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ABSTRACT

This paper presents a novel multi-criteria decision-making (MCDM) model for selecting optimal locations for
a solar-wind hybrid energy plant in Vietnam. The study employs the Criteria Importance Through Intercriteria
Correlation (CRITIC) and Combined Compromise Solution (CoCoSo) methods to address the challenge of
evaluating potential sites based on a range of economic, technical, environmental, and social criteria. By integrating
CRITIC for criteria weighting and CoCoSo for ranking alternatives, the study underscores the importance of
objective, data-driven approaches in the strategic planning and implementation of sustainable energy projects. The
results identify Ham Thuan Nam District in Binh Thuan Province (DA4) as the most suitable site for the solar-wind
hybrid energy plant, with a performance score of 2.0919. Phan Thiet City (DA3) and Ninh Phuoc District (DA6)
rank second and third, with scores of 2.0655 and 1.8723, respectively. Sensitivity analysis confirms the robustness
of the model, showing stable rankings under various scenarios.
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1 Introduction

Fossil fuels, including oil, gas, and coal have dominated global energy supply in the last century.
However, the rapid consumption of these resources is leading to depletion, and their extraction
and use have significant environmental impacts. These challenges are driving countries to transition
towards clean, sustainable energy, making the development of renewable sources an inevitable trend.
As countries globally pivot towards sustainable energy sources, there’s been a marked increase in
the production capacity of renewable energy (Fig. 1). This shift goes beyond the adoption of greener
energy; it reflects a broader transformation in our societies and economies.

Vietnam is emerging as a powerhouse in the sustainable energy sector, thanks to its rich reserves
of renewable resources with increasing production of renewable energy over the years (Fig. 2). The
country owns a vast array of renewable energy sources, including but not limited to hydropower,
wind, solar, and biomass energy [1]. Vietnam’s solar energy potential is particularly noteworthy, with
market projections estimating its capacity to be between 260-280 TWh per year [2]. The country’s
advantageous solar energy prospects are bolstered by an even distribution of sunlight throughout the
year, making it an ideal candidate for solar energy projects [3].
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Figure 1: World renewable power energy capacity (in MW) [4]

Beyond solar power, Vietnam’s renewable energy spectrum also has abundant of potential in
wind power with a technical capacity potential estimated at 26,763 GW [5] with offshore wind power
potential is over 600 GW [6]. This significant potential not only opens doors for economic growth
but also strengthens Vietnam’s energy security, showcasing the nation’s vibrant and diverse renewable
energy landscape.

However, integrating renewable energy sources into the current national power grid has been
challenging due to the inconsistency in their output. To address this issue, hybrid energy systems
are being considered to enhance the stability of renewable energy production. By combining two
complementary energy sources, such as solar and wind, a hybrid renewable energy model can provide
a more stable and continuous power supply. Given Vietnam’s abundant solar and wind resources, this
approach offers a promising solution for optimizing energy generation [7].
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Figure 2: Power generation structure of Vietnam’s power system 2010-2023 (in MWh) [§]

Selecting the location of a renewable energy plant is identified as an important issue that can
affect the performance of renewable energy projects. The most widely applied model in this regard is
the MCDM model [9-12].

This research will focus on the development of a MCDM model to assist the location selec-
tion process of a potential solar-wind hybrid energy plant in Vietnam using Criteria Importance
Through Intercriteria Correlation (CRITIC) and Combined Compromise Solution (CoCoSo) meth-
ods. CRITIC method is implemented to assess the importance of each criterion based on two main
factors: the variability of the data (the dispersion of criterion values among choices) and the degree
of correlation between criteria (measuring the level of independent information between them). Thus,
CRITIC provides an objective approach to quantify the information value of each criterion, helping
to improve the quality and transparency of the final decision. CoCoSo focuses on finding a balanced
solution between conflicting or complementary criteria to achieve an optimal or near-optimal result.
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It helps decision-makers comprehensively evaluate options based on a diverse set of criteria, thereby
identifying the most suitable solution for their specific goals and requirements. The main purpose of
the CoCoSo method is to provide a multi-criteria decision-making technique to determine and evaluate
optimal choices or solutions based on a range of evaluation criteria [13].

The study aims to apply decision-making methodologies to evaluate and prioritize possible sites
for a future solar-wind energy facility, emphasizing the robustness, and practical applicability of the
results within the context of Vietnam’s renewable energy industry. While MCDM methods have been
extensively applied in renewable energy planning, there remains a gap in their application to hybrid
solar-wind energy plant location selection in the Vietnam. Furthermore, few studies in this field
employ the CRITIC and CoCoSo methods in combination, which offer a more balanced and data-
driven approach to decision-making. This gap is especially pronounced in Vietnam, where limited
research has been conducted on adapting MCDM models to the country’s specific geographical and
environmental conditions.

The structure of the rest of the paper is as follows: Section 2 offers an extensive review of relevant
literature. Section 3 details the methodologies employed, while Section 4 showcases a real-world case
study to illustrate the viability of the approach proposed. Finally, conclusions are drawn in Section 6.

2 Literature Review

Applications of MCDM span various industries, including supply chain management [ 1 4], engergy
managment [15], sustainability research [16—18], risk management [19,20], information technology
[21,22], and healthcare [23]. MCDM methods have been employed across a broad spectrum of
applications, from selecting alternative marine fuel technology [24], construction cost optimization
[25], optimizing distribution center locations [26], and material assessment and selection [27]. These
applications demonstrate the versatility and effectiveness of MCDM in addressing complex decision-
making processes across diverse sectors.

