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ABSTRACT

The integration of photovoltaic, energy storage, direct current, and flexible load (PEDF) technologies in building
power systems is an important means to address the energy crisis and promote the development of green buildings.
The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable
energy and enhance the stability of the power grid. For this purpose, this work introduces a framework of
multiple incentive mechanisms for a PEDF park, a building energy system that implements PEDF technologies.
The incentive mechanisms proposed in this paper include both economic and noneconomic aspects, which is the
most significant innovation of this paper. By modeling the relationship between a PEDF park and the power grid
into a Stackelberg game, we demonstrate the effectiveness of these incentive measures in promoting the friendly
interaction between the two entities. In this game model, the power grid determines on the prices of electricity
trading and incentive subsidy, aiming to maximize its revenue while reducing the peak load of the PEDF park. On
the other hand, the PEDF park make its dispatch plan according to the prices established by the grid, in order to
reduce electricity consumption expense, improve electricity utility, and enhance the penetration rate of renewable
energy. The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy
consumption and promote sustainable energy practices.
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BESS Battery Energy Storage System
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DR Demand Response
PEDF Photovoltaic, Energy storage, Direct current, and Flexible load
PSO Particle Swarm Optimization
PV Photovoltaic
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SoC State of Charge
TOU Time Of Use

e.g.

a, b Coefficients in calculating load utility
Cbuy Electricity purchasing cost
C ′

buy Electricity purchasing cost with discount applied
Ccarbon Intermediate carbon emission penalty cost
ccarbon Unit cost of intermediate carbon emission
dbuy(r) Discount for electricity purchasing
dsell (r) Discount for electricity selling
Ebess Capacity of the BESS
Ebuy(t) Energy purchased from the grid at time t
Ech(t) Charging energy of the BESS at time t
Edch(t) Discharging energy of the BESS at time t
Emax

ch Maximum charging energy
Emax

dch Maximum discharging energy
Esell(t) Energy sold to the grid at time t
Epv(t) Energy generated by PV at time t
Emax

tx Maximum amount of energy allowed to be traded each time
F Objective of the grid
G Objective of the PEDF park
L(t) Load consumption at time t after DR
L0(t) Load consumption at time t before DR
Lpeak Peak load consumption
Rincentive Revenue of incentive-based DR
Rsell Electricity selling revenue
R′

buy Electricity selling revenue with discount applied
r Reputation score
s(r, L(t − 1)) Willingness of fulfilling DR tasks at time t
SoC(t) State of charge of the BESS at time t
SoCmax Recommended SoC upper bound for the BESS
SoCmin Recommended SoC lower bound for the BESS
T Number of time slots in a day
t Time slot
U Utility of electricity consumption during a day
u(L(t)) Utility of electricity consumption at time t
wpeak Amplification factor of peak load
wpenetration Amplification factor of penetration rate of renewable energy
x Decision variable of the grid
x∗ Optimal decision variable of the grid
y Decision variable of the PEDF park
y∗ Optimal decision variable of the PEDF park
ε1, ε2 Constants in the calculation of reputation-based discounts
εcarbon Grid carbon emission coefficient
ηch Charging rate of the BESS
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ηdch Discharging rate of the BESS
θ Penetration rate of renewable energy in the PEDF park
Λ Upper bound of electricity trading prices
λbuy(t) Electricity purchasing price at time t
λsell(t) Electricity selling price at time t
M Upper bound of incentive prices
μ(t) Incentive price at time t
ρL(t) Predicted reduction rate of load consumption during the DR of time t
ρmax

L Maximum load reduction rate in DR

1 Introduction

On a global scale, renewable energy has become a key factor in promoting energy transformation
and achieving sustainable development. With the continuous development of new energy technologies,
more and more renewable energy sources such as solar and wind energy are being introduced into the
power grid system. This change not only poses challenges to traditional energy supply, but also brings
new opportunities and challenges to the operation and management of the power grid. As one of
the important fields of global energy consumption, the architecture sector accounts for a significant
proportion of global carbon emissions. Therefore, the energy transformation in the construction sector
is of great significance for energy conservation and carbon reduction.

