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ABSTRACT

This paper introduces a method for modeling the entire aggregated electric vehicle (EV) charging process and
analyzing its dispatchable capabilities. The methodology involves developing a model for aggregated EV charging
at the charging station level, estimating its physical dispatchable capability, determining its economic dispatchable
capability under economic incentives, modeling its participation in the grid, and investigating the effects of different
scenarios and EV penetration on the aggregated load dispatch and dispatchable capability. The results indicate
that using economic dispatchable capability reduces charging prices by 9.7% compared to physical dispatchable
capability and 9.3% compared to disorderly charging. Additionally, the peak-to-valley difference is reduced by
64.6% when applying economic dispatchable capability with 20% EV penetration and residential base load,
compared to disorderly charging.
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Nomenclature
Constants
ηch Charging efficiency of EV
Δt Scheduling interval
Ti The collection of periods for EVs in charging station
Tarrive

i /Tleave
i Set of interruptible loads

s0
i The initial EV capacity

πt The real-time electricity prices
L(t) The base load on the feeder
Base load Non-EV electricity load
(·)min/max min/max value of a quantity
F(t) Maximum capacity limit of the feeder
Lj(t) The base load on the feeder j
SOC State of charge
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Variables

si,t The SOC of ith EV at period
pch

i,t The charging power of an EV at tth time period
Pch

n,t The charging power of the nthcharging station at tth period
si,t The SOC of ith EV at tth period
Sn,t The SOC of nth charging station at tth period
xi,t Describe whether the EV is at a charging station or not
pec,ch

i,t EV’s charging power at tth period
Pec,ch

n,t Optimal charging power of the charging station under economic incentives
sec

i,t The SOC of single EV under economic incentives
Sec

n,t The SOC of the charging station under economic incentives
Pn,t Economic dispatchable capability
α Sacrificed economic dispatchable potential

1 Introduction

To address the pressing global issues of energy scarcity and greenhouse gas emissions, and to
meet national goals for peak carbon dioxide emissions and carbon neutrality, the promotion of the
new energy revolution and the enhancement of renewable energy within the energy mix have become
critical priorities in the construction of the national ecological civilization [1–3]. Electric vehicles
(EVs), as green transportation solutions with zero or low emissions, hold a significant position in
the new energy revolution, with their industry experiencing rapid growth. In 2022, China’s production
of electric vehicles has exceeded 2 million units [4,5], supported by a public charging infrastructure
comprising 666,500 charging piles and 43,300 charging stations [6–9]. This infrastructure constitutes
the largest network, with the broadest coverage and the most comprehensive system in the world,
catering to the charging needs of these vehicles.

The Energy Saving and New Energy Vehicle Technology Roadmap 2.0, published by the Chinese
Society of Automotive Engineering, forecasts that by 2030, new energy vehicle sales will account for
approximately 50% of total automobile sales [10]; and the demand for electric vehicles is predicted to
reach around 25 million units by 2024 [11]. The extensive deployment of EVs can provide benefits such
as acting as flexible energy storage resources and participating in ancillary services of the power market
through demand-side management [12]. Moreover, they can significantly contribute to the promotion
of renewable energy consumption [13].

To address the challenges faced by EVs in grid integration, it is crucial to consider their dispersed
nature, large numbers, and relatively low individual power ratings. These characteristics make it
difficult to manage EVs individually within grid operations. Therefore, aggregating EVs, with charging
stations serving as the unit of aggregation, becomes a more effective approach [14]. However, large-
scale integration of EVs into the grid introduces substantial charging loads, which can exacerbate the
peak-to-valley load difference, degrade power quality, and potentially impact the secure and stable
operation of the power system [15,16]. Thus, the development of an accurate aggregated charging
model is essential to facilitate the efficient involvement of EVs in grid-supportive services, ensuring
stability and optimizing energy distribution within the power grid.

The current research on aggregated electric vehicle (EV) charging loads heavily focuses on
accurately determining the dispatchable capacity of these aggregations and their role in regulating
power grids. One study in [17] proposes discontinuous variations of the SoC in the model when an
EV is connected or disconnected from the charging point. However, it doesn’t consider the capacity
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that can be adjusted under economic incentives. Another study in [18] models the complex energy
flow dynamics within an EV photovoltaic (PV) storage and charging aggregator, including the energy
exchanges between EVs, PV systems, energy storage, and the power grid, but it doesn’t consider the
variations in charging characteristics among different types of EVs in the aggregator. In addition,
a study in [19] explores the economic aspects of charging power dispatchability by examining how
spot market prices affect the dispatchable charging power of EVs to optimize charging economics.
Another related study in [20] examines the spatial distribution of plug-in electric vehicles (PEVs)
by analyzing their parking locations and categorizing them into distinct clusters. Each cluster is
then modeled using a transmission-based load aggregation approach, with the battery’s state of
charge (SOC) intervals further subdivided into sub-intervals. Furthermore, literature [21] proposes
a mathematical model that integrates the SOC of EV batteries and the energy storage capacity at
battery swapping stations to characterize the flexibility of EV charging demand. Another study in
[22] introduces a model predicated on the affiliation function, which incorporates external conditions
and user behavioral preferences during the EV charging process. In addition, literature [23] presents
an EV cluster dispatching model, taking into account the non-rationally behavioral factors of users,
facilitating the calculation of the dispatchable capacity of the aggregated model. Finally, literature
[24] examines an EV aggregation model for both charging and discharging modes, delineating the
energy and power boundaries of EVs and defining their flexibility. The objective is to mitigate the
operating costs of the distribution network, yet the study does not account for the influence of different
application scenarios on the dispatchable flexibility of EVs.