MCDM methods are also widely used in the development of renewable energy projects, commonly
applied in energy planning, sustainability assessment, and the ranking of renewable energy sources
[28]. The use of MCDM techniques in renewable energy development projects also assists in decision-
making processes from supplier selection for a particular project [29] to the evaluation of a suitable
national sustainable energy strategy [30]. Researchers have emphasized the importance of MCDM
methods in addressing energy sustainability issues and have highlighted their practical utility in solving
such problems [31] and interest in the application of MCDM techniques in renewable energy have
been increasing in recent years [32—35]. Within the expansive array of decision-making challenges
encountered by renewable energy projects, the selection of a location stands out as a critical factor
due to its direct influence on the project’s potential performance. Moreover, location selection issues
often encompass a multitude of evaluation criteria, encompassing both quantitative and qualitative
dimensions. In response to these complex challenges, recent years have witnessed the development of
numerous MCDM models. These models have significantly contributed to a growing body of literature
dedicated to addressing such multifaceted issues.

Wang et al. [36] conduct a study on the development of a Fuzzy MCDM model for solar power
plant location selection in Vietnam. The research highlighted the use of the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) and the Analytic Hierarchy Process (AHP)
methodologies in evaluating and selecting suitable locations for solar power plants. The study provided
insights into the decision-making process involved in renewable energy project location selection,
emphasizing the importance of considering multiple sustainable criteria and objectives. Nuriyev [37]
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explores the efficiency and applicability of a unified approach based on Fuzzy logic, Z-information,
and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The study
focuses on renewable energy resources and plant location selection, emphasizing the integration of
these methodologies to streamline decision-making processes. By utilizing fuzzy logic and TOPSIS,
the research aims to enhance the robustness and effectiveness of selecting optimal renewable energy
resources and plant locations. Solangi et al. [38] conduct a study on the selection of wind power project
locations in the southeastern corridor of Pakistan. The research utilized Factor Analysis, AHP, and
Fuzzy TOPSIS to prioritize sites in the region. The research findings emphasize the importance of
economic considerations and land availability as the most important factors in the decision-making
process for selecting wind power project locations in the southeastern corridor of Pakistan.

In this research, an MCDM model employing CRITIC and CoCoSo methods is developed
to assist with the location selection of a solar-wind hybrid energy plant in the southern region of
Vietnam. CRITIC methods have been applied to several studies about renewable energy to calculate
the weighting of quantitative criteria. Shao et al. [39] discuss the utilization of the Criteria Importance
Through Intercriteria Correlation (CRITIC) method in conjunction with Geographic Information
System (GIS) for identifying optimal sites for tidal current power plants in China. The CRITIC
method is employed to evaluate the significance of criteria by analyzing their interrelationships.
Through the incorporation of the CRITIC method into the GIS-MCDM approach, the study aims to
improve the precision and efficiency of site selection for tidal current power plants. Saraji et al. [40]
delve into the use of the CRITIC method for exploring the challenges in adopting renewable energy
technologies in rural areas. This research combines the CRITIC method with the VIKOR technique
to identify and evaluate the barriers to deploying renewable energy solutions in less urbanized regions.
Through the application of the CRITIC-VIKOR framework, the study aims to offer an in-depth
examination of the obstacles encountered in the implementation of renewable energy technologies
in rural areas. Alkan [41] investigates the evaluation of sustainable development and the application-
oriented use of renewable energy systems. This analysis integrates the CRITIC method with SWARA
and CODAS approaches, utilizing interval-valued picture fuzzy sets to establish a comprehensive
framework for the assessment and selection of renewable energy systems. In this context, the CRITIC
method is used for the objective weighting of criteria, highlighting its effectiveness and ease of use. The
research underscores the necessity of incorporating sustainability and practical usage considerations
in the decision-making processes concerning renewable energy systems.

The Combined Compromise Solution (CoCoSo) method has been utilized in numerous studies
within the renewable energy sector to evaluate the performance of various potential options. The
study by Van Thanh [42] examines an optimal location for a waste-to-energy plant using a Fuzzy
MCDM model. The research incorporates the CoCoSo method along with Fuzzy AHP to evaluate and
prioritize location alternatives for a waste-to-energy project. The study by Wang et al. [43] presents a
model focused on selecting a biomass furnace supplier by considering both qualitative and quantitative
factors. The research highlights the challenges posed by the complex decision-making environment in
renewable energy, particularly in scenarios where factors interact in a fuzzy decision-making setting.