The photovoltaic, energy storage, direct current, and flexible load (PEDF) building system is a new
type of building distribution system that can effectively solve two key issues in the zero-carbonization
transformation of the power system: increasing the installed capacity of distributed renewable energy
generation and effectively absorbing fluctuations in renewable energy generation [1]. The building
energy systems that implement PEDF technologies are also called PEDF parks. The system integrates
technologies such as photovoltaic (PV) power generation, energy storage, direct current (DC) power
distribution, and flexible energy consumption to form a whole to achieve friendly interaction between
buildings and the power grid.

Specifically, the four key components of a PEDF system are described as follows:

• PV Power Generation: Distributed solar PV power generation facilities in buildings, which can
be fixed in the surrounding area, on the exterior surface, or directly become components of the
building.

• Energy Storage: Use energy storage devices to store excess electricity for emergency use while
also suppressing fluctuations in renewable energy generation.

• DC Power Distribution: Compared to alternating current (AC) distribution, DC distribution can
reduce losses in the process of energy transmission and improve energy utilization efficiency by
using direct current for distribution [2].

• Flexible Energy Consumption: By exploiting the flexibility of energy consumption in the system,
it can achieve efficient utilization and optimized configuration of building energy through smart
control and management.

The application of the PEDF system can bring various advantages. First, it can improve the
efficiency of renewable energy utilization and reduce dependence on traditional energy. Second, it
conducts real-time monitoring, control, and optimization of building energy systems to improve energy
efficiency. In addition, it can also provide auxiliary services for the power grid, such as peak shaving
and frequency regulation, to improve the stability of the power system.
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The friendly interaction with the power grid can achieve efficient utilization and optimized con-
figuration of renewable energy, improve the stability and reliability of the power system, and promote
energy transformation and sustainable development [3]. Grid-friendly interaction technologies covers
the areas of demand response (DR), smart power consumption, energy internet, microgrid, electricity
market trading, and so on. These technologies can be organically integrated in a PEDF building park
to promote friendly interaction and cooperation between power users and the power grid. Under this
setting, how to effectively manage and dispatch of energy supply, as well as how to motivate users to
better participate and cooperate with the power grid, has become an urgent problem to be solved. In
order to better understand the interactive relationship between PEDF users and the power grid, this
paper mainly explores the optimal dispatch problem under various incentive mechanisms, in order
to achieve the goal of reducing power supply pressure, reducing electricity costs, and improving the
time matching of power supply and consumption. In our study, a Stackelberg game model (also called
leader-follower game model) [4] is constructed to analyze user behavior choices under various incentive
mechanisms.

1.1 Literature Review
At present, scholars have achieved a series of important achievements in PEDF technologies,

incentive mechanisms, and Stackelberg game.

a) PEDF Technologies: Recent research on PEDF technologies focuses on the optimization
of system dispatch, operation, and simulation. Reference [5] designs an optimal operation strategy
for PEDF systems that minimizes the operation and maintenance cost and uses improved chip
optimization algorithm to solve the optimization model. In [6], an optimal dispatch method of PEDF
microgrids is proposed to minimizing carbon emission and maximizing carbon trading benefit based
on the carbon emission flow theory. Reference [7] builds a simulation model for residential PEDF
building systems and tests the stability of the simulated system. However, the friendly interaction
between the PEDF system and the power grid is seldom considered in these works.

b) Incentive Mechanisms: In related research, incentive mechanisms mainly include incentive-
compatible pricing mechanism, incentive-based DR mechanism, and the combination of both mech-
anisms. The authors of [8] provide an incentive-compatible pricing mechanism for energy storage
markets which minimizes grid operation cost by integrating the storage capability of electric vehicles. In
[9], a real-time electricity pricing strategy is studied to reduce electricity consumption cost and increase
social welfare of end users. In [10], the authors design an incremental incentive mechanism for DR
where the incentives can vary according to different consumers’ marginal cost. Apart from economic
incentive mechanisms, the potential of noneconomic incentive methods, such as green certification
[11], social responsibility [12], or reputation system [13], cannot be ignored in encourage the friendly
interaction between PEDF users and the grid.

