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ABSTRACT

Accurately estimating the State of Health (SOH) and Remaining Useful Life (RUL) of lithium-ion batteries (LIBs)
is crucial for the continuous and stable operation of battery management systems. However, due to the complex
internal chemical systems of LIBs and the nonlinear degradation of their performance, direct measurement of
SOH and RUL is challenging. To address these issues, the Twin Support Vector Machine (TWSVM) method
is proposed to predict SOH and RUL. Initially, the constant current charging time of the lithium battery is
extracted as a health indicator (HI), decomposed using Variational Modal Decomposition (VMD), and feature
correlations are computed using Importance of Random Forest Features (RF) to maximize the extraction of
critical factors influencing battery performance degradation. Furthermore, to enhance the global search capability
of the Convolution Optimization Algorithm (COA), improvements are made using Good Point Set theory and
the Differential Evolution method. The Improved Convolution Optimization Algorithm (ICOA) is employed to
optimize TWSVM parameters for constructing SOH and RUL prediction models. Finally, the proposed models
are validated using NASA and CALCE lithium-ion battery datasets. Experimental results demonstrate that the
proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL
prediction, with a relative error in RUL prediction within the range of [−1.8%, 2%]. Compared to other models,
the proposed model not only exhibits superior fitting capability but also demonstrates robust performance.

KEYWORDS
State of health; remaining useful life; variational modal decomposition; random forest; twin support vector
machine; convolutional optimization algorithm

1 Introduction

Global climate change and growing energy demand are driving changes in the energy sector. The
proliferation of lithium-ion battery (LIB) storage systems and their associated technologies has been
pivotal, not only altering energy consumption patterns but also electrifying traditional energy sources
[1]. However, safety hazards in energy storage systems have resulted in numerous incidents, such as the
Samsung Note 7 battery explosion and the lithium battery mobile power supply fire on China Southern
Airlines flight CZ3539. Aging and performance degradation of LIBs are the underlying causes of
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these safety issues [2]. Therefore, battery management systems (BMS) capable of comprehensively
monitoring and protecting LIBs have become essential [3]. The State of Health (SOH) and Remaining
Useful Life (RUL) serve as crucial indicators within BMS for assessing LIBs’ aging and performance
degradation [4]. SOH reflects the gradual decrease in LIBs’ capacity, as shown in Eq. (1) [5].

SOH = Qn

Q0

(1)

where Qn is the capacity of LIBs at that time; Q0 is the initial capacity of the LIBs.

Determining the SOH is a critical step in predicting the RUL of a LIB. RUL refers to the number
of cycles a battery can perform under certain cycling conditions before its SOH decreases to the
operational limit. A LIB is typically considered to be at the end of its useful life when its SOH first
falls to 0.8. To accurately and reliably estimate the SOH and RUL of lithium batteries, researchers
have proposed three main methods: experimental analysis, model-based approaches, and data-driven
approaches. The experimental analysis method uses experimental setups to obtain parameters such as
internal resistance, capacity, and electrochemical impedance spectroscopy (EIS) of lithium batteries for
SOH and RUL measurement [6], as in the Coulomb counting method described in literature [7]. This
method evaluates the SOH of lithium batteries by dynamically recalibrating the maximum releasable
capacity. In literature [8], EIS is used to determine SOH by calculating the ratio of the zero-crossing
real part of the Nyquist plot to the low-frequency inflection point real part. This method offers high
prediction accuracy and simplicity in principle but shows relatively poor generalization performance.
Model-based approaches estimate the SOH of lithium batteries by establishing electrochemical or
equivalent circuit models and combining them with filtering algorithms. For example, the research
described in [9] applies an improved Remora algorithm to fine-tune the parameters of a first-order
RC equivalent circuit for lithium batteries. This is followed by employing a dual adaptive Kalman
filtering algorithm to estimate the SOH. However, model-based techniques demand a thorough grasp
of the basic physics and chemistry, which can be challenging when attempting to capture the complex
dynamic and static properties of LIBs [10]. Data-driven methods do not require in-depth analysis
of the internal aging mechanisms of lithium batteries but instead extract features from historical
data to establish SOH prediction models [11,12]. Currently, widely used methods for SOH and
RUL estimation include Support Vector Machines (SVM) [13], Long Short-Term Memory networks
(LSTM) [14], Extreme Learning Machines (ELM) [15], and Gaussian Process Regression (GPR) [16].
In [17], the Variable Forgetting Factor Online Sequential Extreme Learning Machine (VFOS-ELM)
was utilized to estimate the SOH of LIBs. Meanwhile, Reference [18] used incremental capacity curves
as inputs for a neural network model, employing a Convolutional Neural Network (CNN) to extract
features and proposing a CNN-LSTM model with skip connections to enhance prediction accuracy.
Literature [19] proposed a hybrid model combining a Temporal Convolutional Network (TCN) and
LSTM, demonstrating robustness and generalization capabilities.