In a study by [25], a state-space model is used to depict the dynamics of aggregated EV charging.
The main goal is to maximize benefits for the aggregator. The state variables include EVs’ state of
charge (SOC) and the charging/discharging power. However, the model does not account for the
complexities introduced by regulatory constraints on charging and discharging power.

Table 1 presents a more detailed comparison of various methods and their involvement in
aggregated charging modeling and dispatchable capability, alongside the proposed method.

Table 1: Comparison of the proposed method with other methods

Literature Charge modes Grid
safety con-
straints

Modeling technique Key findings

[22] Disorderly charging;
Orderly charging

No Long and
short-term memory
neural network
algorithms

Dispatchable
capability
incorporates user
behavioral
preferences

[26] Orderly charging No Minkowski addition Aggregated
assessment and
prediction of
adjustable capacity

[16] Orderly charging No Dynamic traffic
assignment model

Spatiotemporal
behavior of electric
vehicles

(Continued)
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Table 1 (continued)

Literature Charge modes Grid
safety con-
straints

Modeling technique Key findings

[27] Disorderly charging;
Orderly charging

Yes Minkowski addition Application of
adjustable potentials
to realize joint
tenders for charging
stations

Proposed
method

Disorderly charging;
Orderly charging
with physical
dispatchable
potential; Orderly
charging with
economic
dispatchable
potential

Yes Minkowski addition Appliance of
different
dispatchable
capabilities in
distribution systems

Based on existing research, this paper explores the evaluation of the controllable ability of
combined electric vehicle (EV) charging loads, considering various factors. The study investigates how
different factors such as base loads, EV adoption rates, and user participation impact the effectiveness
of aggregated charging loads in managing peak demand and grid stability.

The paper makes three main contributions: (1) It develops a comprehensive model of the EV
charging process, from individual charging units to aggregated charging stations’ participation in grid
operations, while considering grid security constraints; (2) It uses the Minkowski addition method
to model aggregated charging at the charging station level, simplifying the model and reducing
the number of independent variables considered; (3) It compares the impact of demand response
under varying controllable capacities, influenced by different base loads, EV adoption rates, and user
participation levels, providing practical insights for charging aggregator strategies.

The remainder of this paper is structured as follows: Section 2 presents the development of an
aggregated model of EV charging load at the charging station level. Section 3 details the model
for aggregated EV charging participation in grid operations. Section 4 provides descriptions of the
case studies, followed by the presentation of simulation results. Concluding remarks are offered in
Section 5.

2 EV Aggregated Modeling
2.1 EV Individual Modeling Based on Charging Behavior

This study comprehensively considers the entire charging process of an individual EV, spanning
from the moment the vehicle enters a charging station to the time it departs. In this case, only one
specific charging station per electric vehicle is considered for charging. The time the EV arrives at the
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charging station is recorded starting at 0, EV’s SOC can be expressed as:

si,t = si,t−1 + ηchpch
i,tΔt, ∀t ∈ Ti (1)

(1) Power constraints for EV

The charging and discharging power are limited by the maximum rated charging and discharging
power of the EV, also EV can’t be charged and discharged at the same time, which can be expressed
as:

0 ≤ pch
i,t ≤ pch,max

i , ∀t ∈ Ti (2)

(2) Capacity constraints for EV{
smin

i ≤ si,t ≤ smax
i , ∀t ∈ Ti

si,Ti = sleave
i

(3)

The first equation in Eq. (3) means that the SOC during the charging period is limited between
si

min and si
max for safety considerations, while the second equation ensures that the SOC at the end of

the charge reaches the user’s needs.

