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ABSTRACT

Accurate and reliable fault detection is essential for the safe operation of electric vehicles. Support vector data
description (SVDD) has been widely used in the field of fault detection. However, constructing the hypersphere
boundary only describes the distribution of unlabeled samples, while the distribution of faulty samples cannot be
effectively described and easily misses detecting faulty data due to the imbalance of sample distribution. Meanwhile,
selecting parameters is critical to the detection performance, and empirical parameterization is generally time-
consuming and laborious and may not result in finding the optimal parameters. Therefore, this paper proposes
a semi-supervised data-driven method based on which the SVDD algorithm is improved and achieves excellent
fault detection performance. By incorporating faulty samples into the underlying SVDD model, training deals
better with the problem of missing detection of faulty samples caused by the imbalance in the distribution of
abnormal samples, and the hypersphere boundary is modified to classify the samples more accurately. The Bayesian
Optimization NSVDD (BO-NSVDD) model was constructed to quickly and accurately optimize hyperparameter
combinations. In the experiments, electric vehicle operation data with four common fault types are used to evaluate
the performance with other five models, and the results show that the BO-NSVDD model presents superior
detection performance for each type of fault data, especially in the imperceptible early and minor faults, which has
seen very obvious advantages. Finally, the strong robustness of the proposed method is verified by adding different
intensities of noise in the dataset.
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1 Introduction

In the context of the world’s scarcity of kerosene resources and increasing environmental pollution,
the application of new energy batteries is gradually showing up in front of people’s eyes and developing
rapidly from the point of view of economic benefits, environmental protection awareness and lifestyle,
especially the development of new energy electric vehicles (EVs) is the most rapid. The lithium-ion
battery system is the key technology of new energy EVs because it has the advantages of high working
voltage, high specific energy, small volume, light mass, long cycle life, low pollution, and so on.
However, in real life, the failure mechanism generated by the battery system in a closed environment
is very complex, and overcharging, over-discharging, and electrolyte leakage of the battery can lead
to serious hazards such as battery bulging, smoke, and fire [1,2]. The external impact of the EVs,
the limitations of the production process, and the harsh factors such as high and low temperatures
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may cause short circuits and thermal runaway, and even cause battery combustion, which seriously
jeopardizes driving safety [3,4]. Therefore, in order to solve the early and minor faults of lithium-ion
batteries as early as possible and to reduce the probability of danger, it is crucial to accurately detect
faults in the battery system.

In recent years, fault detection of EVs batteries has been a very important research topic [5]. After
reviewing the research and discussions of many scholars on the fault detection aspects of lithium-ion
batteries, among the current research methods, model-based methods, knowledge-based methods, and
data-driven methods are still the more advanced methods [6–8].

The model-based methods mainly include the parameter estimation method, state estimation
method, parity space method, and structural analysis method [9]. The method is mainly based on
establishing a clear physical model of the battery system, comparing the measurable signals with the
model-generated signals to obtain the residual signals, and comparing the residual signals with the
fault thresholds to determine whether the battery system has a fault. However, due to other factors such
as the complex nonlinearity and time variability of the actual battery system, the above method is not
very feasible to accurately model the battery and is difficult to apply in practice. The knowledge-based
methods mainly rely on the empirical knowledge of the experts in the relevant fields for diagnosis and
analysis, and identify possible faults by understanding the causes of battery faults, fault characteristics,
and fault types, and by observing the battery’s operating state and performance. The shortcoming of
this method is that the level of diagnostic ability is determined by the subjectivity of the expert, and
lack of experience or insufficient learning of relevant data samples can lead to a decrease in diagnostic
accuracy [10]. The data-driven methods for fault detection do not require the development of time-
consuming and laborious physical models, nor do they rely on prior knowledge such as abundant
expert experience, and they are more applicable to a wide range of different battery systems in practice.
Data-driven methods utilize algorithms such as machine learning, information fusion, and multi-
source statistical analysis to extract the implicit feature information from the collected historical data,
characterize the normal and fault modes of system operation, and thus achieve the purpose of battery
fault detection [11–13]. Another reason why data-driven approaches are receiving more attention is
that with the rapid development and widespread use of EVs, the operational data of EVs are becoming
more and more abundant. However, once a battery system fails, it means that the battery is near the end
of its service life or its internal structure has changed, and in most cases, it will be chosen to be scrapped
rather than repaired, which means that it is very difficult to collect faulty samples and labeled samples
of the battery. Existing data-driven methods for fault detection of battery systems from the perspective
of using labeled and unlabeled samples fall into two main categories of methods: Supervised learning
and unsupervised learning methods [14].

Supervised learning trains a fault detection model with labeled data samples to detect some new
unknown data with high accuracy and interpretability. Hashemi et al. [15] optimally estimated the
parameters of the adaptive lithium-ion battery model by support vector machine (SVM) and Gaussian
process regression (GPR) algorithms in supervised machine learning, which can significantly improve
the battery fault detection accuracy. Ojo et al. [16] proposed a neural network model based on a
long-short time memory network (LSTM) combined with a stretch-forward technique to estimate the
battery temperature and detect the faults in real-time using a residual monitor. Das et al. [17] conducted
an in-depth analysis of battery state of health (SOH) estimation and prediction techniques based
on specific features such as current, voltage, time, and temperature in different supervised machine
learning algorithms. In comparison, decision tree (DT) and K nearest neighbors (KNN) have the best
performance in applying to the lithium-ion batteries for EVs with high accuracy.
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Unsupervised learning does not need to go through the process of data labeling, and only classifies
a large amount of unlabeled data by analyzing its intrinsic feature information. Xue et al. [18] utilized
the operational data stored in the cloud monitoring platform to analyze the statistical distribution
of the data for fault detection and diagnosis in the battery system. The diagnostic coefficients were
determined using the Gaussian distribution, while the K-means clustering algorithm, Z-score method,
and 3σ screening method were employed to detect and pinpoint abnormal cells. A fault diagnosis
method combining generalized dimensionless index (GDI) and local outlier factor (LOF) algorithms
proposed by Fan et al. [19] maps the dimensionless index to a two-dimensional space to represent the
pattern of voltage anomaly evolution, and then the LOF algorithm is used to locate the anomalous
evolutionary pattern and identify the battery system fault information. Guo et al. [20] proposed an
unsupervised health scoring (UHS) method for early diagnosis of battery faults, which calculates the
real-time state of each battery by extracting four types of feature sets related to battery health, dividing
these features into multiple random feature subsets and obtaining a composite health score to achieve
accurate fault identification.