With the widespread use of data-driven methods, an increasing number of studies have utilized
SVM and modal decomposition to predict the SOH and RUL of LIBs. Literature [20] extracted
Health Indicators (HIs) from time intervals of equal charging voltage differences and equal discharging
voltage differences, employing SVM for SOH and RUL prediction. Literature [21] proposed a
method for optimal selection of SVM parameters based on particle swarm optimization (PSO),
effectively capturing the degradation trend of LIBs. Nevertheless, SVM necessitates the resolution
of a pair of quadratic programming problems, which introduces additional variables and constraints,
expands the scope of the problem, and increases the computational complexity. This poses significant
challenges, especially when dealing with high-dimensional complex datasets. In contrast, literature
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[22] decomposed the discharge capacity of LIBs into two components: global degradation trends and
capacity regeneration, using empirical mode decomposition (EMD). Although EMD and its variants
are used to predict the degradation trend of LIBs, they struggle with insufficient decomposition and
modal overlap when targeting highly complex sequences [23]. Literature [24] utilized Variational Mode
Decomposition (VMD) to separate the capacity of LIBs into overall deterioration tendencies and local
stochastic contributions, modeling them via an Echo State Network (ESN) and Bayesian Optimized
LSTM, respectively. The RUL predictions are derived by integrating these models. However, it is
important to note that VMD is not a specialized noise reduction tool. Consequently, noise may persist
in certain modal components, potentially affecting the accuracy of predictions.

When applying the prediction model, the setting of relevant parameters plays a crucial role in
the prediction results. Traditional deterministic optimization algorithms often face slow convergence
speeds and other issues when dealing with discontinuous and non-differentiable functions. Literature
[25] proposed the convolution optimization algorithm (COA), a new intelligent optimization algorithm
that incorporated a two-dimensional convolution operation into the population position updating
process of intelligent optimization algorithms. This algorithm includes two mechanisms: convolution
search and de-quality enhancement. This approach has demonstrated good convergence speed,
stability, and optimization ability. However, COA may encounter issues with uneven initial population
and susceptibility to local optimization.

To address the above shortcomings, this paper improves the COA algorithm and proposes a joint
SOH and RUL prediction method based on VMD-RF-ICOA-TWSVM. The main contributions are
summarized as follows:

a) Extract the constant-current charging time of LIBs as health indicator (HI), decompose the
extracted HI into modal components with different frequency-domain features by using VMD, and
adopt Random Forest (RF) importance ranking for noise reduction and model complexity reduction.

b) Introduce the good point set method to optimize the initial population and the differential
evolution method in the solution enhancement stage to strengthen the global optimality searching
ability, solving the problem of the inhomogeneous initial population of COA and its tendency to fall
into local optima.

c) To address the issue of SVM computation complexity, the improved COA algorithm is utilized
to optimize the twin support vector machine model for joint prediction of SOH and RUL.

The paper is structured as follows: Section 2 focuses on related techniques and theories, Section 3
describes the data processing process, Section 4 discusses the simulation of the prediction model, and
Section 5 provides a summary of the paper.

2 Methodology
2.1 Variational Modal Decomposition (VMD)

VMD is an efficient signal processing method for nonsmooth signals [26]. The signal decompo-
sition is transformed into the solution of unbounded discretization problems by the adaptive identifi-
cation of the corresponding frequencies and the evaluation of the respective modes to compensate for
the error.

The charging time of LIBs is influenced by stochastic effects such as the capacity degradation
trend and the relaxation effect. To better understand the changes in battery performance, it is helpful
to use VMD decomposition to extract modal components and obtain multi-scale degradation features.
The charging time data is decomposed into intrinsic modal functions (IMFs) and Residual (R) at
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different frequencies using VMD [27]. The IMFs represent factors such as stochastic fluctuations and
capacity regeneration, while R presents the overall trend of the capacity change. VMD constructs and
solves the variational problem that determines the eigenmode functions at each iteration by minimizing
a regularized constraint function. Each function corresponds to an eigenfrequency in the signal. The
constrained variational model expression for the signal f(t) is shown in Eq. (2):

f (t) = min{un},{ωn}

{
N∑

n=1

∥∥∥∥∂n

[
un (t) ∗

(
δ (t) πt + j

πt

)]
e−jωnt

∥∥∥∥
2

2

}
s.t.

N∑
n=1

un (2)

where ∂n is the signal gradient; {un} is the modal component; {ωn} is the center frequency; ∗ denotes the
convolution; δ (t) is the unit pulse signal; N is decompositions number.

To cope with the constraints in the computational process, Lagrange multiply factor α and
the penalty factor λ are introduced to change the constraint variational solution problem into the
unbounded form as shown in Eq. (3):

L ({un} , {ωn} , λ) =α

{
N∑

n=1

∥∥∥∥∂t

[
un (t) ∗

(
δ (t) πt + j

πt

)]
e−jωt

∥∥∥∥
2

2

}

+
∥∥∥∥∥f (t) −

N∑
n=1

u (t)

∥∥∥∥∥
2

2

+
〈
λ (t) , f (t) −

N∑
n=1

un (t)

〉
(3)

The multiplicative alternating algorithm is adopted to continuously update each modal compo-
nent and center frequency until the iteration is made to satisfy the convergence condition, as shown in
Eqs. (4) and (5):

ûk+1
n (ω) =

f̂ (ω) −∑
i �=n

û (ω) + λ̂(ω)

2

1 + 2α (ω − ωn)
2 (4)

ω̂k+1
n =

∫ ∞
0

ω
∣∣ûn (ω)

∣∣2 dω∫ ∞
0

∣∣ûn (ω)
∣∣2 dω

(5)

ûk+1
n is the n-th mode with center frequency ω at iteration k + 1; ω̂k+1

n is the average center freq of
the k-th mode at iteration k + 1.