c) Stackelberg Game: The Stackelberg game model can provide a deep understanding of the
strategic behavior of different stakeholders and help design effective market mechanisms and pricing
strategies to achieve expected goals including efficiency, reliability, and sustainability of energy
systems. For example, reference [14] designs a market trading mechanism for energy retailers and
consumers to increase the overall profit of retailers, modeled by a multi-leader and multi-follower
Stackelberg game. In [15], a three-level Stackelberg game is formulated to reach a balance between
the gird, retailers, and end users in implementing the real-time pricing and real-time incentive for a
hybrid DR mechanism. Similarly, the Stackelberg game can also be utilized to describe the interaction
between the PEDF park and the grid.
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1.2 Contributions of This Paper
In this paper, we study the day-ahead optimal dispatch problem in a PEDF park system. The

grid will purchase electricity from generation entities, and is responsible for power transmission and
distribution. The PEDF park is a prosumer that relies on its own PV power generation to meet daily
energy consumption needs. When PV generation cannot meet its own energy consumption needs,
electricity will be purchased from the grid; When there is a surplus in PV generation, electricity can also
be sold to the grid. We will explore the interaction between the PEDF park and the grid by designing
multiple incentive mechanisms, including hybrid DR mechanism and reputation mechanism. The grid
makes a decision on TOU prices and incentive price, while the PEDF park adjusts its participation
in load, energy storage, and demand response based on the price information given by the grid. The
reputation mechanism, on the other hand, will affect the willingness of the PEDF park to fulfil DR
tasks and further provide more discounts for the PEDF park with good reputation. The goal of the
incentive mechanisms is to relieve the pressure of the grid by guiding the behavior of the PEDF park.

The contributions of this paper are as follows:

1. This paper studies the optimization of the day-ahead dispatch of a PEDF system. The dispatch
considers the hybrid DR model that combines the price-based DR and the incentive-based DR.
In the price-based DR, electricity selling and purchasing prices varies as time. In the incentive-
based DR, the PEDF park can acquire subsidies by reducing its electricity consumption. The
novelty of the DR model is that the incentive price also varies as time. In other words, the
PEDF park will receive a higher incentive price when reducing its consumption during peak
hours than flat or valley hours.

2. In this paper, multiple incentive mechanisms are designed to encourage the friendly interaction
of the PEDF park with the grid. In addition to economic incentives that are commonly
studied in existing works, this paper also includes the impact of noneconomic incentive. To
be more specific, the noneconomic incentive mechanisms studied in this paper mainly refers
to reputation-based discount mechanism [16]. In our settings, the PEDF park that maintains
a good reputation score can receive discount during the trading with the grid. The reputation
score can also influence the willingness of the PEDF park to fulfil DR tasks. Although this
incentive mechanism is converted economic approaches during the dispatch, we still regard
it as noneconomic ones because its implementation largely depends on the promotion of
reputation-related policies and regulations.

3. We model the interaction between the PEDF park and the grid by a Stackelberg game. The
grid is modeled as the leader that maximizes its revenue from electricity trading and providing
incentive subsidies, while also alleviating grid pressure through the objective of peak shaving.
The PEDF park is modeled as the follower that minimizes its dispatch cost, enhances load
utility, and promotes PV penetration rate based on the prices offered by the grid. Since the
model of the PEDF park is nonconvex and nonlinear, it can be rather difficult to solve the
Stackelberg game model through traditional methods. As a result, we use particle swarm
optimization (PSO) algorithm to find the optimal strategies.

The rest of this paper is arranged as follows: Section 2 introduces the PEDF park system and
incentive mechanisms studied in this paper; Section 3 constructs the Stackelberg game model that
describes the interaction between the PEDF park and the grid; Section 4 provides case analysis based
on real data; Section 5 concludes this paper.
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2 System Model and Incentive Mechanisms

This section introduces the PEDF park system and incentive mechanisms studied in this paper.

2.1 PEDF Park System
The architecture of the PEDF park system is shown in Fig. 1. The system collects solar energy

through PV panels installed on the roof or facade of the building. These PV panels not only provide
clean electricity for buildings, but also reduce reliance on traditional energy sources (e.g., the power
grid). The battery energy storage system (BESS) is integrated to store excess electricity generated by
PVs. During peak electricity demand, these energy storage devices can release electrical energy and
provide continuous and stable power supply to buildings. Various DC loads are equipped, including
flexible loads and other nonflexible loads. When there is a change in electricity demand, the system
can adjust flexible loads’ electricity consumption, achieving a balance between electricity demand and
supply. The main function of the DC distribution system is to achieve the transmission and distribution
of electrical energy, ensuring that the DC energy from PV and BESS can effectively supply the DC
loads inside the building.