CRITIC and CoCoSo methods have several advantages in comparison with similar MCDM meth-
ods. CRITIC was introduced by Diakoulaki et al. [44] and was highlighted for its ability to generate
more balanced criteria weights as the method incorporates information from all objectives within
the decision objective matrix into its calculation. Wang et al. [45] analyze weighting and selection
methods for Pareto-optimal solutions in multiobjective optimization within chemical engineering
applications. In this research, five objective weighting methods (CRITIC, mean, entropy, StDeyv,
StatVar) were tested and compared using several chemical engineering and mathematical problems.
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CRITIC, along with the entropy method, was recommended because it includes correlations among
criteria, which becomes crucial when dealing with three or more criteria. Nabavi et al. [46] examine the
sensibility of the entropy method and CRITIC methods in combination with eight popular MCDM
methods with different types of modification to the data (linear transformation of objectives, reciprocal
objective reformulation, and removal of alternatives). The results show models that employ CRITIC
provide robust results against the modifications. CoCoSo method also demonstrates robustness in
decision-making models. The study by Wen et al. [47] examines the cold chain logistics management of
medicine using an integrated multi-criteria decision-making method. The research covers topics such
as refrigeration, ranking, antineoplastic agents, neoplasms, delivery of health care, pharmaceutical
preparations, and economics. Through comparative analysis of different MCDM methods, the results
suggest that CoCoSo method, in comparison with VIKOR, TOPSIS and other MCDM methods,
provide results that are robust and less sensitive to changes such as adding or removing options, or
altering the weights of the criteria.

In this study, a MCDM framework that utilizes a novel combination of CRITIC and CoCoSo
techniques has been formulated to aid in selecting a site for a solar-wind hybrid energy facility in
Vietnam’s southern region. While MCDM methods are widely used, the combination of CRITIC
and CoCoSo specifically for renewable energy project location selection, demonstrates an innovative
approach as few studies specifically use these methods together to solve decision making problems
in renewable energy development. The case study also offers new insights into applying MCDM
techniques within the specific context of Vietnam’s renewable energy sector, especially regrading hybrid
renewable energy solutions. The results provide practical recommendations for location selection based
on quantitative data from a set of unique criteria.

3 Materials & Methods

3.1 Research Process
The research process consists of three main phases, shown in Fig. 3.

— Phase 1. In the Pre-processing phase, the problem is defined, and a list of evaluation criteria is
formed based on existing literature and expert opinions. Then, the relevant data is collected.

o A list of potential criteria is identified by reviewing existing literature and interviewing a
board of experts.

o A definitive list of criteria is determined by a Delphi process proposed by Frinsdorf
et al. [48], where a group of academic and industry experts are interviewed and asked to rate
each of the potential criteria and sub-criteria. The rating step will repeat until a consensus
of the list of criteria and sub-criteria is reached.

o Data relevant to each alternative is collected for all criteria.

— Phase 2: In this phase, the collected data is used to calculate the criteria weights using the
CRITIC method. Subsequently, CoCoSo is applied to determine the performance score of each
alternative. The detailed of calculation steps of CRITIC and CoCoSo methods are described
in Sections 3.2 and 3.3 of this research, respectively.

— Phase 3: In the final phase, a ranking of alternatives is obtained based on the calculated
performance scores. Sensitivity analysis is performed to evaluate the results of the proposed
model.
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Figure 3: Research process

3.2 Criteria Importance through Intercriteria Correlation (CRITIC) Method

In this research, CRITIC method is employed to calculate the weights of the relevant decision-
making criteria. The advantages of CRITIC is that the method accounts for both the variability and
correlation of criteria, as well as being effective for cases where there are potential correlations between
criteria. CRITIC is also relatively simple to calculate and interpret. As such it is suitable for the
problem at hand, where multiple criteria with potential complex relationships must be considered.

The CRITIC method is introduced by Diakoulaki et al. [44] as a quantitative technique to calculate
criteria weights based on their contrast intensity and correlation among the criteria. The multicriteria
problem can be characterized as follows for a finite set A of n choices and a given system of m
assessment criteria f;:

Max {f, (a).f,(@),...,.fn(a),ae A} (1

A membership function x; for each criterion f; is built in this multicriteria problem, which maps the
values of f; to the interval (0, 1). The idea of the ideal point serves as the foundation for this transition.
Accordingly, the number x, below indicates how much the alternative a deviate from the anti-ideal
value f;,, which represents the worst performance in criterion j, and approaches the ideal value f;,
which represents the best performance in criterion j. At least one of the options under consideration
is able to accomplish both f;* and f..
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This process transforms the original evaluation matrix into a matrix of relative scores with generic
element x;. A vector Xx; is created that represents the scores of all n possibilities that were taken into
consideration by looking at the jth criterion separately.
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The standard deviation, o;, quantifies the contrast strength of the corresponding criterion for each
vector x;. Therefore, a measure of the importance of that criterion to the decision-making process is
the standard deviation of x;. It is obvious that the standard deviation might be substituted with any
other indicator of the dispersion in scores, such as variance or entropy.

The linear correlation coefficient between the vectors x; and x,, represented by the generic element
Fi, 1s then built into a symmetric matrix with dimensions of m x m. It is evident that the value of r;
decreases with increasing discordance between the scores of the options in criteria j and k. In this
way, the total indicated in Eq. (4) serves as a gauge for the degree of conflict that criterion j creates in
relation to the decision-making scenario that is determined by the remaining criteria.

m

> (1=rx) @)
k=1

It should be noted that in order to offer a broader measure of the link connecting the rank orders
of the items included in the vectors x; and x,, the Spearman rank correlation coefficient R, might be
used in place of r;.

The information found in MCDM problems relates to the decision criteria’s conflict and contrast
intensity. Therefore, the quantity of data C, released by the jth criterion can be ascertained by
assembling the measurements that measure the two concepts using the subsequent multiplicative
aggregation formula:

G =o0;x /Z (1 - ”.ik) (5)
k=1
The preceding analysis states that the greater the value C; the more information the relevant
criterion transmits and the greater its relative significance for the decision-making process. By
normalizing these values to unity using the following equation, objective weights are produced:

C.