2.2 Importance of Random Forest Features (RF)
Although VMD is effective in handling nonlinear and nonsmooth signals, it is sensitive to noise

and lacks noise reduction. Therefore, this paper proposes the use of RF to rank the importance of
IMFs and R, remove modal components that contain noise or have less influence, and retain key
modal components as final inputs. This method reduces the feature dimension, simplifies the model,
and reduces the risk of overfitting [28]. Random Forest is a classifier that integrates Bagging and
consists of multiple fully grown decision trees. The training set for each decision tree is randomly
sampled from the original data, and some of the samples constitute out-of-bag (OOB) data, which is
used to calculate feature importance. This strategy improves the model’s conciseness and generality.

In RF, the importance of feature x can be derived by the following steps: first, generate the training
set and dataset OOB using self-service resampling, and construct the decision tree Tk on the training
set; second, use Tk to predict the classification of the OOB data and count the number of correctly
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classified samples, which is noted as Rk; next, perturb the value of feature x in the OOB noisily to
obtain a new OOB sample set, and then use Tk to classify the new OOB sample set for prediction and
count the number of correctly classified samples, denoted as R′

k; finally, the process is repeated (k =
2,3, ..., K), and the importance of feature a is shown in Eq. (6):

IM (x) = 1
K

K∑
k=1

(
Rk − R

′
k

)
(6)

A significant decrease in the accuracy of the out-of-bag data (i.e., a decrease in R′
k) caused by

noise perturbation indicates that the feature has a substantial impact on the sample prediction results,
signifying its high importance. Conversely, if the decrease is minimal, it indicates that the feature’s
impact is limited.

2.3 Improved Convolution Optimization Algorithm ( ICOA)
2.3.1 Population Initialization

To enhance the global search capabilities of the COA, this paper employs the benefits of good
point set theory to uniformly distribute points. This method ensures a more uniform initial population,
thereby improving the COA’s global optimization search performance. The theory of good point sets
is proposed by the Chinese mathematician Hua Luogeng and others. Its principle assumes that Gs is
a unit cube in an s-dimensional Euclidean space, within which there exists a point set as described in
Eq. (7):

Pn (k) = {({r(n)

1 · k
}

,
{
r(n)

2 · k
}

, · · · ,
{
r(n)

s · k
})

, 1 ≤ k ≤ n
}

(7)

Its deviation ϕ (n) satisfies ϕ (n) = C (r, ε) n−1+ε, where C (r, ε) is a constant related only to r and ε

(ε is an arbitrary positive number), then Pn (k) is said to be the good point set and r is the good point.
Fig. 1 shows the comparison between the original populated using the good point set and the random
generation, the original populated using the good point set is more homogeneous compared to the
random generation for the same population size.

  

(a) Two-dimensional initial population 

generated by a good point set 

(b) Randomly generated two-dimensional initial 

populations 

Figure 1: Population distribution map

The position of an individual Xp (p = 1, 2, . . . , n) is a candidate for solving the fitness solution, and
the position vector X of the population consists of n individuals of dimension d. Then the position
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vector X of the population consists of an n × d-order matrix as shown in Eq. (8):

X =
⎡
⎢⎣

X1

...
Xn

⎤
⎥⎦ =

⎡
⎢⎣

x11 · · · x1d

...
. . .

...
xn1 · · · xnd

⎤
⎥⎦ (8)

The fitness value of the position vector X of the population is shown in Eq. (9):

Fx =
⎡
⎢⎣

f (X1)
...

f (Xn)

⎤
⎥⎦ =

⎡
⎢⎣

f
([

x11 x12 · · · x1d

])
...

f
([

xn1 xn2 · · · xnd

])
⎤
⎥⎦ (9)

2.3.2 Convolutional Search Process

The vertical, horizontal, and regional convolution kernels are defined during convolutional
positioning as shown in Eq. (10):⎧⎨
⎩

KL = 2 × rand (k, 1) − IL

KT = 2 × rand (1, k) − IT

KR = 2 × rand (k, k) − IR

(10)

where KL, KT , and KR represent the vertical, horizontal, and regional convolution kernels, respectively,
each as a k × 1, 1 × k and k × k matrix. rand (1 × k), rand (k × 1), and rand (k, k) are matrices of the
same dimensions, with each element being a random number between 0 and 1. IL, IT , and IR are k × 1,
1 × k, and k × k matrices with all elements equal to 1.

The vertical, horizontal, and regional convolutions are defined as shown in Eq. (11):⎧⎨
⎩

X t
L = X t ∗ KL

X t
T = X t ∗ KT

X t
R = X t ∗ KR

(11)

where t is the current iteration; X t is an n × d matrix representing the population position vector at
generation t. X t

L, X t
T , and X t

R are n × d matrices representing the updated population position vectors
after convolution at generation t. The best positions replace the individuals in EEE, as shown in
Eqs. (12)–(14):

X t
p =
{

X t
Lp, f
(
X t

Lp

)
< f
(
X t

p

)
X t

p, else
(12)

X t
p =
{

X t
Tp, f
(
X t

Tp

)
< f
(
X t

p

)
X t

p, else
(13)

X t
p =
{

X t
Rp, f
(
X t

Rp

)
< f
(
X t

p

)
X t

p, else
(14)

where X t
p is the position of the pth individual in the population at generation t. X t

Lp, X t
Tp, and X t

Rp

represent the pth individual’s position after convolutional updates at generation t.