Figure 1: Architecture of the PEDF park system

This paper studies the day-ahead dispatch problem of the PEDF park. We divide the day into
T time slots of equal length (for example, an hour). In this case, the tth hour can be represented by
time slot t (= 1, 2, . . . , T). According to the forecast data of PV output and load power consumption
on the dispatching day, the day ahead dispatching decides the plans for energy storage charging and
discharging, load power consumption, and electricity trading in advance for each future time slot t.

2.1.1 Battery Energy Storage System Model

The BESS is implemented to store surplus energy and discharge when the energy supply is
insufficient. The dynamics of the BESS is usually modeled as follows:

SoC (t) = SoC (t − 1) +
[
ηchEch (t) − Edch (t)

ηdch

]
1

Ebess

(1)

where SoC (t) is the state of charge (SoC) of the BESS at time t, Ech (t) and Edch (t) are the charging
and discharging energy of the BESS at time t, ηch and ηdch are the charging and discharging rates, and
Ebess is the capacity of the BESS.
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SoC is a percentage value between 0 and 1 that represents the ratio of the current amount of
electricity that a battery can provide to the amount of electricity it can provide when fully charged. In
the BESS, SoC is a very important parameter as it directly reflects the system’s energy storage capacity,
discharge capacity, and operational efficiency. When the SoC value is high, it indicates that the BESS
has more available power and can support longer discharge times or higher discharge power. When
the SoC value is low, it is necessary to consider charging the battery to ensure the normal operation
and energy storage capacity of the system.

The energy charged and discharged at time t cannot exceeds its charging and discharging
capability:

0 ≤ Ech (t) ≤ Emax
ch (2)

0 ≤ Edch (t) ≤ Emax
dch (3)

where Emax
ch and Emax

dch are the maximum amount of energy can be charged and discharged. We require
that the BESS cannot charge and discharge at the same time:

Edch (t) Edch (t) = 0 (4)

To protect the BESS, the state of charge of the BESS is recommended to fall within a proper range:

SoCmin ≤ SoC (t) ≤ SoCmax (5)

where SoCmin and SoCmax are the recommended SoC lower and upper bounds for the BESS.

2.1.2 Load Model

In general, a PEDF system only involves DC distribution and DC load devices. The DC loads
in our system include flexible loads and other nonflexible loads. Flexible loads can interact with the
power grid by participating in DR. Suppose L0 (t) is the load consumption at time t before participating
in DR. Then after participating in DR, the load consumption L(t) is calculated by:

L (t) = [1 − ρL(t)s(r, L(t − 1))] L0 (t) (6)

where ρL(t) is the predicted reduction rate of load consumption during DR, and s(r, L(t − 1)) is the
willingness for the PEDF park to fulfil its DR task, which is related to the load consumption of the
previous time slot and r ∈ [0, 1], the reputation score of the PEDF park [16].

The willingness of DR is generally related to various factors such as energy consumption
experience, price, and participation frequency. To simplify the model, we calculate s(r, L(t − 1)) as
follows:

s (r, L(t − 1)) =

⎧⎪⎪⎨
⎪⎪⎩

16b
3a2

ru(L(t − 1)), u(L(t − 1)) <
3a2

16b

1, u(L(t − 1)) ≥ 3a2

16b

(7)
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where u(·) is a load utility function, and a and b are constant coefficients. The load utility function is
defined to describe the satisfaction of electricity consumption [17]:

u (L(t)) =

⎧⎪⎪⎨
⎪⎪⎩

aL (t) − b (L(t))2 , L (t) <
a

2b
a2

4b
, otherwise

(8)

To simplify the model, we assume that r remains unchanged during the day-ahead dispatch and
only changes after one-day dispatch is completed. We can see from (7) that the willingness of fulfilling
DR tasks increases with the increase of previous load utility (energy consumption satisfaction) and
the reputation of the PEDF park.

Since nonflexible loads are also included, we have:

0 ≤ ρL(t) ≤ ρmax
L (9)

where ρmax
L ∈ [0, 1) is the maximum load reduction rate.

2.1.3 Electricity Trading Model

The power grid plays a supporting role in the system, providing energy to the PEDF system when
the park is low on power, while interacting with flexible load devices in the PEDF park. The following
energy balance should be satisfied at all time:

Ebuy (t) + Epv (t) + Edch (t) = L (t) + Ech (t) + Esell (t) (10)

where Epv(t) is the amount of energy generated by PV at time t, Ebuy (t) is the energy purchased from
the grid, and Esell (t) is the energy sold to the grid.