2.2 EV Aggregation Modeling in Terms of Charging Stations
Individual EVs typically don’t meet the threshold for direct participation in the electricity market

and are usually managed through aggregators. Consequently, EV charging stations, acting as natural
aggregators, are essential in developing models for aggregated EV charging. When constructing a
model for a charging station, it is not feasible to directly sum the charging/discharging power and
the SOC of each EV, given that each EV occupies different periods within the station and possesses
a distinct definition domain for its model. This conventional approach encounters issues such as
excessive model constraints and elevated model dimensionality. This section extends the definition
domain of each individual model to the entire research period T and introduces the parameter xi,t to
describe whether the EV is at the charging station or not. Suppose the ith EV is in the charging station
at the tth time period, xi,t = 1, otherwise xi,t = 0. Considering the sudden change of EV capacity caused
by the EV arrival and leaving, the individual EV model with extended definition domain should be
expressed in segmented function as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

si,t = 0, ∀t < Tarrive
i , t ∈ T

si,t = s0
i + ηchpch

i,tΔt, t = Tarrive
i

si,t = si,t−1 + ηchpch
i,tΔt, ∀t ∈ (

Tarrive
i , Tleave

i

]
si,t = 0, t > Tleave

i , ∀t ∈ T

(4)

where Ti
arrive is the period that the ith EV arrives at the charging station; si

0 is the initial EV capacity,
which reflects the sudden change in capacity when the EV is first connected to the station; Ti

leave is the
period that the ith EV leaves the charging station. The periods from Ti

arrive to equal to Ti in Section 2.1.

(1) Power constraints for EV

Refer to power constraints in Section 2.1, the new power constraints considering the extended
definition domain should be expressed as:

0 ≤ pch
i,t ≤ pch,max

i · xi,t, ∀t ∈ T (5)
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(2) Capacity constraints for EV

At the time before the EV leaves, its charging demand should be satisfied, so the new capacity
constraints considering the extended definition domain can be described by Eq. (6):{

smin
i · xi,t ≤ si,t ≤ smax

i · xi,t, ∀t ∈ T

si,t + ηchpch
i,tΔt = sleave

i , t = Tleave
i − 1

(6)

Based on these constraints, the segmented formulation of Eq. (4) (i.e., the individual EV model
with extended definition domain) can be harmonized into the following equation:{

si,t = si,t−1 · xi,t−1 + s0
i · xi,t ·

(
1 − xi,t−1

) + ηchpch
i,tΔt − sleave

i · (
1 − xi,t

) · xi,t−1

xi,−1 = 0
(7)

for the equation, to make sense when t is 0, xi, −1 is additionally defined to be 0. xi,t (1 − xi,t−1) = 1
is equivalent to satisfying the condition that t = Ti

arrive, while (1 − xi,t−1) xi,t−1 = 1 is equivalent to
satisfying the condition that t = Ti

leave + 1. When t < Ti
arrive, si,t = 0 in Eq. (7); when t = Ti

arrive, si,t = si
0

+ ηchpi,t
ch�t, which takes into account the initial SOC of EV; when t = Ti

leave, si, Tileave = si
0 + ηchpi,t

ch�t;
when t = Ti

leave + 1, si,t = 0, which takes into account the off-grid SOC. Thus, it solves the problem of
sudden changes in SOC in a single equation and endows the charging model of a single vehicle with
Minkowski additivity.

Sum up all EVs in the same charging station to get the EV aggregated model, which can be
described as:⎧⎨
⎩

Sn,t = ∑
i∈n

si,t, ∀t ∈ T

Pch
n,t = ∑

i∈n

pch
i,t, ∀t ∈ T

(8)

(1) Power constraints for EVs aggregated model

Sum power constraints of each EV with extended definition domain, so that the power constraints
for EVs aggregated model are shown in Eq. (8):

0 ≤ Pch
n,t ≤

∑
i∈n

pch,max
i · xi,t, ∀t ∈ T (9)

(2) Capacity constraints for EVs aggregated model:∑
i∈n

smin
i · xi,t ≤ Sn,t ≤

∑
i∈n

smax
i · xi,t, ∀t ∈ T (10)

2.2.1 EV’s Physical Dispatchable Capability

Under disorderly charging conditions, EVs start charging at maximum power immediately upon
arrival at the charging station until fully charged, and the physical dispatchable capability is defined
by the EV aggregated model, which can be described as:⎧⎨
⎩

Pch,max
n,t = ∑

i∈n

pch,max
i · xi,t

Sn,t = ∑
i∈n

si,t

, ∀t ∈ T (11)
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(1) Power and capacity constraints

By integrating Eq. (4), one of the SOC of aggregated model constraints between consecutive
periods is shown below. To simplify the modeling process, the paper considers all EV charging
effectiveness to be equal.

Sn,t = Sn,t−1 + ηchPch
n,t�t +

∑
i∈n

s0
i · xi,t −

∑
i∈n

sleave
i · (

1 − xi,t

)
(12)

While other constraints can be described by Eqs. (8) and (9).

2.2.2 EV’s Economic Dispatchable Capability

The electricity price determined by the grid fluctuates in response to varying load conditions.
Employing in-station optimization, charging stations can strategically schedule electric vehicle (EV)
charging sessions to minimize charging costs for users and consequently achieve an aggregated
load profile different from that resulting from uncoordinated charging. Furthermore, the economic
dispatchable capability of EVs is characterized by contrasting it with the physical dispatchable
capability.