In the integrated position update stage, the position vector X t
L of the population after

the longitudinal convolution update of generation t, the position vector X t
T of the population

after the transverse convolution update of generation t, and the position vector X t
r of the population

after the regional convolution update of generation t, are merged into X t
S by summing them using
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either random weights or equal proportional weights as shown in Eq. (15):

X t
S = r1 × X t

L + r2 × X t
T + r3 × X t

R

r1 + r2 + r3

(15)

where r1, r2, and r3 are random numbers between [0, 1], and in particular, r1 = r2 = r3 can be made so
that equal proportional weights are summed. The individual positions in X t are replaced optimally as
shown in Eq. (16):

X t
p =
{

X t
Sp, f
(
X t

Sp

)
< f
(
X t

p

)
X t

p, else
(16)

where X t
Sp is the p-th individual position of the population after the integrated position update in the

t-th generation. Finally, the fitness values of all individual positions in X t are calculated and ranked
according to the size of the fitness values to select the optimal solution X t

bs.

2.3.3 Solving Mass Enhancement Processes

In COA, the solution quality enhancement process is to perturb the d-dimensional search space of
the optimal solution X t

bs with Gaussian variation with non-inertial weights dimension by dimension,
and perturb the optimal solution X t

bs. However, the Gaussian variation with non-inertial weights can
easily fall into the local optimal solution, and there is not enough diversity in the search of the solution
space, so the authors switched to perturbation optimization searching for the optimal solution X t

bs by
using the differential evolution method, which is much more powerful for global searching, as shown
in Eq. (17):

X t
nbs(q)

= ω · X t
q + F · (X t

bs(r1)
− X t

bs(r2)

)
(17)

where ω is the weight coefficient, F is the scaling factor, X t
bs(r1)

and X t
bs(r2)

are two n × 1 order matrices,
which are the randomly selected r1 and r2 (r1, r2 ∈ (1, d))-dimensional locations in the d-dimensional
search space of the optimal solution X t

bs; ω = 1 − (t/itermax)
2, where itermax represents the maximum

number of iterations, and X t
nbs(q)

is an n × 1 matrix that represents the q-th dimension of the optimal
solution X t

bs after performing differential evolution on the q-th dimension. Let the individual position
after differential evolution on the qth dimension be X t

(q)nbs, compare the magnitude of the fitness values
of X t

(q)nbs and X t
bs, and optimally replace the individual position of X t

bs as shown in Eq. (18):

X t
bs =
{

X t
(q)nbs, f

(
X t

(q)nbs

)
< f
(
X t

bs

)
X t

bs, else
(18)

2.4 Twin Support Vector Machine (TWSVM)
TWSVM improves performance significantly compared to traditional SVM by converting a large-

scale quadratic programming problem into two smaller problems. This algorithm generates two non-
parallel hyperplanes, f1 (x) = ωT

1 x + b1 and f2 (x) = ωT
2 x + b2, which respectively determine the upper

and lower bounds of the insensitive function for the unknown regression variables. The final regression
result is the average of the regression results of the two hyperplanes. For nonlinear problems, TWSVM
uses a kernel function K to map samples into a high-dimensional space for linear regression. The two
quadratic QP problem constructions of TWSVM are shown in Eqs. (19) and (20):⎧⎨
⎩min

1
2

∥∥Y − eε1 − (K (A, AT
)
ω1 + eb1

)∥∥2 + c1eTξ

S.T . Y − (K (A, AT
)
ω1 + eb1

) ≥ eε1 − ξ , ξ ≥ 0
(19)
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⎧⎨
⎩min

1
2

∥∥Y + eε2 − (K (A, AT
)
ω2 + eb2

)∥∥2 + c2eTη

S.T .
(
K
(
A, AT

)
ω2 + eb2

)− Y ≥ eε2 − η, η ≥ 0
(20)

where A is the input of the training samples, Y is the output, c1 and c2 are the penalty coefficients, both
of which are greater than 0, ε1 and ε2 are the optimization parameters, ξ and η are the slack variables,
and e is the unit column vector of the corresponding dimension. Subsequently, Lagrange multipliers
α, β are introduced to transform the original problem into the corresponding dual problem, and the
quadratic QP problem represented by Eq. (19) is derived from Eq. (21) by the Karush-Kuhn-Tucker
condition:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂ω1

= −K
(
A, AT

) [
Y − eε1 − (K (A, AT

)
ω1 + eb1

)]+ K
(
A, AT

)T
α = 0

∂L
∂b1

= −eT
[
Y − eε1 − (K (A, AT

)
ω1 + eb1

)]+ eTα = 0

∂L
∂ξ

= c1e − α − β = 0

∂L
∂α

= Y − [K (A, AT
)
ω1 + eb1

]
> eε1 + ξ

∂L
∂β

= αT
[
Y − (K (A, AT

)
ω1 + eb1

)− eε1 + ξ
] = 0

ξ ≥ 0, α ≥ 0, β ≥ 0, βTξ = 0

(21)

The other quadratic QP problem is the same. The dyadic problems of the above equation can be
changed as shown in Eqs. (22) and (23), respectively:⎧⎨
⎩max −1

2
αTG
(
GTG
)−1

GTα + FTG
(
GTG
)−1

GTα − FTα

S.T . 0 ≤ α ≤ c1e
(22)