Although supervised and unsupervised learning have made great progress in fault detection in
batteries, there are still shortcomings that have not been better addressed. The training and updating of
the model in supervised learning depends on a large amount of labeled data, but in practice, obtaining
a large amount of labeled data requires a certain amount of time and economic cost, and supervised
learning may be more difficult for the identification of unknown anomalies. Unsupervised learning
does not require labeling cost during model building, but the lack of labeled samples also leads to
insufficient prior information for the model, which may result in false positives and make it difficult
to distinguish normal data from early and minor faults. Support vector data description (SVDD), as
an important single-valued classification method [21,22], has been widely used in the field of fault
detection. However, the traditional SVDD, as classical unsupervised learning, is not flexible enough
to deal with outliers by focusing on describing the boundaries of normal data. Another key issue is
that the performance of the classification boundary is adjusted by the parameters of SVDD, which
requires a lot of prior knowledge to try to set the optimal parameters, but this will lead to the problem
of high cost and low efficiency of model training.

To address the above research issues, a novel semi-supervised learning approach for SVDD with
negative (NSVDD) fault detection is proposed, which uses a large number of unlabeled samples to
construct the traditional SVDD base model, and in order to avoid missing to detect the faulty samples
to achieve better classification performance, the NSVDD model is constructed by substituting negative
class samples and additional constraints. Then a small amount of labeled data is fully used to iteratively
optimize the optimal parameter combinations of Gaussian kernel parameters, positive class penalty
factors, and negative class penalty factors in the NSVDD model through the Bayesian Optimization
(BO) algorithm. An optimal hypersphere is finally obtained to achieve accurate detection of early and
minor faults in lithium-ion battery systems. Through experimental comparisons and robustness tests,
the method has a more accurate detection rate and more stable robustness. The main contributions of
this paper are summarized as follows:

1. Compared to detection methods that use only labeled or unlabeled data, the proposed semi-
supervised learning effectively utilizes the overall feature distribution of a large amount of unlabeled
data and the specific features of a small amount of labeled data, which contributes to the improvement
of the performance of fault detection while building the model at a low cost.

2. By introducing fault data to optimize and adjust the SVDD boundary, the NSVDD model
constructed can better handle the missed fault data caused by the unbalanced distribution of abnormal
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samples. The BO for the NSVDD model (BO-NSVDD) greatly improves the efficiency of finding the
optimal parameter combinations and makes the classification boundary reach the optimal effect.

3. The proposed method has high scalability and applicability. Using NSVDD in combination with
semi-supervised learning, the model can be constructed with less development cost and at the same
time can be applied to different types of datasets without the need to know the prior knowledge of
the data samples. The robustness is maintained even in the complex and harsh operating environment
of EVs.

The rest of the paper is organized as follows: The hardware structure of the battery system and the
data analysis of the collected battery data are presented in Section 2. The theory of the methodology
proposed in this paper is described in detail in Section 3. Section 4 describes all the steps involved in
the training and application of the fault detection model. Section 5 compares the experimental analysis
of the method proposed in this paper with other methods. Finally, it is summarized in Section 6.

2 Overview of the Battery System Working Principles and Data Analysis
2.1 Battery System Basic Working Principle and Fault Analysis

The object of this experiment is an electric truck of a new domestic energy company, whose battery
system first consists of 24 lithium-ion single cells in parallel to form a battery pack to increase the
output current and battery capacity. A total of 92 battery packs in series to form a battery module to
increase the operating voltage of the battery system, and a total of 2208 lithium-ion single cells first
in parallel and then in series to achieve high voltage and high capacity standards to have sufficient
output power drive the car operation. The system adopts a distributed Battery Management System
(BMS) design, and the main control unit Battery Management Unit (BMU) is connected to several
Cell Monitor Units (CMU) through the Controller Area Network (CAN) bus. There are 92 voltage
sensors, 20 temperature sensors, and 1 current sensor in the BMS to monitor and collect voltage,
temperature, and current information. The measured values of all sensors are refreshed and processed
every 30 s and then transmitted to the output device via the CAN bus.

However, under the harsh working environment as well as the limitation of the production process,
the battery will inevitably have some faults. As shown in Fig. 1, these faults also have coupling and
causality. For instance, external short circuit (ESC), internal short circuit (ISC), and overcharging
may cause abnormal battery temperatures and poor heat dissipation, resulting in excessive energy
release and abnormal chemical reactions, causing overheating. Overcharging and over-discharging
can easily result in decreased battery capacity and increased internal resistance, hastening the battery’s
aging process. Overheating of the battery system not only worsens the health of the battery but also
has a mutually reinforcing relationship with thermal runaway, triggering serious consequences such
as fires and explosions [23,24]. Different fault causes lead to different types of faults, which will
eventually have serious consequences. Moreover, lithium-ion batteries are connected in parallel, so
if a short circuit fault occurs in one battery, it will cause a short circuit in all batteries. After analysis,
the main faults are attributed to ESC, ISC, overcharge fault (ocf), and over-discharge fault (odf),
but similar fault responses occur for the four different fault types, which basically cause abnormal
changes in voltage and temperature. Among them, it should be noted that in practical engineering,
short-circuit faults caused by ESC and ISC are usually categorized into momentary short-circuit fault
(msf) and cumulative short-circuit fault (csf) according to the speed of short-circuit occurrence [25].
This experiment considers that voltage and temperature data have a certain correlation when a fault
occurs, and constructs a fault detection model based on the analysis of these two state variables.