The objective function should be stated as:

min fEV =
∑

t∈T ,i∈n

πtpec,ch
i,t Δt (13)

where f EV is the objective function of each EV that minimizes charging costs.

(1) Power and SOC constraints⎧⎪⎨
⎪⎩

pec,ch
i,t = pch,max · mch

i,t

pec,dis
i,t = pdis,max · mdis

i,t

mch
i,t, mdis

i,t ∈ xi,t

(14)

where mch
i,t describes the EV charging situation. Specifically, mch

i,t = 1 means the ith EV is charging at the
tth time, otherwise, it’s not charging. The constraints also contain Eqs. (5) and (6).

Optimized charging station parameters are as follows: {Pec,ch
nt , Snt

ec}, which are determined by the
optimized pec,ch

it in Eq. (13):⎧⎨
⎩

Pec,ch
n,t = ∑

i∈n

pch,max
i · mch

i,t

Sec
n,t = ∑

i∈n

sec
i,t

, ∀t ∈ T (15)

The charging power neighborhood under economic incentives is defined as the economic dispatch-
able capability of the EVs aggregated model, and the degree of deviation from Pec,ch

n is determined by
the willingness to sacrifice economic efficiency in the dispatch process, which can be described as:∣∣∣∣∣Pn,t −

∑
i∈n

pch,max
i · mch

i,t

∣∣∣∣∣ ≤ α (16)

where the region of Pn,t is the economic dispatchable capability; α indicates the extent to which
economic efficiency is willing to be sacrificed for peak shaving and valley filling.
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Constraints can be expressed as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sec
n,t = ∑

i∈n

sec
i,t = Sec

n,t−1 + ηchPch
n,t�t + ∑

i∈n

(
s0

i · xi,t

) − ∑
i∈n

(
sleave

i · (
1 − xi,t

))
0 ≤ Pn,t ≤ Pch,max

n,t∑
i∈n

smin
i · xi,t ≤ Sec

n,t ≤ ∑
i∈n

smax
i · xi,t

(17)

3 EVs Aggregated Modeling Incorporated into the Grid

A critical differentiation between an aggregated EV charging model intended for participation in
grid operations and a model that is scoped solely to the level of charging stations is the incorporation
of grid constraints. Specifically, the charging power of the former model is subject to the capacity
limitations of the feeder to which the charging station is connected, as well as the operational
constraints related to the currents and voltages within the distribution network. The imposition
of these constraints can result in a diminished dispatchable capability of the charging power. The
additional constraints should encompass:

(1) Constraints for feeder capacity and power

Lj(t) +
∑
n∈F

Pch
n,t ≤ Fj (18)

where Fj is the maximum power allowed on the feeder j, and Lj(t) is the base load on the feeder j.⎧⎪⎪⎨
⎪⎪⎩

Pi,t = Ui,t

N∑
j=1

Uj,t

(
Gij cos θij,t + Bij sin θij,t

)
Qi,t = Ui,t

N∑
j=1

Uj,t

(
Gij sin θij,t − Bij cos θij,t

) (19)

where Pi,t and Qi,t mean node i load active/reactive power at the tth time; Gij + jBij is the (i, j) entry of
nodal admittance matrix; θ ij,t is the difference between angles of buses i and j at the tth time; Ui,t is the
voltage magnitude of bus i.

(2) Constraints for nodal voltage

0.9Ui,N � Ui,t � 1.1Ui,N (20)

where Ui,t means ith nodal voltage at tth time; Ui, N means the rated voltage of node i. Normally, the
constraint range should be 0.95Ui, N to 1.05Ui, N, but this paper mainly aims to study the effect of line
capacity on the dispatchable capability, so the voltage safety limits are amplified.

In summary, the aggregated charging dispatchable capability when participating grids should be
fully defined by Eqs. (16)–(21).

The dispatchable capability is used as a constraint for charging load regulation. Different from the
inner-station optimization process from the physical dispatchable capability to economic dispatchable
capability, the optimization discussed in this section focuses on the interaction between EV clusters
namely charging stations and base load. Charging optimization with the objective of peak shaving is
considered with the objective function shown in (21).

min

(∑
t∈T

(
max

(
L(t) +

∑
n∈F

Pch
n,t

)
− min

(
L(t) +

∑
n∈F

Pch
n,t

))
�t

)
(21)
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where Pch
n,t are decision variables and L (t) is the base load in the study area. The solution of Pch

n,t is the
boundary of dispatchable capability, as well as the optimized aggregated charging load. The region
formed by Pch

n,t, and disorderly charging profile is the dispatchable capability in this scenario.

(1) Constraints for charging stations

If based on physical dispatchable capability, the constraints for should be the same as in
Section 2.2.1; If based on economic dispatchable capability, the constraints should be expressed as
Eqs. (15)–(17).

(2) Constraints for feeder capacity and power are the same as Eqs. (18)–(20).

Typically, the charging power profile of EVs during disorderly charging exhibits significant
differences compared to that shaped by economic incentives. In optimizing the participation of
charging stations in grid operations, a smaller value of α that yields a solution indicates a greater
dispatchable load region for charging stations.