⎧⎨
⎩max −1

2
βTG

(
GTG
)−1

GTβ − HTG
(
GTG
)−1

GTβ + HTβ

S.T . 0 ≤ β ≤ c2e
(23)

where F = Y − eε1, H = Y + eε2, G = [K (A, AT
)

e
]

and the parameters of the two hyperplanes of
the TWSVM are shown in Eq. (24):⎧⎪⎪⎨
⎪⎪⎩

u1 =
[
ωT

1

b1

]
= (GTG

)−1
GT (F − α)

u2 =
[
ωT

2

b2

]
= (GTG

)−1
GT (H + β)

(24)

In this paper, the polynomial kernel function K
(
xi, xj

) = (xi · xj + u
)d

is chosen to map the data
from the original feature space to the higher dimensional feature space, where xi ·xj is the inner product
of the feature vectors, u is the bias parameter, and d is the polynomial number. The final objective
function is shown in Eq. (25):

f (x) = 1
2

[
(ω1 + ω2)

T K
(
xi, xj

)+ (b1 + b2)
]

(25)
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2.5 VMD-RF-ICOA-TWSVM Modeling
The choice of parameters is crucial in TWSVM predictive modeling. The penalty coefficient c

balances the weight of the loss. A larger bias parameter u may cause the hyperplane to deviate from
the origin in the feature space, and the polynomial degree d determines the complexity of the data
mapping. To obtain optimal prediction results, ICOA is introduced for parameter optimization. The
improved TWSVM flowchart is shown in Fig. 2 and the main steps are as follows:

a) Acquire the data and extract the HI of the LIBs’ constant current charging time.
b) Perform VMD modal decomposition of the HI to obtain the degradation characteristics of

the LIBs at different scales. Subsequently, rank the importance of each modal component and
trend term using random forest, and remove the modal components and trend terms containing
noise and having little effect.

c) The optimization process involves using ICOA to calculate the fitness value of each individual
population in order to determine the location of the optimal individual population. Then,
the differential evolution method is used to perturb the optimal individual position for
further optimization and to determine the optimal individual position, resulting in the optimal
parameters.

d) The optimal parameters are input into TWSVM for model training to obtain the VMD-RF-
ICOA-TWSVM prediction model.

Battery data

Extract HI

VMD for decomposition

IMFR IMF...

Random Forest Importance 
Ranking

FeatureFeature Feature...

Importation

Canonical point set initialization 
populations

COA

initial optimal solution

Differential evolution method for 
perturbation

Whether the iteration condition is 
satisfied

optimal parameter

TWSVM model training

Output SOH and RUL 
predictions

ICOA

TWSVM

Data 
processing

No

Yes

Figure 2: Flowchart of the improved support vector machine prediction model
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3 Data Processing
3.1 Dataset and Health Feature Extraction

This study utilizes lithium battery data B0005, B0006, and B0007 provided by NASA PCoE, with
initial capacities of 1.8565, 2.0353, and 1.8911 Ah, respectively. A total of 168 charge-discharge cycles
were conducted at room temperature (24°C). During the charging phase, a constant current (CC) of
1.5 A was applied until the voltage reached 4.2 V, followed by a constant voltage (CV) phase. The
discharging phase used a constant current of 2 A, stopping when the battery voltage dropped to 2.7,
2.5, and 2.2 V, respectively. Due to differences in battery types and experimental conditions affecting
prediction accuracy, CS2-33, CS2-34, and CS2-36 lithium batteries from the CALCE dataset were
used to validate generalization performance. These batteries underwent over 700 charge-discharge
cycles, far exceeding the NASA dataset, representing short-life and long-life batteries. Fig. 3 shows
the capacity degradation curves of the six lithium batteries, and Fig. 4 displays the constant current
charging time curves. As the number of cycles increases, the constant current charging time gradually
decreases. The battery capacity degradation and constant current charging time trends in the NASA
and CALCE datasets are similar, making constant current charging time a viable HI.

(a) NASA LIBs capacity decay curve (b) CALCE LIBs capacity decay curve 
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Figure 3: LIBs capacity decay curve

3.2 Health Indicator Analysis
To capture the global degradation trend and local stochastic fluctuation components of the signal,

VMD is employed for multi-scale decomposition of the HI. In the signal decomposition process of
VMD, the parameter K denotes the number of modes selected for decomposing the signal. Choosing
an appropriate K value is crucial for achieving high-quality decomposition results and effectively
reducing computation time. Typically, the selection range for K values is between 2 and 10. In
this study, K is set to 10 to maintain ample flexibility during the decomposition process, thereby
comprehensively capturing the signal characteristics. By opting for a larger K value, more informative
inputs are provided for the subsequent noise reduction step using random forests. Using NASA data
from the B0005 lithium-ion battery as an example, Fig. 5 illustrates the decomposition results of the
constant current charging time.
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(a) NASA LIBs constant current charge time (b) CALCE LIBs constant current charge time 
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Figure 4: LIBs constant current charging time

As depicted in Fig. 5, R represents the global degradation trend, whereas IMF1 to IMF9 depict
local capacity regeneration and random fluctuation characteristics. Therefore, the RF importance
ranking is utilized to discard modal components that are insignificant and noisy for predictions,
thereby emphasizing key signal components and enhancing the accuracy of SOH and RUL predictions.