EE, 2024, vol.121, no.9 2547

Inducement of fault Fault type Harm of fault

ESC

ISC

Overcharge fault

Over-discharge fault

high output voltage of charger,

long charging time,

bad quality of battery

high discharge current,

long discharge time,

battery inconsistency

bad contact between positive and

negative poles,

shell collision damage,

short circuit of connecting lines

internal structural failure,

chemical material aging

forming lithium dendrites

abnormal battery

temperature,

poor heat dissipation

thermal runaway

accelerated

battery aging

capacity decline,

internal resistance rise

overheating

Figure 1: Causes of different faults in the battery system and their coupling relationship

2.2 State Data Analysis
For experimental studies with data-driven models, data analysis is important. Tagade et al. [26]

argued that the state data generated by the battery system obeys a normal distribution thus developing
the study using a Gaussian process algorithm. This is very advantageous for detection algorithms
based on the assumption of normal distribution, which helps the detection results to be more
accurate. However, lithium-ion batteries are subject to complex and harsh operating conditions, where
disturbances such as external impacts and uneven heat dissipation can cause the battery voltage and
temperature data to deviate from a normal distribution, so we also need to perform simple data
analysis to explore the relationship between voltage and temperature data when operating EVs under
real conditions, as a way to determine the appropriate fault detection algorithm.

This analysis was collected to analyze the normality of the voltage and temperature data generated
from the normal operation of the EVs over one month. The normality of the joint distribution of
voltage and temperature bivariate is observed as shown in Fig. 2a. From the figure, it can be seen that
most of the data are distributed in the voltage range of 3.6∼3.8 v, and the temperature is concentrated
more in the range of 50°C∼55°C, and as shown in Figs. 2b and 2c alone from the one-dimensional
histogram of voltage and temperature that most of the distribution of the actual data does not conform
to the normal distribution. Specifically, the skewness of the voltage data distribution can be seen on
the histogram that deviates from the standard value of normal distribution, while the temperature data
is more obvious, the skewness and kurtosis deviate from the standard value of normal distribution.
This indicates that the distribution pattern of the data has obvious skewness and spikes, rather than
the typical bell curve of normal distribution.

It is subjective to determine whether the data conforms to the normal distribution by observing the
histogram, in order to ensure the persuasive nature of the data distribution, this paper also considers
the use of the Kolmogorov-Smirnov (K-S) test for further clarification. Moreover, this method is
generally applicable to the normality test for large sample sizes and is most suitable for the statistical
test method of this experiment. Through the null hypothesis that the voltage and temperature data
distribution is normal distribution, the test of the truth of the null hypothesis through a single sample
of K-S test, comparing the measured distribution and the hypothetical distribution, and the analysis
of the data yields the p-value of both to be less than the critical value of α = 0.05. Therefore, the null
hypothesis is rejected. So, there is a significant difference between the distribution of the data samples



2548 EE, 2024, vol.121, no.9

and the assumed normal distribution, which is a sufficient indication that the battery system data does
not meet the normal distribution.

(a) (b) (c)

Figure 2: Statistical histogram of battery system status data. (a) Three-dimensional probability density
plot, (b) Histogram of voltage data, (c) Histogram of temperature data

Therefore, it can be seen that the state data distribution generated by the battery system under
actual operating conditions is more complex and does not strictly conform to the Gaussian distribu-
tion, and if it is forced to be regarded as a Gaussian distribution for experiments, it is likely to lead
to inaccurate and unconvincing experimental results, which will reduce the accuracy and authority of
fault detection. Therefore, this paper uses the SVDD algorithm to build a model where the data does
not have to conform to the Gaussian distribution.

3 Theory
3.1 Support Vector Data Description

SVDD is an important data description method that enables the distinction between target and
non-target samples [21,22]. It is commonly applied in areas such as anomaly detection and fault
diagnosis. We represent the train set consisting of the acquired voltage and temperature data by the
column vector X = [x1, x2, · · · , xn]T , X ∈ Rn×d, where n is the number of samples and d is the feature
dimension, so we want to obtain a minimal hypersphere description with radius R and center a to
include all the training objects xi as much as possible. The objective function is given by Eq. (1):

F(R, a, ξi) = R2 + C
∑

i

ξi (1)

s.t. (xi − a)
T
(xi − a) ≤ R2 + ξi ∀i, ξi ≥ 0

C
∑

i

ξi in Eq. (1) is in order to allow for the possibility of outliers in the multidimensional feature

space where the distance from the individual sample xi to the center of the sphere a exceeds that of R.
The role of the penalty factor C is to take the optimal solution among the hypersphere volume and
the sample error. The slack variable ξi is used to weigh the effect of unlabeled partial sample outliers,
allowing some of the normal samples to fall outside the hypersphere.

The equation is a convex quadratic programming problem and the undetermined R has not yet
been solved. Transform the constrained optimization problem into an unconstrained optimization
problem by transforming Eq. (1) into an equivalent Lagrangian dyadic problem and introducing
Lagrange multipliers αi and βi to solve the objective function subject to the constraints of the above
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equation. Construct Primal Lagrange Problem (Minimization):

L (R, a, ξi, αi, βi) = R2 + C
∑

i

ξi −
∑

i

αi

{
R2 + ξi − (xi − a)

T
(xi − a)

} −
∑

i

βiξi (2)

where the Lagrange multipliers αi ≥ 0, βi ≥ 0. L respond to R, a and ξi minimizing and maximizing
for αi and βi. The optimization problem is solved according to the KKT condition. For convex
programming problems, the solution satisfying the KKT condition is the global optimal solution.
Setting the partial derivative to 0, the solution is obtained as:

∂L
∂R

:
∑

i

αi = 1;
∂L
∂a

: a =
∑

i

αixi∑
i

αi

=
∑

i

αixi;
∂L
∂ξi

: C − αi − βi = 0; (3)

Expanding Eq. (2) and substituting the constraints, where we denote the inner product of the
target objects xi and xj by

(
xi · xj

)
, gives the dual problem of the original equation as:

L =
∑

i, j

αiαj

(
xi·xj

) −
∑

i

αi

(
xi·xi

)
(0 ≤ αi ≤ C, i, j ∈ N) (4)

Minimizing Eq. (4) yields a set α∗ as the optimal solution:

α∗ = (α1, α2 · · ·αN) (5)

In the data description, when the data sample xi of α∗
i > 0 is called the support vector (SV),

describing its hypersphere also requires only SV. The radius R of the sphere can be obtained from the
distance from any SV on the boundary to the center a of the hypersphere. The second equation in
Eq. (3) leads to the fact that the center a of the circle of the hypersphere is a linear combination of
data samples.