4 Case Study

First, we compare the effects of base loads with different characteristics and the use of different
types of dispatchable capability on the tuning results of the combined charging load. Then, we
investigate the effects of various EV penetration rates and different users’ willingness to participate
in influencing the dispatchable capability of the charging load.

4.1 Case Description
A practical distribution system is utilized for analyzing the co-optimization of energy reserves,

as depicted in Fig. 1. The system consists of 7 feeders and 4 charging stations, all powered by the
main grid. Detailed system parameters can be found in Reference [27]. Base load forecast values for
residential and commercial areas are provided in Tables 2 and 3, while real-time economy prices are
outlined in Table 4.

Figure 1: Structure of a practical test case
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Table 2: Commercial base load

Time period 1 2 3 4 5 6

Load (MW) 2.446 2.332 2.290 2.299 2.349 2.577
Time period 7 8 9 10 11 12
Load (MW) 3.022 3.539 3.822 3.913 4.000 3.980
Period 13 14 15 16 17 18
Load (MW) 3.892 3.881 3.722 3.562 3.611 3.768
Period 19 20 21 22 23 24
Load (MW) 3.644 3.448 3.361 3.324 3.026 2.687

Table 3: Residential base load

Time period 1 2 3 4 5 6

Load (MW) 3.121 2.915 3.356 3.540 3.198 3.343
Time period 7 8 9 10 11 12
Load (MW) 3.546 3.681 3.694 3.341 3.214 3.001
Time period 13 14 15 16 17 18
Load (MW) 2.596 2.466 1.938 1.615 1.640 1.678
Time period 19 20 21 22 23 24
Load (MW) 2.190 2.886 3.031 3.327 3.375 3.375

Table 4: Real-time economy price

Time period 1 2 3 4 5 6

Price ($/kWh) 1.15 1.22 1.30 1.37 1.45 1.52
Time period 7 8 9 10 11 12
Price ($/kWh) 1.60 1.67 1.75 1.82 0.57 0.62
Time period 13 14 15 16 17 18
Price ($/kWh) 0.67 0.72 0.79 0.87 0.94 0.22
Time period 19 20 21 22 23 24
Price ($/kWh) 0.18 0.23 0.26 0.28 0.21 0.16

It’s important to note that each feeder has a maximum capacity of 8 MW. Electric vehicles (EVs)
are divided into three groups at the charging stations based on their charging characteristics, and
sample data for EVs are categorized accordingly. Sampling parameters for charging stations at 8%
and 20% penetration are presented in Tables 5 and 6, respectively.

To better understand the impact of aggregated charging regulation, adjustments have been made
to the capacity and charging power of individual vehicles, with a simultaneous increase in the number
of vehicles.
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Table 5: EVs categories and parameters at an 8% penetration rate

EVs parameters Type1 Type2 Type3

S0 U(0.4SB1,0.6SB1) U(0.15SB2,0.25SB2) U(0.2SB3,0.3SB3)
Number in CS1 U(180,220) U(100,120) 0
Number in CS2 U(180,220) U(80,100) U(120,220)
Number in CS3 0 U(90,110) U(140,200)
Number in CS4 U(380,420) 0 0

Table 6: EVs categories and parameters at 20% penetration rate

EVs parameters Type1 Type2 Type3

S0 U(0.4SB1,0.6SB1) U(0.15SB2,0.25SB2) U(0.2SB3,0.3SB3)
Number in CS1 U(900,980) U(850,1050) 0
Number in CS2 U(900,980) U(400,600) U(1900,2200)
Number in CS3 0 U(450,550) U(1900,2200)
Number in CS4 U(1600,2200) 0 U(800,1300)

4.2 Impact of Different Scenarios on Dispatchable Capability
The electric vehicle (EV) load penetration is set at 8% in this section, with charging stations

connected to feeders 1, 2, 5, and 7. Firstly, charging parameters such as arrival time, expected
departure time, initial state of charge (SOC), and maximum charging power are collected for each EV.
Secondly, an aggregated EV charging model is developed by combining individual EV data. Based
on the parameters of the aggregated EV charging model, both physical and economic dispatchable
capabilities are calculated. These capabilities are then applied as power constraints.

The charging schedule within the station is optimized to minimize the charging cost for each EV.
Subsequently, the aggregated load of the charging stations, corresponding to the minimized charging
cost, is obtained, as illustrated in Fig. 2. The periods 1–91 correspond to the period from 8 AM to
8 AM the next day, with each time slot representing 15 min.

In Fig. 1, let’s consider CS1. When α is 324 kW, the shaded area in Fig. 3 shows the optimized
charging power region allowed.