J

P (6)
/ k=1 Ck

3.3 Combined Compromise Solution (CoCoSo) Method

Yazdani et al. [49] devised the CoCoSo MCDM technique, which combines the exponentially
weighted product model with the simple additive weighting method. The CoCoSo approach in this
study is employed to determine the ranking of the alternatives. There are five steps in a typical CoCoSo
model with m choices and # criteria:

Step 1: The decision-making matrix X = (x,»j)mxn is calculated for the ith alternative and the jth
criterion as follows:
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Step 2: The decision-making matrix is then normalized accordingly [30]:
For beneficial criterion:

X; — miin X;

ry = 8)

max x; — min x;
i ; i

For non-beneficial criterion:
é i

ry = )

max x; — min x;
i ’ i ’

Step 3: Calculate each of the alternative’s power weight of comparability (S;) and the total of the
power weight of comparability (P;) sequence using Eqs. (10) and (11):

Si = Z (wiry) (10)

P=3(r") an

Step 4: Determine three aggregated performance scores. Calculate the arithmetic mean of sums
of S; and P, scores to determine the k,, as the relative performance scores of the ith alternative.

S (Pi+S)
Calculate the sum of relative scores of S; and P; scores in comparison to the ideal performance
values where k;, is the relative performance scores of the ith alternative.
S; P,
kib = . .
min §; min P,

ki = (12)

(13)

Calculate the compromise of S; and P; performance scores for k;. is the relative performance scores
of the ith alternative. In Eq. (14), the A value is selected by the decision makers and has a value between
0 and 1 (usually A = 0.5).

AS) + U =A) P,

ki = 14
Amax S; + (1 — 1) max P, (14)
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Step 5: Alternative’s performance score (k;) is then calculated by:
ki = (kiakihkic)% + % (ki + ki, + ki) (15)

Alternatives are subsequently ranked based on their performance scores; an alternative with a
higher score is ranked more favorably.

4 Case Study

In this section, the proposed model is applied to the location selection problem of a potential solar-
wind energy plant in Vietnam using available quantitative criteria. After reviewing relevant literature
and discussing with industry experts and academics through a Delphi process, a list of 4 criteria and
13 sub-criteria is obtained (Table 1).

Table 1: List of evaluation criteria

Code Criteria Sub-criteria Literature Description
C11 Economic Regional Wang et al. [50] The size of the local population indicates potential
populace local energy consumption and manpower

accessibility. The higher the better. In this case,
provincial population is used. Data published by the
General Statistics Office of Vietnam [51]
C12 Investment Investment environment is assessed using the

environment Provincial Competitiveness Index (PCI), a thorough
index that evaluates the competitiveness of provinces
by examining their economic, administrative, and
governance aspects. Higher PCI scores are preferable.
Data published by Vietnam Chamber of Commerce
and Industry (VCCI) and USAID [52]

C21 Technical Wind speed Wanget al. [53],  Average annual wind speed, measured in meter per
Samanlioglu second. The higher the better. Data taken from Wind
et al. [54] Atlas [55]
Cc22 Wind speed Wang et al. [53] Variation of monthly wind speed index. A smaller
variation variation is desirable as it suggests higher output
stability. Data taken from Wind Atlas [55]
C23 Average Samanlioglu Average annual direct normal radiation measured in
solar et al. [54], Ghose  kWh/m2 per year. The higher the better. Data taken
radiation et al. [56], Al Garni from Solar Atlas [5§]
et al. [57]
C24 Solar Variation of monthly direct normal radiation. A
seasonality lower variation is preferable as it indicates greater

output stability, ensuring grid safety [59]. Data taken
from Solar Atlas [58]

(Continued)
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Table 1 (continued)

Code Criteria

Sub-criteria Literature

Description

C25

C26

C27

C28

C31

C32

C41

Environmental

Social

Transmission Wang et al. [36],

grid Wang et al. [50],
accessibility Chatterjee
et al. [60], Garni
et al. [57]
Elevation Wang et al. [36],
Chatterjee
et al. [60], Ghose
et al. [50]
Distance to Wang et al. [53],
nearest Chatterjee
settlement et al. [60], Garni
etal. [57]
Slope Wang et al. [50], Al

Garni et al. [57]

Distance to  Chatterjee

conservation et al. [60]

area

Land use Wang et al. [50], Al
Garni et al. [57],
Chatterjee
et al. [60], Wang
etal. [61]

Population

density

The distance to the nearest substation is measured in
kilometers. Proximity is beneficial as it enhances grid
accessibility, potentially reducing costs and
simplifying project execution. The data are gathered
from ground measurements.

Geographic elevation is measured in meters. A higher
elevation is preferable as it enhances both wind speed
and solar radiation. Data taken from Solar Atlas [5]

Distance to the nearest city is measured in
kilometers. A shorter distance is advantageous as it
enables local consumption of the project’s output,
potentially reducing stress on the grid network. The
data are gathered from ground measurements.
Geographic slope is measured in degrees. A lower
slope is preferable as it facilitates construction and
reduces the risk of flash flooding. The data are
gathered from ground measurements.