When PV generation is sufficient, then the PEDF park can sell surplus energy Esell (t) to the grid.
If PV generation is insufficient, the PEDF park can choose to purchase extra energy Ebuy (t) from the
grid. We require that the PEDF park cannot sell and buy electricity at the same time:

Ebuy (t) Esell (t) = 0 (11)

Considering the possibility of transaction congestion, we require that the amount of energy traded
between the PEDF park and the grid has an upper bound:

0 ≤ Ebuy (t) ≤ Emax
tx (12)

0 ≤ Esell (t) ≤ Emax
tx (13)

where Emax
tx is the maximum amount of energy allowed to be traded.

2.2 Incentive Mechanisms
In this paper, we combine two incentive mechanisms, including hybrid DR mechanism and

reputation-based discount mechanism.

2.2.1 Hybrid Demand Response

In this paper, we consider the hybrid DR model, where price-based DR model and incentive-based
DR model are both included [18].
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In price-based DR model, electricity trading prices are decided by the grid dynamically based on
the time of day. It is also called time-of-use (TOU) pricing mechanism. It can encourage the PEDF
park to reduce peak load consumption to improve grid stability. Suppose λsell (t) and λbuy (t) are the
electricity selling and purchasing prices at time t. To avoid price inflation and cashing out, the following
constraint should be satisfied:

0 < λsell (t) < λbuy (t) < � (14)

where Λ is the upper bound of electricity trading prices.

Then the electricity purchasing cost of the PEDF park during one day, denoted by Cbuy, is
calculated by:

Cbuy =
∑T

t=1
λbuy (t) Ebuy (t) (15)

Similarly, the revenue of the PEDF park acquired from selling electricity during one day, denoted
by Rsell, is calculated by:

Rsell =
∑T

t=1
λsell (t) Esell (t) (16)

In incentive-based DR model, the PEDF park can receive subsidies for reducing its load consump-
tion. Suppose μ(t) is the incentive price at time t, which is also decided by the grid based on the time
of day. Then the revenue of participating incentive-based DR, denoted by Rincentive, is calculated by:

Rincentive =
∑T

t=1
μ(t) [L0 (t) − L(t)] (17)

Moreover, the incentive price is also bounded:

0 < μ (t) < M (18)

where M is the upper bound of the incentive price.

2.2.2 Reputation-Based Discount Mechanism

Reputation mechanisms are typically used to establish trust relationships between entities in an
open environment. In the setting of interaction between PEDF park and the power grid, the reputation
of PEDF park can be seen as its previous contribution to system dispatch. The reputation also has an
influence on the willingness of fulfilling DR tasks. If the grid can bring more benefits to PEDF park
with higher reputations, PEDF park will be more inclined to maintain a good reputation. PEDF park
can enhance its reputation in many different ways, such as actively participating in grid scheduling and
DR, which can be defined and implemented by the grid in practice. Therefore, reputation mechanisms
can motivate PEDF parks to take actions that are beneficial to the power grid.

The idea of reputation-based discount mechanism in this paper derives from the discount priority
mechanism proposed by [18] that changes the electricity charging price according to users’ reputation
scores. This paper applies the discount in both electricity selling prices and electricity purchasing prices.
Different from the discount priority mechanism that applies to all users, the reputation-based discount
mechanism only applies when the reputation score of the PEDF park is sufficiently high.
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Denote the discounts for electricity purchasing and selling by dbuy(r) and dsell (r) , respectively. Then
we require that the PEDF park cannot get the discount unless its reputation score r reaches 0.8, i.e.,

dbuy(r) =
{

0, 0 ≤ r < 0.8
r − ε1, 0.8 ≤ r ≤ 1

(19)

dsell(r) =
{

0, 0 ≤ r < 0.8
r − ε2, 0.8 ≤ r ≤ 1

(20)

where ε1, ε2 ∈ (0, 0.8) are constants.

As a result, the electricity purchasing cost Cbuy and the electricity selling revenue Rsell are changed
into:

C
′
buy =

∑T

t=1

(
1 − dbuy(r)

)
λbuy (t) Ebuy (t) (21)

R
′
sell =

∑T

t=1
(1 + dsell(r)) λsell (t) Esell (t) (22)

where C ′
buy and R′

sell are the electricity purchasing cost and the electricity selling revenue after the
discounts are applied.