R = 1
nsv

∑
s∈sv

√‖xs − a‖ (6)

a =
∑

i

α∗
i xi (7)

Due to the constraints and the KKT complementarity condition leading to the inequality
constraint, complementary slack βi · ξi = 0 can determine the location of a sample xi, as shown in
Fig. 3.

Location of a point:

Case 1: αi = 0 ⇒ Unlabeled sample

Case 2: 0 < αi < C ⇒βi > 0 ⇒ξi = 0 ⇒ Support vector

Case 3: αi = C ⇒βi = 0 ⇒ξi > 0 ⇒ Unlabeled sample (outside)

Based on the above detection model, to determine whether the test sample z is located inside the
sphere, the distance from the sample to the center of the sphere must be calculated as follows:

R2
Z = (z − a)

T
(z − a) = (z · z) − 2

∑
i

αi (z · xi) +
∑

i,j

αiαj

(
xi · xj

)
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RZ =
√

(z · z) − 2
∑

i

αi (z · xi) +
∑

i,j

αiαj

(
xi · xj

)
(8)

When RZ ≤ R, the test sample is located in the sphere, it is the normal class; otherwise, it is the
faulty class.

Boundary of SVDD 

Support vector

Unlabeled sample (outside)

Unlabeled sample

a

Figure 3: Sketch map of SVDD

3.2 Support Vector Data Description with Negative Examples
We can introduce a small number of negative samples into the train set, utilizing the information

from these negative samples to refine the hypersphere boundary [22]. This refinement aims to enhance
the model’s detection accuracy and prevent overfitting occurrences. When the negative samples within
the train set lie within the original SVDD boundary range, minimal adjustments are required for the
original boundary, with the negative samples acting as negative support vectors positioned on the
NSVDD boundary. In practical engineering applications, the selection of negative samples should
be accurate, diverse, and representative. To ensure the accuracy of the selected negative samples, it is
essential to avoid choosing similar instances. Encompassing various fault scenarios as comprehensively
as possible and adequately reflecting negative samples that depict the operational status can contribute
to improving the model’s generalization capabilities.

It is assumed that the subscripts of the detected normal samples are enumerated by i and l, and the
subscripts of the faulty samples are enumerated by m and n. The normal samples and faulty samples
are labeled as yi = +1 and yj = −1, respectively. Similar to SVDD, both the normal and fault train sets
are allowed to have errors, so penalty factors C1 and C2 for both classes of samples and slack variables
ξi and ξm are introduced. The objective function is as follows:

F (RN, a, ξi, ξm) = RN
2 + C1

∑
i

ξi + C2

∑
m

ξm (9)

s.t. ‖xi − a‖2 ≤ RN
2 + ξi, ‖xm − a‖2 ≥ RN

2 + ξm, ξi ≥ 0, ξm ≤ 0
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Introducing Lagrange multipliers αi, αl, βm and βn in Eq. (9), take the partial derivatives of L for
RN, a, ξi and ξm:∑

i

αi −
∑

m

αm = 1

a =
∑

i

αixi −
∑

m

αmxm (10)

C1 − αi − βi = 0, C2 − αm − βm = 0, ∀i, m

Bringing the above constraints back into the original equation:

L =
∑

i

αi (xi · xi) −
∑

m

αm (xm · xm) −
∑

i, l

αiαl (xi · xl) −
∑
m, n

αmαn (xm · xn) + 2
∑
m, l

αmαl (xm · xl) (11)

Now we define a new variable α
′
i = yiαi, where the subscript i denotes both the normal sample

subscript and the faulty sample subscript so that the constraint in Eq. (10) is changed:∑
i

αi −
∑

m

αm = 1 ⇒
∑

i

α
′
i = 1

a =
∑

i

αixi −
∑

m

αmxm ⇒ a =
∑

i

α
′
i xi (12)

Bringing the new constraints back into Eq. (11) so that the dual of the original optimization
problem becomes:

min
∑

i, j

α′
iα

′
j

(
xi · xj

) −
∑

i

α′
i (xi · xi) ; (i, j ∈ N) (13)

According to the dual rule, it can be deduced that the solution form of the NSVDD algorithm
and standard SVDD algorithm is the same, and it is only necessary to replace αi with α

′
i . Therefore,

when using NSVDD test samples, it is only necessary to give Lagrange multipliers a category label to
get the same solution form and result as ordinary SVDD. That is:

RZ =
√

(z · z) − 2
∑

i

yiαi (z · xi) +
∑

i, j

yiyjαiαj

(
xi · xj

)
(14)

When RZ ≤ RN, the test sample is located within the NSVDD sphere which implies it is a normal
sample; otherwise, it is a faulty sample.

The ideal NSVDD schematic is shown in Fig. 4, where the model is trained with a large number
of unlabeled samples and a small number of faulty samples, where most of the unlabeled samples are
normal samples. When the SVDD model is trained using a large number of unlabeled samples, a few
faulty samples added will make further adjustments to the boundary of SVDD (dotted green line). A
change in the hypersphere boundary means that the original SVs may change. The hypersphere makes
a minimum adjustment with the distribution of the new faulty samples, which may make some of the
SVs not to be the SVs of the new boundary, and instead of it, the faulty samples closest to the boundary
of the sphere make the negative SVs. Thus, the boundary of NSVDD (solid red line) obtains a more
accurate hypersphere boundary than the boundary of SVDD and will more accurately detect faults
misjudged by SVDD. It should be especially noted that the specific SV variation is based on the data
distribution and the results of model training.
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Boundary of SVDD 
Unlabeled sample(outside)

Fault sample

Boundary of NSVDD 

Support vector

Unlabeled sample

Negative support vector

a

NR

Figure 4: Sketch map of NSVDD

3.3 Kernel Function and Bayesian Optimization
An ideal kernel function maps the target data to a sufficiently high-dimensional feature space

to improve the expressive ability of the model. We choose the Gaussian kernel function K(xi, xj) to
transform the data to higher dimensions to make the nonlinear data differentiable. The Gaussian
kernel function has only one own parameter to be optimized and will produce tighter boundaries,
which helps to improve the accuracy of fault detection [27].