Figure 5: B0005 constant current charging time decomposition curve
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The decision tree number is set to 50, the first 100 data are used as the training set, and the
remaining 68 data are used as the test set, and the importance of the random forest features of the
modal components of the three LIBs is shown in Fig. 6.
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Figure 6: Random forest feature importance ranking

When calculating feature importance, positive values indicate that the feature has a significant
positive impact on the model’s prediction target; increasing such features can enhance prediction
performance. Negative values indicate that the feature has a substantial negative impact on the target;
reducing such features can also improve prediction performance. Trends R and IMF9 show higher
importance, whereas IMF3 and IMF4 for B0005, IMF2 and IMF6 for B0006, and IMF1 for B0007
exhibit minor influence on predictions and may include noise. Therefore, this study excludes modal
components with absolute values less than 0.1, retaining the remaining modal components as feature
inputs.

4 Analysis of Cases
4.1 Model Parameters and Evaluation Indicators

(1) Model parameters

The optimization parameters are the penalty coefficient c1, the bias parameter u1, and the
polynomial number of times d1 for the first hyperplane, and the penalty coefficient c2, the bias
parameter u2, and the polynomial number of times d2 for the second hyperplane. After repeated
experiments, the optimization ranges were set to be c1 ∈ [2−15, 210], u1 ∈ [2−15, 210], d1 ∈ [0, 10],
c2 ∈ [2−15, 210], u2 ∈ [2−15, 210], d2 ∈ [0, 10], the number of populations is set to 20, and the number
of iterations is set to 10. In order to validate that the proposed method is applicable to the LIBs SOH
and RUL prediction, respectively, the top 30% and top 50% of the LIBs data as the training set (the
proportion of the training set is defined as T), and the other data as the test set for testing. After
simulation, the parameters of TWSVM are shown in Table 1.

Table 1: Model parameters

Number T c1 u1 d1 c2 u2 d2

B0005 30% 19.34664 7.35939 1.39747 199.3156972 93.75364335 5.293568031
50% 10.12877 100.0397 4.470336 49.36412 81.65685 5.003027

B0006 30% 36.95099 176.7769 4.356871 454.123 215.8649 0.590512

(Continued)
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Table 1 (continued)

Number T c1 u1 d1 c2 u2 d2

50% 7.67 27.83776827 6.412274263 356.12 34.16566755 5.726952278
B0007 30% 29.82006416 63.17869449 3.226567861 6.319664878 40.59203407 6.035872999

50% 203.9865732 397.0027631 3.598660748 292.4025351 474.0343549 2.659175104

(2) Evaluation indicators

To assess the predictive effectiveness model, this study uses Root Mean Square Error (RMSE),
Mean Absolute Percentage Error (MAPE) and Relative Error (RE) of RUL.

RMSE =
√√√√1

n

n∑
i=1

(
xi − x̂i

)2
(26)

MAPE = 1
n

n∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣× 100% (27)

RE = PRUL − RUL
RUL

× 100% (28)

where xi is the real value, x̂ is the predicted value, and n is data number. RUL indicates the remaining
battery life; PRUL refers to the prediction of the remaining service life, and RE is greater than 0,
which indicates that the predicted number of remaining cycles is higher than the actual one, which
may lead to overuse of LIBs and threaten the system safety; and RE is less than 0, which indicates
that the predicted number of remaining cycles is lower than the actual one, which may lead to under-
utilization of LIBs and increase the unnecessary cost of replacing the batteries. If RE is less than 0, it
means that the predicted number of remaining cycles is lower than the actual number. This may result
in underutilization of the LIBs and unnecessary costs for battery replacement.

4.2 Results and Discussion
To verify the prediction accuracy of the proposed model, the VMD-COA-TWSVM and VMD-

TWSVM models were selected for comparative illustration. Fig. 7 presents the SOH prediction curve
and absolute error at T = 30%. It is observed that compared to other models, the predictions of VMD-
RF-ICOA-TWSVM are closest to the real values, demonstrating a strong convergence effect and
tracking ability. The maximum absolute errors for both VMD-TWSVM and VMD-COA-TWSVM are
high, with large and unstable error fluctuations. In contrast, the maximum absolute errors of VMD-
RF-ICOA-TWSVM are 0.00992, 0.00993, and 0.01025, respectively, with minimal error fluctuation.
This effectively reflects the noise reduction effect of RF feature importance ranking, enabling the
model to accurately capture capacity recovery phenomena.

Fig. 8 presents the evaluation metrics of each prediction model at T = 30%. The VMD-TWSVM
and VMD-COA-TWSVM prediction models exhibit the highest RMSE and MAPE values, whereas
the prediction performance of VMD-RF-ICOA-TWSVM shows significant improvement. The RMSE
for these three LIBs does not exceed 0.0061, and the MAPE remains below 0.008. Using B0005 as an
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example, the proposed model improves RMSE by 90.24% and MAPE by 90.52% compared to VMD-
TWSVM. Furthermore, compared to the VMD-ICOA-TWSVM model, the proposed model enhances
RMSE by 75.8% and MAPE by 75.1%. These results indicate that the VMD-RF-ICOA-TWSVM
prediction model achieves a satisfactory level of fitting and accuracy.