2.2.3 Intermediate Carbon Emission Penalty

The intermediate carbon emission penalty cost Ccarbon is related to the amount of electricity
purchased from the grid:

Ccarbon = ccarbonεcarbon

∑T

t=1
Ebuy (t) (23)

where ccarbon is the carbon emission penalty cost, and εcarbon is the coefficient of intermediate carbon
emission.

3 Stackelberg Game between the Grid and the PEDF Park

Stackelberg game model is a noncooperative game model where followers will change their
strategies according to the strategy of the leader. In this paper, we model the interaction between the
grid and the PEDF park as a Stackelberg game model. The Stackelberg game model is a two-stage
fully informative dynamic game, in which the power grid acts as the leader to make decisions first,
and the PEDF park acts as a follower to react based on the leader’s decision. This structure allows the
model to consider the decision-making order of participants and reflect the leading advantages that
the power grid may have in reality.

The grid acts as the leader who tries to maximize the revenue of selling electricity to the park,
while minimizing the cost of purchasing electricity from the park, providing DR subsidies, and the
peak load of the PEDF park. The optimization goal of the grid can be represented by:

max
x

F = max
x

{
C

′
buy − R

′
sell − Rincentive − wpeakLpeak

}
(24)

where

x = [
λbuy (t) λsell (t) μ (t)

]T

t=1
(25)

is the strategy (decision variable) of the grid.
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Peak load Lpeak is calculated as the maximum load consumption during the dispatch time interval:

Lpeak = max
1≤t≤T

L(t) (26)

and wpeak is the amplification factor of Lpeak to increase the influence of Lpeak in F .

On the contrary, the PEDF park acts as the follower who tries to minimize the cost of purchasing
electricity from the grid, and intermediate carbon emission, while maximizing the utility of electricity
consumption, the revenue of selling electricity to the grid, the DR incentive subsidy, and the penetra-
tion rate of renewable energy. The optimization goal of the PEDF park can be written as:

min
y

G = min
y

{
C

′
buy + Ccarbon − U − R

′
sell − Rincentive − wpenerationθ

}
(27)

where

y = [
ρL(t) Ech (t) Edch (t) Ebuy (t) Esell (t)

]T

t=1
(28)

is the strategy (decision variable) of the PEDF park.

The total utility of electricity consumption for the PEDF park, denoted by U , is calculated by:

U =
∑T

t=1
u (L(t)) (29)

The penetration rate of renewable energy (PV) in the PEDF park, denoted by θ , can be calcu-
lated by:

θ =
∑T

t=1 Epv(t)∑T

t=1

[
Epv (t) + Ebuy (t)

] × 100% (30)

and wpeneration is the amplification factor to increase the influence of θ in G.

Seeing the fact that u (L(t)) is nonlinear and nonconvex, and therefore the optimization problems
of the leader and the follower are also nonlinear and nonconvex. It could be rather difficult to find the
solution to the optimization problem via traditional solvers. For one thing, the nonlinearity makes the
search space for the global optimal solution huge and complex, and traditional optimization methods
are difficult to find satisfactory solutions within limited resources. For another, the nonconvexity may
lead to the algorithm falling into multiple local optima, affecting global search and slowing down
convergence speed.

Consequently, we use PSO, one of the commonly used heuristic algorithms for solving complicated
optimization problems, to find the optimal strategies for the leader and the follower in the Stackelberg
game. PSO is an optimization algorithm based on swarm intelligence, which seeks the optimal
solution by simulating the foraging behavior of bird flocks [19]. The PSO algorithm can search
for potential solutions globally through information sharing and collaboration among particles,
avoiding local optimal traps. Its speed and position update formula can be adaptively adjusted to
adapt to different nonlinear and nonconvex functions, and particles can be calculated in parallel to
improve computational efficiency, thereby finding better solutions within limited resources. PSO has
the advantages of simplicity, ease of implementation, fewer parameters, and fast convergence speed,
making it and its improved versions widely used in various optimization problems [20–22].

In this paper, we use the PySwarms Python library to implement the solvers for the leader and
the follower [23]. The PySwarms library provides a concise and intuitive API, allowing users to easily
integrate it into Stackelberg game models. Compared to other complex optimization libraries, the
code of PySwams is more concise and easier to understand, reducing the threshold for learning and
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using. PySwarms allows users to flexibly adjust various parameters of the PSO algorithm, such as
particle count, inertia weight, learning factor, etc. This helps to customize and optimize the specific
characteristics of the Stackelberg game model, therefore improving solution efficiency.