K
(
xi, xj

) = exp

(
− ∥∥xi − xj

∥∥2

s2

)
(15)

Therefore, in this experiment, the detection of the test data z is shown in Eq. (16):

Rz =
√

K (z, z) − 2
∑

i

yiαiK (z, xi) +
∑

i, j

yiyjαiαjK
(
xi, xj

)
(16)

In machine learning, adjusting parameters is a tedious but crucial task, as it largely affects the
performance of the algorithm. Manual tuning of parameters is very time-consuming, and lattices and
random searches are not labor-intensive but require long running times. Therefore, many methods for
automatic hyperparameter tuning have been born, such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), Bayesian Optimization, etc. [28]. Through comparative screening, we optimize
the hyperparameters by using Bayesian Optimization in this paper, which estimates the posterior
distribution of the objective function based on the data using Bayes’ theorem, and then selects the
combination of hyperparameters for the next sampling based on the distribution. It makes full use of
the information from the previous sampling point, and its optimization works by learning the shape
of the objective function and finding the parameters that maximize the result toward the global. It can
obtain approximate solutions of complex objective functions with a smaller number of evaluations.
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When BO is performed on the hyperparameters of the NSVDD model, we need to define the
objective function for optimization. Denoting the hyperparameters in the model as x = (s, C1, C2),
where s denotes the Gaussian kernel width parameter, a suitable s significantly improves the classifica-
tion performance. When s is small, the Gaussian kernel function tends to zero and the optimal solution

is obtained only when all objects become SV for αi = 1
N

. When s is large, the solution approximates

the original spherical solution. In the normal range, an increase in the parameter s tightens the degree
of sphericity described.

We set a total of n sets of hyperparameter combinations xn = (
sn, C1,n, C2,n

)
, assuming that a

set of hyperparameter combinations is X = (x1, x2, · · · , xn), and the objective function value of
each hyperparameter is F (x), which is the loss function we need to optimize. So hyperparameter
optimization problem is defined as:

arg min
x∈X

F (x) (17)

To achieve this goal, we need two main steps to accomplish it: The probability surrogate model
and the acquisition function [29].

The objective function and parameter space have been defined, and the optimization process
of the objective function is defined next. The tool for estimating the distribution of a function
based on a predetermined limited number of observations is the probability surrogate model. In this
paper, we use the Gaussian process (GP) as a function of the probability surrogate model used to
fit the hyperparameter and output relationship [30]. First, we make assumptions about the initial
observation point model to obtain the prior probability distribution P (F), multiply it with the
likelihood estimation distribution P(X |F) and normalize it, in which case the resulting proxy model
is the posterior probability distribution P(F |X). After the assumed model is computed, it is necessary
to maximize the acquisition function based on the probability surrogate model to select the next
evaluation point that satisfies the optimization.

The acquisition function is used to measure the impact that the observation points have on
the fitted function and to select the most suitable points to perform the next observation [31].
The acquisition function is constructed based on the posterior distribution and the Probability of
Improvement is chosen as the acquisition function for the optimization process in this paper. The
obtained hyper-parameters are substituted into the function values calculated after training in the
network and continue to update the data to re-iterate. This process continues until the combination of
parameters that maximizes the generalization ability of the model is filtered out or the computational
resources of the setup are fully used up.

4 Data Pre-Processing and Fault Detection Model Framework
4.1 Data Acquisition and Pre-Processing

The data collected in this experiment is obtained from the EVs under normal driving conditions.
The battery system of the EVs consists of ternary lithium-ion batteries with a battery voltage range of
2.75∼4.5 V and a temperature range of −20°C∼60°C. The BMS voltage and temperature acquisition
module on the EVs collects a total of 92 dimensions of voltage data and 20 dimensions of temperature
data to form the columns of a data state matrix. Therefore, the matrix has 112 columns. Each row of
the matrix consists of data values collected by the BMS, with a data recording time interval of 30 s
between rows. The computer records such data state matrices and stores them for analysis.
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However, due to the measurement error or aging damage of the sensor itself, the complexity
of the vehicle driving environment, or interference, there may be relatively uncommon outliers and
error values in the collected data, which may affect the battery modeling process, resulting in poor
model stability under dynamic conditions. The direct magnitude difference between voltage and
temperature is so large that without processing the data, the model will be given more weight in
detecting temperature data and be insensitive to voltage data. Data preprocessing is necessary for
accurate and reliable data and analytical processing to improve the effectiveness of data analysis and
modeling.

This experiment first removes outliers through the 3σ algorithm and the rate of change of each
data. Then the data Z-score is standardized and transformed into a uniform scale to improve the
comparability of the data, which facilitates the comparison and analysis of the experiment.

After data collection and pre-processing, Table 1 summarizes the train, validation, and test sets
used in this experiment, including the labels the total number of samples, and the types and number of
faulty samples. Fig. 5 shows the dimensionality reduction and visualization of the dataset. We use t-
distributed stochastic neighbor embedding (t-SNE) to reduce the high-dimensional features of the data
into a two-dimensional scatter plot showing the distribution and characteristics of normal and faulty
samples in these datasets. Where cyan points represent normal samples and orange points represent
faulty samples. It can be clearly seen that in the two-dimensional plots of the four fault datasets,
the distribution of normal data is relatively uniform and concentrated in the same area. While the
fault data distribution is more complex, msf presents a curved form with relatively wide coverage. The
occurrence of csf is an extremely slow process, and only with cumulative changes over a period of time
does it show obvious fault characteristics. Therefore, csf has a relatively large span of data compared
to normal data and exhibits a wider range of variation. The ocf and odf distributions are close to the
linear form, which is quite different from the cluster form of the normal data distribution.

Table 1: Description of the dataset

Train set Validation set Test set

Label Unlabeled Faulty label Normal label Faulty label Normal label msf csf ocf odf
2880 120 50 150 50∗4 150 150 150 150

Number 3000 200 800

Train set: A total of 3000 samples, including 2880 unlabeled samples and 120 faulty samples. The
unlabeled samples are mainly normal samples, which are used to train the fault detection model.