(a) B0005 (b) B0006 (c) B0007 
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Figure 7: Prediction curve and absolute error (T = 30%)

(a) ESMR (b) MAPE 

Figure 8: Evaluation indicator results (T = 30%)

Fig. 9 displays the SOH prediction results and absolute errors of three LIBs under the condition
of T = 50%. As the number of training samples increases, the prediction performance of each
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model improves, and the error fluctuations slightly decrease. The VMD-RF-ICOA-TWSVM model
continues to demonstrate the best accuracy in predicting the degradation trend of SOH. It also exhibits
excellent adaptability to fluctuations in battery capacity regeneration and other variables. Fig. 10
presents the evaluation metrics for the model predictions at T = 50%. Upon analyzing these metrics,
it is evident that the RMSE and MAPE of each model have improved compared to the training set
at T = 30%. The VMD-RF-ICOA-TWSVM model achieves the most optimal evaluation metrics.
For instance, taking B0005 as an example, the RMSE of the lithium battery is reduced to 0.0036,
which represents a 32.09% improvement over the predictions at T = 30%, and the MAPE is reduced to
0.0036, indicating a 37.93% improvement over the predictions at T = 30%. These results underscore the
excellent predictive capability of VMD-RF-ICOA-TWSVM across different starting points. Moreover,
with a larger sample size in the training set, the predictive performance improves further, highlighting
the model’s robust long-term predictive ability. Overall, the model demonstrates accurate and resilient
performance in its predictions.

(a) B0005 (b) B0006 (c) B0007 

0 20 40 60 80 100 120 140 160 180
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Failure threshold

Training set

SO
H

cycle

 True
 VMD-SVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

RUL

0 20 40 60 80 100 120 140 160 180
0.5

0.6

0.7

0.8

0.9

1.0

Training set

SO
H

cycle

 True
 VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

0 20 40 60 80 100 120 140 160 180
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Failure threshold

Training set

SO
H

cycle

 True
 VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

RUL

0 20 40 60 80

0.00

0.02

0.04

0.06

0.08

0.10
 VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

A
bs

ol
ut

e 
er

ro
r

cycle
0 20 40 60 80

0.00

0.02

0.04

0.06

0.08

0.10  VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

A
bs

ol
ut

e 
er

ro
r

cycle
0 20 40 60 80

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08  VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

A
bs

ol
ut

e 
er

ro
r

cycle

Figure 9: Prediction curve and absolute error (T = 50%)

Table 2 presents the relative errors of RUL prediction for the NASA dataset. An absence of values
indicates that the model did not predict the failure threshold. Red font highlights instances where
the model’s predictions fluctuated near the failure threshold during the prediction process, indicating
reduced stability. The VMD-TWSVM model predicted failure with relative errors of 18 and 19 in two
results, reflecting unsatisfactory performance. The VMD-COA-TWSVM model produced prediction
results but exhibited large relative errors that fluctuated near the failure threshold, rendering it unstable
for capturing the RUL of LIBs. In contrast, the VMD-RF-ICOA-TWSVM model achieved the lowest
relative errors for RUL prediction, except for B0005 at T = 30%, which had an error of −1.8%.
However, all other errors were 0, ensuring that LIBs were neither underutilized nor overutilized.
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(a) RMSE (b) MAPE 

Figure 10: Evaluation indicator results (T = 50%)

Table 2: Relative errors of RUL predictions for the NASA dataset

Battery no. T RUL VMD-RF-ICOA-
TWSVM

VMD-COA-
TWSVM

VMD-TWSVM

PRUL RE (%) PRUL RE (%) PRUL RE (%)

B0005 30% 53 52 −1.8 48 −9.4 62 17
50% 19 19 0 16 −15.8 8 −57.9

B0006 30% 9 9 0 12 33 \ \
50% \ \ \ \ \ \ \

B0007 30% 72 72 0 71 −1.4 \ \
50% 39 39 0 48 23.1 \ \

The prediction results and absolute errors of different models for the CALCE dataset are depicted
in Figs. 11 and 12, while the evaluation indices are presented in Table 3. At T = 30%, the maximum
absolute error for VMD-RF-ICOA-TWSVM across all three LIBs (CS2-33, CS2-34, and CS2-36)
does not exceed 0.018, with a maximum RMSE of 0.007 and a MAPE below 0.0082. At T = 50%, the
maximum absolute error remains below 0.0169, with a maximum RMSE of 0.006 and a MAPE below
0.0077. At T = 50%, the maximum absolute error remains below 0.0169, with a maximum RMSE of
0.006 and a MAPE below 0.0077. Whether at T = 30% or T = 50%, the evaluation indices of VMD-
RF-ICOA-TWSVM demonstrate optimal performance compared to other models, underscoring the
excellent robustness and generalization capabilities of the model proposed in this study.

Table 4 presents the relative errors of RUL prediction for the CALCE dataset. It is observed
that both VMD-COA-TWSVM and VMD-TWSVM exhibit fluctuations around the failure threshold
during the prediction process. The RUL prediction errors for these models range from −5.1% to 15%
and from −12.7% to 9%, respectively. In contrast, the RUL relative error of VMD-RF-ICOA-TWSVM
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falls within the range of 0% to 2%, the lowest among all models. This stable performance indicates that
the model maintains accurate RUL predictions across batteries with varying lifespans and operating
conditions.