Distance to the nearest conservation area is
measured in kilometers. A greater distance is
preferable, as it reduces the project’s impact on the
local environment. The data are gathered from
ground measurements.

Land availability, as outlined in the most recent
official land use plan, is measured in hectares.
Greater availability is considered more advantageous.
Data published by provincial governments.

District population density is expressed in persons
per square kilometer. A lower density is preferable, as
it minimizes the potential impact of the project on
communities nearby the potential site. Data
published by the General Statistics Office of Vietnam

[51]

In this case, six potential locations were identified through expert discussions and were considered
in this case (Table 2). The map of these locations is shown in Fig. 4.

Table 2: List of potential locations

No.

Location

Symbol Coordinate

General information

1

Cu Kuin District, Dak

Lak Province

DALl 12°34'5916" N,

108°7'38.2584" E

Dak Lak Province currently hosts 9 solar energy
projects and 6 wind energy projects. Cu Kuin and
Krong Pac Districts, situated in close proximity to
Buon Ma Thuot City, the economic hub of the

(Continued)
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Table 2 (continued)

No. Location Symbol Coordinate General information

2 Krong Pac District, Dak DA2 12°42/43" N, Central Highlands region, offer strategic locations
Lak Province 108°23'23" E for renewable energy development.

3 Phan Thiet City, Binh DA3 10°49/31" N, Over the past decade, Binh Thuan Province has
Thuan Province 108°01'21” E emerged as a significant hub for renewable energy

development, hosting 25 solar energy projects

4 Ham Thuan Nam DA4 10°46'14” N, and 13 wind energy projects. Phan Thiet City, La
District, Binh Thuan 107°58'08" E Gi District, and Ham Thuan Nam District have
Province been identified as favorable locations for

5 La Gi District, Binh DAS 10°43/44" N, both existing and prospective renewable energy
Thuan Province 107°49'17" E initiatives.

6 Ninh Phuoc District, DA6 11°30°08" N, Ninh Phuoc District, located in Ninh Thuan
Ninh Thuan Province 108°58'10” E Province, is also regarded as a potential key region

for renewable energy development. The province is
currently home to 33 solar energy projects and 13
wind energy projects.
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Figure 4: Potential locations map

The relevant data of corresponding to these locations are collected as of June 2024 and shown in

Table 3.
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Table 3: Decision making data

Alternative C11 Cl2 C21 C22 C23 C24 (C25 C26 C27 C28 C31 C32 C41
DALl 1,869,322 60.91 7.92 0.09703 1373.40 755.04 6.00 445 15.74 2.9514 43.00 35.70 360
DA2 1,869,322 60.91 7.36 0.04398 1341.10 800.92 33.00 467 37.17 2.4880 19.00 515.58 331
DA3 1,230,808 64.39 7.44 0.02041 1660.20 758.76 18.00 87 13.40 2.1913 157.00 301.44 1083
DA4 1,230,808 64.39 7.80 0.02511 1634.10 799.43 26.00 75 23.30 3.6014 165.00 835.51 98
DAS 1,230,808 64.39 6.61 0.02189 1691.10 838.33 13.00 15 37.97 2.6171 181.00 825.79 582
DA6 590,467 65.43 8.62 0.03853 1790.30 796.05 11.00 32 6.73 3.7551 30.00 2043.64 380.9

Next, CRITIC method is applied to calculate the weight of each criterion. The data is then
normalized using Eq. (2) and used to calculate the weight of each sub-criterion using CRITIC. The
normalized data is shown in Table 4 and the weight of each sub-criterion is shown in Table 5.

Table 4: Normalized data
Alternative Cl11 Cl12 cC21 C22 (C23 C24 (C25 C26 C27 (C28 C31 C32 (41

DA1 1.0000 0.0000 0.6517 0.0000 0.0719 1.0000 1.0000 0.9513 0.7116 0.5139 0.1481 0.0000 0.7340
DA2 1.0000 0.0000 0.3731 0.6923 0.0000 0.4492 0.0000 1.0000 0.0256 0.8103 0.0000 0.2390 0.7635
DA3 0.5007 0.7698 0.4129 1.0000 0.7104 0.9553 0.5556 0.1593 0.7865 1.0000 0.8519 0.1323 0.0000
DA4 0.5007 0.7698 0.5920 0.9387 0.6523 0.4670 0.2593 0.1327 0.4696 0.0983 0.9012 0.3983 1.0000
DAS5S 0.5007 0.7698 0.0000 0.9806 0.7792 0.0000 0.7407 0.0000 0.0000 0.7277 1.0000 0.3935 0.5086
DA6 0.0000 1.0000 1.0000 0.7635 1.0000 0.5076 0.8148 0.0376 1.0000 0.0000 0.0679 1.0000 0.7128

Table 5: CRITIC result

Sub-criterion Weight
Cl1 0.0875
C12 0.0767
C21 0.0590
Cc22 0.0748
C23 0.0710
C24 0.0696
C25 0.0683
C26 0.1054
C27 0.0691
C28 0.0892
C31 0.0926
C32 0.0644

C41 0.0724
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At this stage, the CoCoSo method is utilized to determine the ranking of potential solar-wind
energy plant locations. The Weighted comparability sequence (S;), and the Exponentially weighted
comparability sequence (P;) are displayed in Tables 6 and 7, respectively.