The modeling algorithm defines the physical dispatchable potential as the maximum power of
the aggregated charging load. In comparison, the economic dispatchable potential is determined by
minimizing charging costs. The difference between the optimized charging curve and the disorderly
charging curve represents the economic dispatchable potential. Table 7 presents the standard criterion
of the modeling algorithm.
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Figure 2: Charging stations load under economic incentive
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Figure 3: The economic dispatchable capability of charging stations

Table 7: The standard criterion of the modeling algorithm

Algorithm Standard criterion

Physical dispatchable potential Maximum aggregated load
Economic dispatchable potential Only physical dispatchable potential
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4.2.1 Scenario #1: The Base Load Is Commercial Type

Base loads are generally divided into commercial loads, which peak during the day and decrease
at night, and residential loads, which peak in the morning and evening.

Applying the physical dispatchable capability to optimize the aggregated load with commercial
baseload effectively achieves the peak shaving objective, as illustrated in Fig. 4. This optimization
reduces the peak load from 47,336.6 kW during unordered charging to 46,175 kW during ordered
charging. It also smooths the load difference to 0 during the period 53–81. Furthermore, it effectively
fills in the valleys, increasing the load valleys from 20,935.6 to 26,567.9 kW, and reducing the peak-to-
valley difference by 25.7% from 20,401 kW in disorderly charging to 19,607.1 kW. This improvement
is particularly significant due to the low proportion of EV load to total load.

Figure 4: Commercial characteristic load based on physical potential

The aggregated load of each charging station after optimization is shown in Fig. 5.

(a) (b)

Figure 5: Feeders and EVs aggregated load after optimization

In the context of economic dispatchable capability, the optimized load and peak load illustrated
in Fig. 6 decline from 47,336.4 kW during disorderly charging to 46,175.7 kW, representing a marginal
reduction of 2.5%. Moreover, the load valley increases from 20,935.6 kW during disorderly charging to
20,987.5 kW, resulting in a reduction of the peak-valley difference from 26,401 to 25,187.5 kW, marking
a 4.5% decrease. This effect is comparatively less pronounced when compared to the application of
physical dispatchable capability. The underlying reason is the substantial number of vehicles opting
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to charge during the 67–76 and 89–15 time periods in response to economic incentives, consequently
leading to peak loads.

Figure 6: Commercial characteristic load based on economic potential

The optimized load of the charging stations and feeders is presented in Fig. 7. It is evident that
the charging station loads are not constrained by security limitations during dispatch, thereby fully
leveraging economic dispatchable capability. The optimized load of the charging station shown in the
figure delineates the boundary of its dispatchable capability. Additionally, the total charging cost when
employing economic dispatchable capability amounts to $61,876, denoting a 34.7% reduction from the
$94,835 incurred when utilizing physical dispatchable capability.

(a) (b)

Figure 7: Feeders and EVs aggregated load after optimization

4.2.2 Scenario #2: The Base Load Is Residential Type

When the regional base load is residential type, the physical dispatchable capability is applied to
optimize the charging decision of charging stations, and the load for disorderly and orderly charging
is shown in Fig. 8. The peak-valley difference is cut from 13,800.6 to 9807.8 kW, a decrease of
28.9%; the load peak drops from 43,657.6 to 41,400.1 kW, and the load valley rises from 28,022.2 to
31,592.5 kW, effectively achieving peak shaving and valley filling. The aggregated load for each
charging station is shown in Fig. 9, showing that charging stations primarily charge when the base
load or the corresponding feeder load is low and cease charging when it is high.
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Figure 8: Base and total residential load based on physical potential

(a) (b)

Figure 9: Feeders and EVs aggregated load after optimization

When the economic dispatchable capability is used, the aggregated load of each charging station
is shown in Fig. 10. It can be observed that, under economic incentives, the charging stations
predominantly perform high-power charging during periods 61–81 and 91–21, leading to feeder loads
peaking during these corresponding periods. The total load of the study area is shown in Fig. 11,
indicating that the effect of peak shaving is not significant compared to disordered charging. The
peak-to-valley difference even worsens to 28,416.8 kW, as the optimized charging load peak coincides
with the base load peak during periods 71–77, resulting in a new peak of 45,455.1 kW in the total load
of the area.

The total charging cost is $64,359, which is 45.69% lower than the $118,513 cost when using
physical dispatchable capability, thereby satisfying the economic efficiency of charging.

The values of α required to ensure the solvability of the model are listed in Table 8. A higher α

value typically corresponds to residential base loads rather than commercial ones, indicating limited
economic flexibility for managing aggregated EV charging under residential base load conditions.
This limitation arises from the alignment of residential base loads with the peaks of optimized EV
loads, which leads to a fully loaded grid even with low EV penetration. Consequently, grid security
constraints place a restricted boundary on dispatchable capability.
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Figure 10: Base and total residential load based on economic potential

Figure 11: Feeders and EVs aggregated load after optimization

Table 8: The value of α in different scenarios

Scenario α of CS1/kW α of CS2/kW α of CS3/kW α of CS4/kW

#1 0 0 12 0
#2 245 0 48 191

4.3 Impact of EVs Penetration on Dispatchable Capability
Assuming the same locations for charging stations as in Section 4.2, as EV penetration increases,

there may be a decrease in the effectiveness of peak shaving when utilizing the economic dispatchable
capability to optimize charging decisions. In some cases, there might even be challenges in meeting
economic requirements due to safety constraints on feeders. Specific analyses are provided in the
following sections.