(a) CS2-33 (b) CS2-34 (c) CS2-36 

0 100 200 300 400 500 600 700 800

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Failure thresholdTraining set

SO
H

cycle

 True
 VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

RUL

0 100 200 300 400 500 600 700 800
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Failure threshold
Training set

SO
H

cycle

 True
 VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

RUL

100 200 300 400 500 600 700 800
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Failure thresholdTraining set

SO
H

cycle

 True
 VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

RUL

0 100 200 300 400 500
0.00

0.02

0.04

0.06

0.08

0.10

0.12  VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

A
bs

ol
ut

e 
er

ro
r

cycle

0 100 200 300 400 500
0.00

0.05

0.10

0.15

0.20  VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

A
bs

ol
ut

e 
er

ro
r

cycle

0 100 200 300 400 500
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14  VMD-TWSVM
 VMD-COA-TWSVM
 VMD-RF-ICOA-TWSVM

A
bs

ol
ut

e 
er

ro
r

cycle

Figure 11: Prediction curve and absolute error (T = 30%)

(a) CS2-33 (b) CS2-34 (c) CS2-36 
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Figure 12: Prediction curve and absolute error (T = 50%)
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Table 3: Indicators for evaluation of the CALE dataset

Battery no T VMD-RF-ICOA-
TWSVM

VMD-COA-
TWSVM

VMD-TWSVM

RMSE MAPE RMSE MAPE RMSE MAPE

CS2-33 30% 0.0065 0.0081 0.0274 0.0333 0.0425 0.0584
50% 0.0057 0.0077 0.0208 0.029 0.042 0.0573

CS2-34 30% 0.007 0.0082 0.0289 0.0345 0.0679 0.0818
50% 0.006 0.0073 0.0209 0.025 0.0388 0.0474

CS2-36 30% 0.0064 0.0082 0.0245 0.0268 0.0452 0.0544
50% 0.0054 0.0061 0.0262 0.0312 0.0313 0.0396

Table 4: Relative errors of RUL predictions for the CALCE dataset

Battery no. T RUL VMD-RF-ICOA-
TWSVM

VMD-COA-
TWSVM

VMD-TWSVM

PRUL RE (%) PRUL RE (%) PRUL RE (%)

CS2-33 30% 244 249 2 240 −1.6 213 −12.7
50% 98 98 0 93 −5.1 97 −1

CS2-34 30% 240 242 0.8 276 15 247 2.9
50% 91 92 1.1 97 6.6 100 9.9

CS2-36 30% 241 241 0 235 −2.5 224 −7.1
50% 87 88 1.1 88 1.1 79 −9.1

The proposed method is further compared with other models on the B0005 dataset, as shown in
Table 5. Compared to TWSVM, the error metrics of the prediction results processed by the VMD-RF
algorithm and ICOA algorithm significantly decrease, indicating an effective capture of the battery
degradation trend and the ability to track sudden changes encountered during the battery aging
process. Compared to other methods, VMD-RF-ICOA-TWSVM substantially outperforms other
comparative models, demonstrating excellent predictive accuracy.

Table 5: Comparison of prediction results for different models

Model RMSE (Ah) MAPE (%) RE (%)

VMD-GRU 0.018 2.37 −10.5
BP 0.042 4.65 −5.3
LSTM 0.037 4.12 5.3
CNN 0.09 6.85 /
GPR 0.041 5.88 15.8

(Continued)
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Table 5 (continued)

Model RMSE (Ah) MAPE (%) RE (%)

SVM 0.027 3.17 0
TWSVM 0.025 2.92 −5.3
VMD-RF-ICOA-TWSVM 0.0036 0. 36 0

This study compares and analyzes recent literature. References [29,30] proposed a GRU-based
method using current decay and a lithium-ion SOH estimation method based on incremental capacity
analysis and Box-Cox transformation, respectively. References [31,32] simulated models using the
NASA dataset, with the B0005 battery as an example, while References [33,34] based their simulations
on the CALCE dataset, using the CS2-36 battery model. The prediction results are summarized
in Table 6. The results show that the method proposed in this study outperforms the methods in
[29,30] in both RMSE and MAPE. For the B0005 dataset, the BAS-ELM model performs slightly
better in MAPE than the VMD-RF-ICOA-TWSVM model, but its RMSE is significantly higher,
indicating that BAS-ELM may produce more outliers in predictions. When using the CS2-36 dataset,
the proposed model continues to demonstrate strong performance compared to the MFE-GRU-TCA
and CNN-Transformer models.

Table 6: Comparison of prediction results for different models

Model RMSE (Ah) MAPE (%)

SSA-GRU [29] 0.0048 0.479
ICA-BoxCox [30] 0.0196 /
VMD-RF-ICOA-TWSVM (B0005) 0.0036 0.36
BAS-ELM [31] 0.0077 0.33
VMD-PE-IDBO-TCN [32] 0.0072 0.67
VMD-RF-ICOA-TWSVM (CS2-36) 0.0054 0.0061
MFE-GRU-TCA [33] 0.00786 /
CNN-Transformer [34] 0.0212 /

5 Conclusion

Accurate prediction of SOH and RUL is crucial for the safe use of LIBs. In this paper, HI is
extracted by charging time, and VMD-RF is used as data processing to deal with the time series joint
estimation framework of SOH and RUL based on improved TWSVM, and the specific conclusions
are as follows:

a) The VMD and RF combined model decomposes HI into components with different scale
characteristics and excludes unimportant components. This effectively reduces the influence
of disturbing factors in LIBs data on prediction accuracy.
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b) The parameter optimization performance of the convolutional optimization algorithm can be
effectively improved by generating the initial population through the good point set method
and refining parameters using the differential evolution method.

c) Compared to other methods, VMD-RF-ICOA-TWSVM demonstrates optimal evaluation
indices for predicting SOH and RUL, and it achieves superior predictive efficacy across
different LIBs.

In future research, VMD-RF-ICOA-TWSVM will consider external environmental factors such as
temperature and humidity, and will also expand into online prediction.
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