Table 6: Weighted comparability sequence (S;)

CiI1 Cl12 C21 C22 (C23 C24 C25 C26 C27 C28 C31 C32 C41 S,
DA1 0.0875 0.0000 0.0385 0.0000 0.0051 0.0696 0.0683 0.1003 0.0492 0.0458 0.0137 0.0000 0.0532 0.5311
DA2 0.0875 0.0000 0.0220 0.0518 0.0000 0.0312 0.0000 0.1054 0.0018 0.0722 0.0000 0.0154 0.0553 0.4427
DA3 0.0438 0.0590 0.0244 0.0748 0.0505 0.0665 0.0380 0.0168 0.0544 0.0892 0.0788 0.0085 0.0000 0.6046
DA4 0.0438 0.0590 0.0349 0.0702 0.0463 0.0325 0.0177 0.0140 0.0325 0.0088 0.0834 0.0257 0.0724 0.5412
DA5 0.0438 0.0590 0.0000 0.0734 0.0553 0.0000 0.0506 0.0000 0.0000 0.0649 0.0926 0.0253 0.0368 0.5018
DA6 0.0000 0.0767 0.0590 0.0571 0.0710 0.0353 0.0557 0.0040 0.0691 0.0000 0.0063 0.0644 0.0516 0.5502

Table 7: Exponentially comparability sequence (P;)

Cl1 Cl12 C21 C22 (C23 (C24 (C25 (C26 C27 C28 C31 C32 C41 P;
DA1 1.0000 0.0000 0.9751 0.0000 0.8295 1.0000 1.0000 0.9948 0.9768 0.9424 0.8380 0.0000 0.9779 9.5343
DA2 1.0000 0.0000 0.9435 0.9729 0.0000 0.9458 0.0000 1.0000 0.7762 0.9814 0.0000 0.9119 0.9806 8.5124
DA3 0.9413 0.9801 0.9491 1.0000 0.9760 0.9968 0.9606 0.8240 0.9835 1.0000 0.9853 0.8779 0.0000 11.4747
DA4 0.9413 0.9801 0.9695 0.9953 0.9701 0.9484 0.9119 0.8083 0.9491 0.8131 0.9904 0.9424 1.0000 12.2200
DAS 0.9413 0.9801 0.0000 0.9985 0.9824 0.0000 0.9797 0.0000 0.0000 0.9721 1.0000 0.9417 0.9522 8.7481
DA6 0.0000 1.0000 1.0000 0.9800 1.0000 0.9539 0.9861 0.7077 1.0000 0.0000 0.7796 1.0000 0.9758 10.3831

Finally, the performance scores of each alternative are calculated (Table 8 and Fig. 5). In this case,
Ham Thuan Nam District of Binh Thuan Province (DA4) is the optimal location for a hybrid solar-
wind energy plant.

Table 8: Alternative performance and ranking results

Alternative k., ks, k;. k; Final ranking
DAl 0.1572 2.3198 0.7849 1.7463 4
DA2 0.1398 2.0000 0.6983 1.5262 6
DA3 0.1886 2.7137 0.9419 2.0655 2
DA4 0.1993 2.6582 0.9951 2.0919 1
DA5S 0.1444 2.1612 0.7213 1.6173 5
DA6 0.1707 2.4627 0.8525 1.8723 3

Ham Thuan Nam District (DA4) secured the top rank due to its high scores in solar radiation
(C23), wind speed (C21), lower slope (C28) and low population density (C41). In contrast, Phan Thiet
City (DA3) ranked second, benefiting from higher solar radiation (C23) and lower solar variation
(C24), but its significantly higher population density negatively impacted its overall ranking. Ninh
Phuoc District (DA6) ranked third, performing well in areas such as investment environment (C12),
wind speed (C21), solar radiation (C23), proximity to settlements (C27), and land use (C32). However,
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its lower regional population (C11), higher slope (C28), and lower elevation (C26) contributed to its
reduced overall score.

25
2.0655  2.0919

1.8723
1.7463
1.5262 1.6173
1.
0. I
0
DA1 DA2 DA3 DA4 DA5 DA6
Alternative

[

-

Performance Score

)]

Figure 5: Alternatives’ performance scores

5 Sensitivity Analysis
5.1 Criteria Weight Alteration

In this session, a sensitivity analysis is performed to examine the behavior of results when
changes in criteria are introduced. Various methods are used for robust testing and sensitivity analysis,
including evaluating how changes in criteria weight affect alternative rankings. Firstly, the impact
of removing the Regional Populace (C11) sub-criterion is examined, using the method proposed by
Alinezhad et al. [62]. The criteria weights after the removal of C11 criterion are shown in Table 9.

Table 9: Criteria weights after the removal of C11

Criteria Weight
Cl1 0.00000
Cl12 0.07052
C21 0.07856
C22 0.07260
C23 0.06407
C24 0.08855
C25 0.10692
C26 0.07911
C27 0.09246
C28 0.06494
C31 0.11549
C32 0.06752
C41 0.09926

As a result, the performance scores and rankings of the alternatives in this scenario are displayed
in Table 10.
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Table 10: Alternatives’ performance scores and ranking after the removal of C11

Alternative k., k, k. k; Final ranking
DALl 0.1571 2.6765 0.7746 1.8908 4
DA2 0.1366 2.0000 0.6734 1.5054 6
DA3 0.1881 3.0163 0.9272 2.1845 2
DA4 0.2023 3.1739 0.9971 2.3196 1
DA5S 0.1444 2.4357 0.7120 1.7277 5
DAG6 0.1714 3.0420 0.8450 2.1138 3

The final performance scores of the alternatives (k;) have changed, but the rankings remain
consistent, with DA4 as the optimal location for a solar-wind energy plant in this case. This indicates
that the ranking of alternatives is stable, regardless of the removal of the Regional Populace sub-
criterion (C11).