4.3.1 Scenario #1: The Base Load Is Commercial Type

Assuming a 50% EV penetration and the base load characteristics typical of a commercial region,
the total regional load, when optimized through the application of both physical and economic
dispatchable capabilities, is depicted in Fig. 12. The peak-to-valley difference achieved by physical
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dispatchable capability methods is 3294.7 kW, marking a reduction of 95.7% compared to disorderly
charging, while the peak-to-valley difference achieved by economic dispatchable capability methods
is 39,694.7 kW, marking a reduction of 56.5%. The reason is that with a high penetration rate of
electric vehicles, small fluctuations in electricity prices can lead to significant load changes, resulting
in ineffective peak shaving and valley filling.

Figure 12: Base total load of commercial type, 50% penetration

The total charging cost amounts to $1,320,851 when utilizing the economic dispatchable capa-
bility, representing a 1.2% reduction compared to the $1,335,874 incurred when employing physical
dispatchable capability. Moreover, it is 40.2% cheaper than the $1,852,637 cost associated with
disorderly charging. This observation indicates a significant economic dispatchable load region of
the charging station in this scenario, which aligns with the physical dispatchable load region. This
alignment is primarily due to the lower electricity prices during periods 67–83 coinciding with the
base load valley. Consequently, the objective of peak shaving is consistent to reduce charging costs.

The optimized load and dispatchable capability boundaries for the feeders and charging stations
are depicted in Fig. 13a,b, correspondingly. Feeder 7 runs at full load during periods 61–75 and 81–90,
covering about one-third of the study period, while Feeder 2 operates at full load for about two-thirds
of the total period. Constraints on the dispatchable capacity of the charging stations are presented
in Table 9. The analysis reveals safety risks for all feeders serving the charging stations, highlighting
the need for strategic enhancement of feeder capacities to improve safety and economic efficiency of
charging operations.

Figure 13: Feeders and charging stations load with commercial base load
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Table 9: The value of α

Scenario α of CS1/kW α of CS2/kW α of CS3/kW α of CS4/kW

#1 87,700 20,075 18,301 26,776

When employing economic dispatchable capability, Electric vehicles have a significantly better
peak-shaving effect at 50% penetration than at 8% penetration, which shows that although the high
penetration rate affects the safety of the feeders, it also leads to a better peak-shaving and valley-filling
ability.

4.3.2 Scenario #2: The Base Load Is Residential Type

The optimization of the charging process involves the utilization of both physical and economic
dispatchable capabilities. Fig. 14 provides an illustration of the total regional load, with physical
dispatchable capability methods demonstrating a peak-to-valley difference of 8285.6 kW, representing
an 85.9% reduction compared to disorderly charging. Conversely, economic dispatchable capability
methods result in a peak-to-valley difference of 34,823.1 kW, reflecting a 40.9% reduction.

Figure 14: Base and total load of residential type, 50% penetration

The implementation of economic dispatchable capability results in a total charging cost of
$240,619, representing a 23.7% cost reduction compared to the $314,889 cost associated with physical
dispatchable capability, and an 86.6% reduction compared to the $1,797,417 cost of disorderly
charging. However, it is crucial to note that this approach may be less economical than at 10%
penetration, as fluctuations in base load during periods of lower electricity prices could lead to
increased feeder capacity occupation and reduced economic dispatchable capability compared to the
preceding section (Section 4.3.1).

The capacity limits of the optimized feeder loads and charging stations’ dispatchable capabilities
are visually presented in Fig. 15a,b, respectively. It is evident from the figures that the feeders
experience full utilization during instances of low electricity prices. Feeder 2, which exhibits a lower
base load during Periods 1–60, demonstrates a greater economic dispatchable capability in order to
achieve the peak shaving goal due to safety constraints during periods of low electricity prices.

To further compare the economic dispatchable capabilities of different charging stations across
various scenarios, the values of α that allow the model to have a solution in each case are shown
in Table 10. As indicated in Table 10, CS3 has the highest economic dispatchable capability because
Feeder 3 has the lowest base load and CS3 does not have a high charging load, providing sufficient
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feeder security margins to utilize the dispatchable capability. Charging stations with residential base
loads generally have lower dispatchable capabilities than those with commercial base loads. These
comparison results also offer recommendations for the location planning of charging stations: high-
capacity charging stations should be built on feeders with low loads whenever possible.