Validation set: A total of 50 normal samples with labels and 150 faulty samples with labels to
validate the model and adjust the optimization.

Test set: It consists of four fault datasets: msf, csf, ocf, and odf datasets. Each fault dataset consists
of 50 normal samples and 150 fault samples from labeling the fault feedback of EVs. The test set has
a total of 800 samples and is used to evaluate the trained model.
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Figure 5: Dimensionality reduction and visualization of datasets. (a) Train set, (b) Validation set, (c)
msf set, (d) csf set, (e) ocf set, (f) odf set

4.2 Fault Detection Framework
Before conducting the experiments, we need to determine the optimal combination of hyperpa-

rameters and create the optimal model for NSVDD fault detection. Combining the theoretical parts
of NSVDD and BO in Section 3, as shown in Fig. 6, the training steps of the BO-NSVDD model is as
enumerated below:

1. First divide the experimental data into a train set, validation set and test set. In order to build a
more accurate detection model, the train set consists of a large amount of unlabeled data, the validation
set consists of normal data with labels and faulty data for optimization of the model, and finally, the
experiments use the test set to judge the accuracy of the model.

2. Set the Gaussian kernel width s and the positive and negative penalty factors C1 and C2 as the
hyperparameter combinations to be optimized, and set the parameter search range and the number of
iterations.

3. Use the combination of hyperparameters to be optimized as input to the NSVDD model trained
with the train set. The detection error rate of the validation set is taken as the objective function to
obtain the minimum value of the objective function.

4. When the minimum value of the objective function is not satisfied, the model is trained by BO
iterations until the optimal parameter combination corresponding to the minimized objective function
is found or the number of iterations is exhausted. The optimal parameter combination obtained will
be tested experimentally in the NSVDD model.
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Figure 6: Fault detection model framework

4.3 Practical Application of the Proposed BO-NSVDD Method
The proposed approach is data-driven, which means that it requires only data to train the fault

detection model, does not involve the basic working principle of the battery system, and does not
require a physical model. As long as the train data is available, the train data can be continuously
learned and feature information can be mined from it to achieve accurate fault detection. The practical
application of the proposed fault detection model in a battery system is shown in Fig. 7.

1. Data acquisition and pre-processing

There are more cases of data collected from the battery system that also require manual labeling of
small amounts of data, which is combined with a large amount of unlabeled data for training. Obvious
and hidden outlier data are eliminated in the preprocessing stage and normalized.

2. Construction of fault detection model

During offline model training, a large number of unlabeled samples joined with a small number
of faulty samples are used to train the base NSVDD model. A small number of labeled samples are
combined with BO iterations to train the BO-NSVDD model to achieve optimal classification.
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3. Online applications for fault detection

The trained BO-NSVDD model can then be used in the online fault detection process and applied
to the actual equipment or system. Monitor operational data and detect faults or abnormal conditions
in real-time as done in the offline model training process. When a fault or abnormal condition is
detected, operations such as alarms or stopping work can be triggered to ensure the safe operation of
the system.

Real Battery System
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Data

Labeled 

Data

Recorded Data

Real-time Data

Offline Training

Online Application

Application      After Training

Data processing

Fault Detection Framework

Train BO-NSVDD fault 
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Figure 7: Online fault diagnosis framework

5 Experiment
5.1 Establishment of BO-NSVDD Detection Model

Before conducting the experiments, a preprocessing step is required for the acquired data. The data
preprocessing steps were performed in Python 3.8.5 and Pandas 1.1.5, and the training and testing
of the fault detection model were run in MATLAB 2020b. Using the processed, experimental data
containing normal and faulty samples, the model is built according to the fault detection framework in
Fig. 6, and the validation set data is used for the BO method for automatic adjustment of parameters.
The selection of BO as the parameter optimization algorithm is filtered by experimental comparison.
The experiments were conducted by comparing three different optimization algorithms for iterative
optimization of the hyperparameter combinations of the model, and the same parameter search
range, number of seeds, and number of iterations were selected to ensure the consistency of the
parameter settings. The experiments of the three optimization algorithms optimized hyperparameter
combinations for the test set were repeated 10 times to take the average accuracy and average running
time. As shown in Table 2, BO is slightly ahead of PSO and GA in terms of average accuracy, but far
ahead in terms of average running time. However, it should be noted that the applicability of the results
may be limited due to the specific parameter settings and dataset used in the experiment. Therefore,
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while BO shows better performance in this experiment, its performance in other contexts still needs
to be evaluated with caution.

Table 2: Experimental results of three optimization algorithms

Optimization algorithm Average accuracy (%) Average running time (s)

BO 96.50 ± 0.47 332.082 ± 29.441
PSO 96.15 ± 0.42 3973.278 ± 619.145
GA 96.28 ± 0.51 4151.093 ± 305.111

Fig. 8 shows the BO minimum target value vs. the number of iterations when testing the csf fault
set. In this experiment, a total of 60 iterations are set, and the BO determines the best feasible point by
minimizing the absolute value of the difference between the observed target value and the estimated
target value. By empirically setting the search range of hyper-parameter combinations, modeling the
model according to its prior distribution, and continuously updating the posterior distribution of
model parameters using the existing train data. According to the optimization results, the a priori
distribution is updated, and continuously narrowing the parameter search space to find the next
feasible point as a way of searching for the optimal parameter combinations. Finally, the observed
target value at the 10th iteration is equal to the estimated target value, and the best feasible point
observed at this time is the hyperparameter combination with the best final result. Taking this figure
to test csf as an example, the final hyperparameter combination (s, C1, C2) = (0.71, 0.1121, 0.0167) is
obtained.