Next, the impact of removing each remaining sub-criterion on the final ranking is examined. In
total, 13 scenarios are considered. The weights of each sub-criterion for each scenario are presented in
Table 11, while the performance scores and rankings of the alternatives are displayed in Table 12 and
Fig. 5.

Table 11: Criteria weights in considered scenarios

Criteria Weights

Original Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario
1 2 3 4 5 6 7 8 9 10 11 12 13
Cl11 0.0875 0.0000  0.0948  0.0930  0.0614  0.0942  0.0940  0.0939  0.0978  0.0940  0.0961 0.0964  0.0935  0.0943
C12 0.0767 0.0840  0.0000  0.0815  0.0714  0.0825  0.0824  0.0823  0.0857  0.0823  0.0842  0.0845  0.0819  0.0826
C21 0.0590 0.0647  0.0639  0.0000  0.0795  0.0635  0.0634  0.0633  0.0660  0.0634  0.0648  0.0650  0.0631 0.0636
C22 0.0748 0.0820  0.0810  0.0795  0.0000  0.0806  0.0804  0.0803  0.0836  0.0804  0.0822  0.0825  0.0800  0.0807
C23 0.0710  0.0778  0.0769  0.0755  0.0648  0.0000  0.0763  0.0762  0.0794  0.0763  0.0780  0.0783  0.0759  0.0766
C24 0.0696 0.0762  0.0753  0.0739  0.0896  0.0749  0.0000  0.0747  0.0778  0.0747  0.0764  0.0767  0.0744  0.0750
C25 0.0683 0.0749  0.0740  0.0726  0.1082  0.0736  0.0734  0.0000  0.0764  0.0734  0.0750  0.0753  0.0730  0.0737
C26 0.1054 0.1155  0.1141 0.1120  0.0801 0.1135  0.1133  0.1131 0.0000  0.1132  0.1157  0.1161 0.1127  0.1136
C27 0.0691 0.0757  0.0749  0.0735  0.0936  0.0744  0.0743  0.0742  0.0773  0.0000  0.0759  0.0762  0.0739  0.0745
C28 0.0892  0.0977  0.0966  0.0948  0.0657  0.0960  0.0958  0.0957  0.0997  0.0958  0.0000  0.0983  0.0953  0.0961
C31 0.0926  0.1014  0.1002  0.0984  0.1169  0.0996  0.0995  0.0993  0.1035  0.0994  0.1016  0.0000  0.0989  0.0998
C32 0.0644 0.0706  0.0697  0.0684  0.0683  0.0693  0.0692  0.0691 0.0720  0.0692  0.0707  0.0710  0.0000  0.0694
C41 0.0724  0.0794  0.0784  0.0770  0.1005  0.0780  0.0778  0.0777 _ 0.0810  0.0778  0.0795  0.0798  0.0774 _ 0.0000

Table 12: Alternative’s performance scores in considered scenarios

Alternatives Performance score

Original Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario Scenario

1 2 3 4 5 6 7 8 9 10 11 12 13
DA1 1.7463 1.7615  1.7500  1.7316  1.9287  1.7656  1.7060  1.6738  1.7643  1.6871 1.7923  1.7980  1.7577  1.7602
DA2 1.5262 1.5193  1.5286  1.5289  1.5144  1.5271 1.5291 1.5249  1.5097  1.5436  1.5173  1.5628  1.5296  1.5241
DA3 2.0655 2.1627  2.0104 2.0730  2.1634  2.0179  2.0343  2.0301 22399 19976  2.0632  2.0298  2.0851  2.1497
DA4 2.0919 21720  2.0337  2.0795 2.2188  2.0466  2.0983  2.0818 22507  2.0477  2.1997 20418  2.0793  2.0791
DA5S 1.6173  1.6912  1.5631 1.6415  1.6783  1.5649  1.6544  1.5678  1.7623  1.6094  1.6326  1.5572  1.6100  1.6514

DA6 1.8723 2.0032  1.7945 1.8318  2.0539 1.7987  1.8772  1.8141  2.0628  1.7869  1.9691 1.9411 1.8132  1.8903
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To further verify the robustness of the sensitivity analysis results, a statistical test was applied to
examine whether the changes in criteria weights significantly influenced the performance scores of the
alternatives. An one-way Analysis of Variance (ANOVA) test is conducted with the null hypothesis
as following: “The changes in criteria weights do not significantly affect the performance scores of
alternatives”. The results are shown in Table 13.