The steps for solving the Stackelberg game model are as follows:

1. Read load and PV data from files, set parameters, and initialize the leader’s optimal strategy
x∗;

2. Based on the leader’s strategy x∗, solve the follower’s strategy y∗ via PSO;
3. If the maximum iteration number is reached, then output x∗ and y∗ as the final solution;

otherwise, solve the leader’s strategy x via PSO with respect to the current follower’s strategy
y, and go back to Step 2.

4 Case Study

In this section, we demonstrate a case study to show the effectiveness of the proposed incentive
mechanisms by comparison. To simulate the PEDF park system, we use the hourly PV and load data
during a certain day tailored based on [24,25]. The PV generation Epv (t) and the original load L0 (t)
are depicted in Fig. 2. Parameters are tested by repeated experiments and the configuration is shown
in Table 1. Note that we set SoC(0) = SoC(T) = 0.5 in our simulation. Through this setting, the
stability of SoC can be maintained throughout the dispatch cycle, enabling the BESS to maintain high
charging and discharging efficiency and a longer service life throughout the entire dispatch cycle [26].

Figure 2: The PV generation Epv (t) and the original load L0 (t)

Table 1: Parameter configuration

Parameter Value Parameter Value

a 0.21 b 0.00006
ccarbon 15 USD/tCO2 ccurtail 0.2 USD/kWh

(Continued)



EE, 2024 13

Table 1 (continued)

Parameter Value Parameter Value

Ebess 1200 kWh Emax
ch 250 kWh

Emax
dch 210 kWh Emax

tx 1800 kWh
SoC(0), SoC(T) 0.5 SoCmax 0.9
SoCmin 0.1 T 24 h
wpeak 2 wpenetration 120
ε1 0.79 ε2 0.795
εemission 5.703 ×10−4 tCO2/kWh ηch 0.95
ηdch 0.9 Λ 4 USD/kWh
M 3 USD/kWh ρmax

L 0.2

Due to the nonconvexity and nonlinearity of the optimization problem, we use PSO to solve the
Stackelberg game model. Fig. 3 shows the objective changes of the leader and the follower during the
solving process. We can see that the objectives of the leader and the follower fluctuate a lot at the
beginning, and eventually converges after the 31th iteration. This also provides evidence for the fast
and strong convergence of PSO.

Figure 3: Objective changes of the leader and the follower

In the next, we will compare the dispatch results of four different cases. The incentive mechanism
settings of different cases are shown in Table 2. Among them, Case 1 with both incentive mechanisms
configured represents the dispatch strategy proposed in this paper, Cases 2 and 3 choose only one from
the two mechanisms, and Case 4 is the default case without incentive mechanism.

4.1 Effect on Load Consumption
First, we compared the load curves of the PEDF park in different cases. The results in Fig. 4 show

that under the guidance of the hybrid DR, the PEDF park in Cases 1 and 2 exhibits more flexible
energy consumption adjustment ability compared to that in Cases 3 and 4. Correspondingly, Fig. 5
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demonstrates the load utility change during the dispatch day. It can be seen that the load utility of
Case 1 from 3:00 am to 7:00 pm has an obvious decrease due to load reduction. It indicates that
although multiple incentive mechanisms help optimize the overall objective of the PEDF park, its
electricity consumption satisfaction is compromised to some extent. In addition, the peak loads and
average loads in the four cases are shown in Table 3. We observe that the hybrid DR reduces the peak
load, thereby helping relieve the pressure of the power grid. Note that the load curves of Cases 3 and
4 overlap because the load of the PEDF park remains unchanged at a constant electricity purchasing
price in both cases.

Table 2: Incentive mechanisms in different cases

Case Hybrid DR Reputation-
based
discount

λbuy (t)
(USD/kWh)

λsell (t)
(USD/kWh)

μ (t)
(USD/kWh)

r

1 √ √ Varies Varies Varies 0.9
2 √ × Varies Varies Varies 0.5
3 × √ 0.6 0.4 0 0.9
4 × × 0.6 0.4 0 0.5

Figure 4: Load curves of different cases

Intuitively, the reputation-based discount mechanism offers lower electricity purchasing prices for
the PEDF park, the load reduction rate of Case 1 could have been less than that of Case 2 in Fig. 4.
However, from Eq. (6), we know that the PEDF park with a higher reputation score is more willing
to achieve the predicted load reduction rate, which explains the slightly lower load curve of Case 1
compared to the load curve of Case 2.
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Figure 5: Load utility of different cases

