging cutoff time was 3667 s, with an increase
of 13.0%; and the internal resistance and capacity did not show any significant difference.

The diagnostic analysis of the over-discharge fault is shown in Fig. 22.

Figure 22: Diagnostic analysis of over-discharge faults

According to the diagnostic analysis of the over-discharge fault battery data in Fig. 22, it
was finally concluded that the charging cutoff voltage did not show any significant difference; the
discharging cutoff voltage was 2.8000 V, with a reduction of 6.6%; the charging cutoff time did not
show any significant difference; and the internal resistance and capacity did not show any significant
difference.

The diagnostic analysis of the fault of increased internal resistance is shown in Fig. 23.

Figure 23: Diagnostic analysis of increased resistance faults

According to the diagnostic analysis of the internal resistance increase fault battery data in Fig. 23,
the final result is: the charging cutoff voltage does not appear obvious differences; discharge cutoff
voltage 2.903 V, shrinkage of 3.2%; charging cutoff time 3786 s, increase in size of 16.7%; the battery
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internal resistance of 0.1765 Ω, an increase of 0.0154 Ω, an increase of 10.3%; the capacity of the
capacity does not appear obvious differences.

Lithium battery capacity reduction fault diagnostic analysis is shown in Fig. 24.

Figure 24: Diagnostic analysis of capacity reduction faults

According to Fig. 24 lithium battery capacity reduction fault battery data diagnostic analysis,
the final result: the charging cutoff voltage does not appear to have apparent differences; discharge
cutoff voltage does not appear evident differences; charging cutoff time 3605 s, an increase of 11.1%;
the battery capacity of 19.75 AH, a reduction of 1.25 AH, reducing the magnitude of 6%; internal
resistance does not appear apparent differences.

The thermal runaway fault diagnosis analysis is shown in Fig. 25.

Figure 25: Diagnostic analysis of thermal runaway faults

According to the diagnostic analysis of the thermal runaway faulty battery data, it was finally
concluded that when the time to 72 s, the voltage change rate was 0.004 V/s, which exceeded the
voltage change rate threshold; when the time to 73 s, the temperature was 51°C, which exceeded
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the temperature maximum value, and the temperature change rate was 0.1°C/s, which surpassed the
temperature change rate limit.

7 Conclusion

Aiming at the problem of power battery fault diagnosis, compared with the traditional LSTM
neural network and BP neural network, this study proposes a power battery fault diagnosis method
based on the LSTM-BP neural network. The lithium battery dataset is obtained by processing the
data collected from the lithium battery experimental platform. The second-order RC equivalent
circuit model and electro-thermal coupling model are constructed to simulate the lithium battery
overcharging, over-discharging, internal resistance increase, capacity decrease, and thermal runaway
faults and analyze the parameter characteristic changes corresponding to different faults of lithium
batteries. Other neural network models are established to predict lithium batteries’ output labels, and
the models’ effectiveness is evaluated using three indicators: MAE, RMSE, and MAE. The validation
results show that the fault diagnosis method of the LSTM-BP neural network not only overcomes
the limitations of the LSTM neural network and BP neural network but also improves the ability
to process sequence data and reduces the risk of overfitting. Therefore, the LSTM-BP model has
higher accuracy and effectiveness. According to the lithium battery dataset and lithium battery fault
simulation analysis, the threshold value of each output label is set, and the fault diagnosis process
is designed by setting different threshold values. Finally, different faults are diagnosed and analyzed
through the data of standard and faulty lithium batteries to realize lithium battery fault diagnosis.

Due to the existence of coupling between lithium battery faults, the simultaneous occurrence of
a single fault does not exclude the occurrence of other faults. This paper is only able to realize the
diagnosis of a single lithium battery fault and did not consider in detail the case of multiple faults
occurring at the same time, the future for various faults coupled with different faults, and the way of
dealing with the more in-depth research, from the different faults to put forward a different solution
focusing on the beginning. This paper collects data through the experimental platform, the model is
trained and validated for the battery dataset in this paper, and the effectiveness of the fault diagnosis
of the battery is very high. However, it does not consider the practicality of the actual operation of
the tram, so the model still has a significant challenge in applying the actual tram. In the future, we
will conduct in-depth research on the actual operation data of the tram so that the model has high
validity. This paper only focuses on the fault diagnosis of lithium batteries and fails to consider the
new materials, equipment, and other materials. It will conduct more in-depth and detailed research on
batteries made of different new materials in the future, e.g., shuttle-free zinc-iodine batteries have the
advantages of low cost and high-efficiency energy storage and long cycle stability, and they have the
benefits of high-efficiency energy storage and long cycle stability [37].
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