Table 13: One-way ANOVA results

Source of variation SS df MS F p-value F crit
Between groups 0.203324 13 0.01564 0.268104 0.994276 1.862661
Within groups 4.083575 70 0.058337

Total 4.286899 83

With a 5% level of significant, the results suggest that there is no significant difference of
performance scores between scenarios (p-value = 0.994276 > (.05, fail to reject the null hypothesis).
The results in Fig. 5 and Table 12 indicate that the proposed model’s outcome is highly robust to
changes in criteria weights. In most scenarios, the final rankings of the alternatives stay the same, with
the exception of scenario 11 where DA2 and DAS exchange rankings. DA4 remains the consistently
optimal location across most scenarios, except in scenarios 12 and 13, where DA3 (Phan Thiet
City) becomes the optimal location. This is reasonable since DA3 had weak performance in criteria
C32 (Land use) and C41 (Population density). Thus, removing these criteria led to a significant
improvement in DA3’s performance. The top three locations remain unchanged, consisting of DA4,
DA3 and DAG in all cases.

The results in Fig. 6 and Table 12 indicate that the proposed model’s outcome is highly robust
to changes in criteria weights. In most scenarios, the final rankings of the alternatives stay the
same, with the exception of scenario 11 where DA2 and DAS exchange rankings. DA4 remains the
consistently optimal location across most scenarios, except in scenario 12 and 13, where DA3 (Phan
Thiet City) becomes the optimal location. This is reasonable since DA3 had weak performance in
criteria C32 (Land use) and C41 (Population density). Thus, removing these criteria led to a significant
improvement in DA3’s performance. The top three locations remain unchanged, consisting of DA4,
DA3 and DAG in all cases.

Alternatives’ ranking in considered scenarios

- N W b OO0 O

@ DA | DA2 DA3 DA4 em@ueDAS e=@umDAG

Figure 6: Alternatives’ ranking in considered scenarios
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5.2 Compromise Coeficient Value Alteration

Another sensitivity test is performed to show the robustness of the proposed method by changing
the value of the compromise coefficient (1) which reflects the decision maker’s preference for
compromise solutions. Let the value of A changing from 0.1 to 0.9 (with 0.5 is the default value),
the performance of the alternatives is shown in Table 14,

Table 14: Alternatives’ performance scores in considered scenarios

Alternatives Performance score

A=01 A=02 A=03 A=04 A=05 A1=06 A=07 A2=08 A=09
DA1 1.7437 1.7441 1.7447 1.7453 1.7463 1.7476 1.7496 1.7534 1.7619
DA2 1.5253  1.5254 1.5256 1.5259 1.5262 1.5267 1.5274 1.5288 1.5319
DA3 2.0640 2.0642 2.0645 2.0649 2.0655 2.0663 2.0676 2.0699 2.0752
DA4 2.0946 2.0941 2.0936 2.0929 2.0919 2.0906 2.0884 2.0845 2.0754
DAS5 1.6144 1.6149 1.6155 1.6162 1.6173 1.6188 1.6213 1.6256 1.6355
DA6 1.8708 1.8710 1.8714 1.8718 1.8723 1.8731 1.8744 1.8767 1.8819

Consequentially, the ranking of the alternatives corresponding to different A values are shown in
Fig. 7.

o 4 G—y o o o o o o—0
L 3 e o o o o o ° ° °
<
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I
0
A=01A=02A=03A=04A=05%=0.62=07%=08 A=0.9
—8=DAI DA2 DA3 DA4 —=@=DA5 —@=DAG

Figure 7: Alternatives’ ranking with different A values

A one-way ANOVA statistical test is carried out to verify the robustness of the sensitivity test
results. With the null hypothesis stated as: “The changes in the value of the compromise coefficient
do not significantly affect the performance scores of alternatives”. The results are shown in Table 15
below:

Table 15: One-way ANOVA results

Source of variation SS df MS F p-value F crit
Between groups 0.000338 8 4.22E—05 0.000789 1 2.152133
Within groups 2.408082 45 0.053513

Total 2.40842 53
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With a 5% level of significant, the results suggest that there is no significant difference of
performance scores between with different compromise coefficient values (p-value = 1 > 0.05, fail to
reject the null hypothesis). Fig. 7 also shows that the rankings in all cases remain unchanged regardless
of the value of the compromise coefficient. As such, the model’s results are robust against changing
preference for compromise solutions.

6 Conclusions

As climate change becomes an ever-growing concern, there has been a notable acceleration in
the development of renewable energy projects worldwide over the past decade. Vietnam is a country
with substantial renewable energy resources has also saw an increase in renewable energy output in
this time period. To enhance the success of renewable energy projects, the use of MCDM models
in addressing complex decision-making challenges has also risen. This study developed a CRITIC-
CoCoSo based MCDM model to support the location selection process for a hybrid solar-wind energy
plant in Vietnam. The model identified Ham Thuan Nam District (DA4) as the most suitable site,
with a performance score of 2.0919. Phan Thiet City (DA3) and Ninh Phuoc District (DA6) followed
closely, with scores of 2.0655 and 1.8723, respectively. Sensitivity analyses confirmed the stability of
the rankings under various scenarios, demonstrating the robustness of the model.

While the model has successfully assisted decision makers in identifying optimal location for a
solar-wind hybrid energy plan based on quantitative data, it may overlook qualitative aspects like
political risks or community acceptance of the problem. As such, future research should address these
limitations by incorporating qualitative criteria by employing methods such as Fuzzy AHP or Fuzzy
ANP. Comparative studies with other MCDM approaches, such as VIKOR or TOPSIS, could provide
further validation to the results. Additionally, applying the proposed model to other similar renewable
energy decision making problems would help verify its broader applicability.
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