Figure 15: Feeders and charging stations load with residential base load

Table 10: The value of α

Scenario α of CS1/kW α of CS2/kW α of CS3/kW α of CS4/kW

#2 86854 26212 18120 28489

4.4 Impact of Users’ Willingness to Respond to Dispatchable Capability
It is assumed that the base load represents the characteristics of a commercial area with a 20%

electric vehicle (EV) penetration rate, and the locations of the charging stations are the same as in
Section 4.2. The willingness of users to participate in organized charging may vary due to various
subjective or objective reasons. This section examines the characteristics of the area load and the
difference in the adjustable potential of each charging station under different levels of willingness of
users to participate.

At a user participation willingness of 50%, Fig. 16 illustrates the ratio of disorderly load to
dispatchable load within the optimized load at each charging station when applying the physical
dispatchable capability. The disorderly charging and orderly charging in Fig. 16 refer to the dis-
patchable and non-dispatchable parts of the EV charging load. In addition, Fig. 17 presents the load
profiles of the feeders hosting the charging stations, indicating that none of the feeders can satisfy
the capacity constraints. When the charging station regulation objective is adjusted to focus on peak
shaving for individual feeders, the optimization outcomes are depicted in Fig. 18, revealing that only
Feeder 1 complies with safety requirements. It is known that the optimized charging power, aimed at
achieving the minimum peak-to-valley difference, fails to comply with the feeder safety constraints.
This shortfall is primarily due to the insufficient willingness of users to participate, which results in a
heightened burden on the grid from uncoordinated charging. Given these circumstances, the economic
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dispatchable capability becomes an impractical consideration, as the priority lies with ensuring the
grid’s operational safety and meeting the feeder constraints.
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Figure 16: Disorderly and optimized load with 50% participation

Figure 17: Feeders load with the objective for the region with 50% participation
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Figure 18: Feeders load with the objective for each feeder with 50% participation

With an 80% user participation rate, the load on each feeder is depicted in Fig. 19. It is
evident that the economic dispatchable capability efficiently manages regionally optimized loads while
meeting regulatory objectives and ensuring safety. The total charging cost of $704,599 reflects a
commendable 5.5% reduction compared to the expenses associated with the physical dispatchable
capability. Moreover, it is merely 2.8% higher than the economic outcome for a scenario with 100%
participation, showcasing a well-balanced and cost-effective approach.

Figure 19: Feeders load with the objective for each feeder with 80% participation

The minimum α-value of charging stations, as detailed in Table 11, demonstrates meticulous
consideration of various factors. Noteworthy is the fact that the α-values presented in Table 11 surpass
those in Table 9, despite the lower associated charging costs. This variance can be attributed to a lesser
number of vehicles involved in the regulation process in the current scenario, resulting in a smaller α-
value compared to the previous scenario. However, if α, characterizing the aggregated EV charging
model, is distributed among the individual participating vehicles, the individual α-value becomes
greater than that observed in the previous scenario, underscoring the adaptability and efficiency of
the system.
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Table 11: The value of α

Base load CS1 CS2 CS3 CS4

Commercial characteristic 6450 6061 5150 6401

In summary, when the EV penetration is high, the requirements for users’ participation need
to be higher to ensure feeder safety; if there are charging stations with low user participation rates,
consideration needs to be given to selecting areas with low base load or expanding the feeder capacity
when planning charging station construction.

5 Conclusion

This study introduces a comprehensive methodology for modeling and analyzing the dispatchable
capability of aggregated EV charging in distribution systems. The approach combines individual EV
charging behaviors into an aggregated model at the charging station level, estimating both physical
and economic dispatchable capabilities. The research evaluates the impact of different baseload
characteristics, EV penetration levels, and user participation willingness on the effectiveness of peak
shaving and valley filling. The proposed model is validated using a practical distribution network
system. The results indicate that: (1) Economic dispatchable capability is more effective when the
base load exhibits residential characteristics compared to commercial characteristics, with a 50%
penetration rate resulting in an 81.7% reduction in charging costs; (2) Using economic dispatchable
capability not only reduces charging costs but also significantly lessens peak-to-valley load differentials
compared to disorderly charging. It achieves a 9.7% cost reduction compared to physical dispatchable
capability and a 9.3% reduction compared to disorderly charging; (3) With higher EV penetration,
the economic dispatchable capability of aggregated loads increases, leading to improved charging
economics. For instance, at 50% penetration, the average charging cost per vehicle is 40.3% lower than
at 8% penetration, albeit with increased line safety hazards; (4) Higher user participation willingness
enhances charging economy and aggregated load-shaving effectiveness.

After thoroughly analyzing the comprehensive data provided in the report on improving energy
storage systems for electric cars, I have identified five suggestions for further research in this area: (1)
Deeper study of user behavior patterns; (2) Optimization of charging station layout; (3) Development
of intelligent charging algorithms; (4) Optimized scheduling for EV charging and renewable energy
sources.

These future work directions aim to advance the integration of EVs with the power grid. The focus
is on enhancing the grid’s capability to accommodate the growing adoption of EVs while ensuring
reliability, efficiency, and sustainability.
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