Figure 8: Bayesian optimization of minimum objective value and iteration number process

5.2 Experimental Test Results and Comparisons
Meanwhile, this experiment establishes another five detection models to compare the detection

results with the model proposed in this paper, namely BO-SVDD, SVDD, Kernel Principal Com-
ponents Analysis (KPCA), Principal Components Analysis (PCA), and Deep Autoencoder (DAE).
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PCA is a linear data dimensionality reduction technique commonly used in industrial system fault
detection to determine the presence of abnormal conditions by comparing the principal components
of the current data with the normal data state. However, it can generally only handle data with linear
relationships and is less practical in data with nonlinear relationships. KPCA is precisely the PCA
method for nonlinear data processing, with better data separability and more flexible usage. DAE is a
classical unsupervised learning model. In fault detection, DAE recognizes anomalies by reconstructing
the input data and observing the reconstruction error. It is also worth noting that the establishment
of the SVDD model does not require the data to obey Gaussian distribution, and the deep structure of
the DAE makes it perform better in learning complex data, but the SPE statistics of PCA and KPCA
require the data to obey Gaussian distribution. The five comparison models are also implemented in
MATLAB 2020b and use the same train and test sets to minimize the accuracy problems caused by
data differences. This experiment detects four typical fault categories that are common in real EVs
driving: msf, csf, ocf and odf. For each type of fault dataset, the first 50 samples are normal samples.
Starting from the 51st sample, the subsequent 150 samples are fault samples. Fig. 9 shows the detection
results of six models for various types of faults. In BO-NSVDD, BO-SVDD, and SVDD, the radius of
the sphere is used as the boundary for fault detection, which is marked with a red line in the detection
plot. Samples within the radius are classified as normal and those beyond the radius are classified
as faults. In the experiments with KPCA and PCA, appropriate SPE control limits are set, while for
DAE experiments, suitable reconstruction errors are chosen as the respective fault thresholds. Again,
the fault thresholds are represented by red lines to distinguish between normal and faulty samples.

Fig. 9I shows the results of six models for msf detection. The msf is generally an instantaneous
short-circuit fault, usually caused by damage to circuit components or external disturbances. This
type of fault may lead to a sudden surge in current, resulting in an instantaneous drop in voltage and
instability. Components in the circuit are subjected to momentary high current and low voltage, which
may cause component damage or burnout, causing a brief high-temperature phenomenon. Therefore,
this type of fault occurs when the collected temperature and voltage data vary significantly relative to
the normal data. So, each model can accurately detect the occurrence of a fault at the 51st sample, and
all have significantly accurate detection for that fault.

However, we know that detecting exceptionally obvious faults does not indicate the superior
performance of the model, and the performance of the detection model can only be revealed if some
early and minor faults can be detected more quickly and accurately. The csf is exactly the most
important fault in this experiment to identify the performance index of the model.

The results of the six models for csf detection are shown in Fig. 9II. Unlike msf, csf refers to the
short-circuit phenomenon in a circuit that changes cumulatively over a period of time. The current and
voltage in the circuit may change, but the magnitude and speed of the changes are relatively slow, unlike
the msf phenomenon which has more pronounced changes. Since the occurrence of cumulative short-
circuit faults is a gradual process that is not easily detected in time, this type of fault is the best indicator
of the fault detection model. Fig. 9IIa shows the results of csf detection by the BO-NSVDD model.
The detection results fluctuate between normal and faulty in the 50th–75th samples, and basically, the
occurrence of the fault is detected steadily from the 76th sample, which is faster and earlier than other
models. As shown in Fig. 9IIb, BO-SVDD can start to detect the occurrence of faults steadily from the
96th sample, and some of the early and minor faults before that are not detected accurately. Figs. 9IIc
and 9IIf show that both SVDD and DAE can start detecting faults at the 111th sample. In contrast,
Figs. 9IId and 9IIe show that KPCA and PCA have worse detection capability, detecting faults only
when the fault data is sufficiently obvious and having lower detection performance for csf.
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Figure 9: (I) The msf fault detection results of six models: (a) BO-NSVDD detection result, (b) BO-
SVDD detection result, (c) SVDD detection result, (d) KPCA detection result, (e) PCA detection
result, (f) DAE detection result. (II) The csf fault detection results of six models: (a) BO-NSVDD
detection result, (b) BO-SVDD detection result, (c) SVDD detection result, (d) KPCA detection result,
(e) PCA detection result, (f) DAE detection result. (III) The ocf fault detection results of six models: (a)
BO-NSVDD detection result, (b) BO-SVDD detection result, (c) SVDD detection result, (d) KPCA
detection result, (e) PCA detection result, (f) DAE detection result. (IV) The odf fault detection results
of six models: (a) BO-NSVDD detection result, (b) BO-SVDD detection result, (c) SVDD detection
result, (d) KPCA detection result, (e) PCA detection result, (f) DAE detection result

Figs. 9III and 9IV show the results of the six models for ocf and odf detection. The detection
results of all six models for ocf and odf are relatively good. When overcharge and over-discharge
faults occur, the internal chemical reaction of the battery will lead to abnormal changes in battery
temperature, voltage, and current, and the longer the duration, the more serious the battery may
appear. The three models of BO-NSVDD, BO-SVDD, and SVDD can detect faults earlier and more
accurately almost as soon as they occur, with higher fault detection accuracy. The KPCA, PCA,
and DAE models, on the other hand, have relatively poor detection results and are more delayed in
detecting the moment of fault.

To further illustrate the visual results of the model comparison, this research illustrates the model
detection results by plotting the confusion matrix (as shown in Table 3) and using it to create statistical
histograms. The confusion matrix is a tool used to evaluate the performance of classification models
by comparing the predicted results of the models with the real results to calculate various classification
metrics. In this paper, accuracy (ACC) and Area under Curve (AUC) are used to judge and compare
the accuracy and classification performance of the six classification models [32].
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Table 3: Confusion matrix for classification results

Real classification Output result

Normal classification Abnormal classification

Normal True positive rate (TPR) False negative rate (FNR)
Abnormal False positive rate (FPR) True negative rate (TNR)

Where, ACC is the accuracy of the classification model, i.e., the ratio of the number of correctly
classified samples to the total number of samples. AUC is the area under the Receiver Operating
Characteristic Curve (ROC) trapezoidal curve plotted with FPR as the horizontal axis and TPR
as the vertical axis, which is used to measure the performance of the classification model. The
larger the value of AUC, the better the performance of the classification model, and the better the
balance point between the TPR and FPR of the model. The importance of selecting ACC and AUC
as model performance metrics in this experiment is that their combined use can help us evaluate
the classification performance of the model for different classes of samples. ACC can measure the
classification effectiveness of the model for the overall sample, unlike ACC. AUC, on the other hand,
measures the model’s ability to distinguish between positive and negative samples, which can avoid
the effect of sample imbalance. Therefore, in the case of sample imbalance, AUC can better reflect
the classification effect of the model. Therefore, the combination of the two can provide a more
comprehensive assessment of the classification performance of the model and thus better guide the
optimization and selection of the model. ACC and AUC calculation formulas are shown in Eqs. (18)
and (19), respectively, where P is the number of positive samples, N is the number of negative samples
and ranki denotes the ordinal number that ranks the probability of predicting a positive sample from
smallest to largest.