Table 3: Peak load and average load between different cases

Case 1 2 3 4

Peak load (kWh) 1703.11 1722.00 1846.43 1846.43
Change rate −7.76% −6.74% 0% −
Average load (kWh) 1426.25 1478.81 1520.74 1520.74
Change rate −6.21% −2.76% 0% −

4.2 Effect on Profit and Cost
Table 4 shows the profit and cost of the grid and the PEDF park, and Fig. 6 shows the TOU and

incentive prices of different cases. As we can see from Table 4, the PEDF park in Case 1 with our
multiple incentive mechanisms achieves the greatest cost reduction rate, followed by Cases 2 and 3
with one of the two incentive mechanisms implemented. Among them, the electricity selling revenue
of Case 1 is apparently higher than that of other cases. It is because that Case 1 has the highest load
reduction rate, and the PEDF park will have more surplus PV generated electricity. Moreover, the
reputation-based discount also helps raise the electricity selling revenue, which is supported by the
revenue rise in Case 3 as well. On the other hand, the electricity purchasing costs in both Cases 1 and 2
increase compared to that of Case 4 due to the application of TOU prices. As we can see from Fig. 6a,
the TOU prices are higher than the fixed electricity purchasing price in Cases 3 and 4, and the TOU
prices of Case 1 is even higher than that of Case 2. This is because that under the reputation-based
discount mechanism, the grid needs to set up higher prices to increase its profit.
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Table 4: Profit and cost comparison between different cases (unit: USD)

Case 1 2 3 4

C ′
buy (Cbuy) 17,808.96 15,757.26 11,135.69 12,512.00

R′
sell (Rsell) 7266.20 4690.70 929.48 841.16

Rincentive 2960.03 1496.82 0 0
Ccarbon 17.15 17.51 17.84 17.84
Cost of PEDF park 7639.88 9587.26 10,224.05 11,688.69
Change rate −34.65% −17.98% −12.53% −

Figure 6: TOU and incentive prices of different cases. (a) TOU prices. (b) Incentive prices
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4.3 Effect on Sustainability
From Table 4, we can see a slight reduction on the carbon emission penalty cost in Case 1 and

Case 2, by 3.87% and 1.85%, respectively. Eq. (23) indicates that the Ccarbon is proportional to Ebuy (t).
Therefore, the reduction in the carbon emission amount and the corresponding penalty cost is caused
by the reduction of the amount of electricity purchased from the grid.

Moreover, Table 5 compares the penetration rates of renewable energy generation in different
cases. We can see that the penetration rate of renewable energy of both Cases 1 and 2 increases
compared to that of Cases 3 and 4. This indicates that our multiple incentive mechanism is also helpful
in enhancing the degree of renewable energy utilization and energy structure optimization.

Table 5: Penetration rate of renewable energy generation

Case 1 2 3 4

Penetration rate 47.15 46.63% 46.17% 46.17%
Change rate +2.12% +1.00% 0% −

5 Conclusion

In this study, we propose multiple incentive mechanisms aimed at promoting a friendly relation-
ship between building power systems integrated with PEDF and the power grid. Our focus is to develop
economic and noneconomic methods tailored to the unique characteristics of PEDF parks, taking
into account economic, environmental, and operational considerations. Through our modeling and
simulation, we demonstrate the feasibility and effectiveness of these mechanisms in optimizing energy
consumption, minimizing grid pressure, and promoting a more resilient and responsive power system.

We argue that encouraging cooperation between building PEDF parks and the power grid can
help improve the resilience of the power grid. It can also promote the intelligence of dispatch decisions,
thereby bringing more efficient energy consumption and cost savings to both PEDF building parks
and grid operators. However, the integration of multiple incentive mechanisms may pose challenges
to PEDF parks, power supply companies, and even the government, because they require careful
consideration of technological compatibility and regulatory frameworks. The adaptation of PEDF
parks to these incentive mechanisms may also involve initial costs, which may also pose obstacles to
widespread implementation.

In the future, we will continue our research into the improvement in energy storage, control
system, and DC distribution network of PEDF systems. Further study can also focus on exploring
of regulatory frameworks and policy incentives that contribute to creating a friendly environment for
promoting PEDF technologies.
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