ACC = TP + TN
TP + TN + FP + FN

(18)

AUC =
∑

i∈positiveClass ranki − P (1 + P)

2
P × N

(19)

As shown in Fig. 10, this histogram puts together the ACC and AUC of the six classification
models for the four fault datasets, which gives a more intuitive view of the detection effectiveness of
each model for the same fault. For csf, the PCA and KPCA models have almost the same detection
effect while SVDD, although more accurate than these two models, is inferior to DAE and BO-SVDD.
BO-NSVDD, on the other hand, is in the absolute leading position in terms of accuracy in processing
csf. For msf, ocf and odf, BO-NSVDD has also been having an excellent detection effect.

In addition, as shown in the AUC detection histogram, the AUC values for all models are at a
high level for all three fault detection except csf detection, and even several models have an AUC value
of 1 for the fault data set, although their corresponding ACC do not reach 100%. This is because the
model does a better job of distinguishing between positive and negative samples in the case of sample
imbalance. AUC is evaluated probabilistically based on the distance between positive and negative
samples at different thresholds, which only considers the ranking relationship between positive and
negative samples, while ACC is based on the exact fault threshold, and improper thresholding will
lead to a decrease in ACC. For the detection results of csf, the AUC values of PCA and KPCA are
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higher than those of SVDD, DAE and BO-SVDD, but the AUC values of BO-NSVDD are also in a
clear lead. Overall, the ACC and AUC values of the BO-NSVDD model are at a very high level and
significantly better than the other five models for all four fault datasets.

Figure 10: ACC and AUC performance indicators of PCA, KPCA, DAE, SVDD, BO-SVDD and
BO-NSVDD on four fault data sets. (a) ACC result, (b) AUC result

5.3 Robustness Experiments
During the actual operation of EVs, which is often accompanied by the disturbing influence of

various harsh conditions, the state data collected by the BMS is easily disturbed, and some residual
and abnormal values are eliminated when the data pre-processing step is carried out. In addition,
measurement errors caused by noise interference such as battery system vibration collision, weak
noise, and strong magnetic environment are also unavoidable in normal driving. In order to verify the
effectiveness and accuracy of the proposed method, this research also needs to conduct robustness
experimental tests on the proposed model. According to QC/T 897-2011 and GB/T 38661-2020
in the “Technical Conditions for Battery Management Systems for Electric Vehicles”, the voltage
measurement error of the lithium-ion battery pack should not be higher than 0.5% of the full range.
Therefore, we integrated the four fault-type datasets performed in the experiments into one dataset
and added 60–80 dB of Gaussian white noise from strong to weak to measure the robustness of the
models under different noise level disturbances. The results are shown in Fig. 11 for the experimental
comparison of the robustness of the ACC and AUC performance metrics for the PCA, KPCA, DAE,
SVDD, BO-SVDD, and BO-NSVDD models.

In noisy datasets, the boundary between normal and faulty samples may be more blurred due
to the presence of noise interference, making it more difficult to distinguish them. In the 60∼80 dB
signal-to-noise ratio interval in this experiment, the accuracy of DAE, SVDD, BO-SVDD, and BO-
NSVDD models is significantly ahead of PCA and KPCA. Among them, in 60∼72 dB, the difference
in detection accuracy of DAE, SVDD, BO-SVDD, and BO-NSVDD models is very slight, but in
72∼80 dB noise, the accuracy of the BO-NSVDD model increases and leads the other models. It
shows that the model is more resistant to noisy data and can classify more accurately and maintain a
higher accuracy.
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Figure 11: Experimental comparison of the robustness of ACC and AUC performance indicators for
PCA, KPCA, DAE, SVDD, BO-SVDD and BO-NSVDD. (a) ACC result, (b) AUC result

In addition, as shown in Fig. 11b, the AUC values of the six models under the influence of noise are
compared, except for the AUC value of the PCA model, which is less stable and varies widely, indicating
that PCA is more susceptible to noise and interference in the data and less robust. The AUC values of
the other five models have been in a stable amplitude range, and the stable AUC values indicate that
the performance of the model is consistent across different data sets, i.e., the model has a more stable
prediction ability for different samples. This indicates that the model has a good generalization ability
and can cope with unseen data better. Therefore, all five models except PCA are robust to noise and
disturbances in the data and are not easily affected by outliers or noisy data. Especially in comparison,
the BO-NSVDD model has the highest AUC value under different noise levels, and the accuracy and
robustness of the BO-NSVDD model proposed in this experiment have a good precision in the overall
comparison, which is of strong significance for practical applications.

6 Conclusion

In this paper, a data-driven method based on semi-supervised learning combined with the NSVDD
method is proposed for the problem of fault detection in the safe and reliable operation of lithium-ion
battery EVs, which can accurately and quickly detect the early and minor faults in the fault detection
of the battery system. The method firstly preprocesses the collected voltage and temperature data, and
then nonlinearly maps a large number of unlabeled samples and a small number of faulty samples into
a high-dimensional space. In order to solve the problem of missed detection caused by the unbalanced
distribution of abnormal samples, the faulty samples are incorporated into the basic SVDD model
training, which aims at better modifying the hypersphere boundary, avoiding the missed detection
of faulty samples and preventing the occurrence of overfitting phenomenon. Then a small amount
of labeled data is fully utilized for BO, which greatly improves the efficiency of finding the optimal
parameters. In the experiments, four datasets of common fault types of EVs are used for validation
and comparison with other five fault detection models, and the experimental results show that the
detection performance of the method proposed in this paper maintains a high level in the four types
of fault data, especially in the early and imperceptible minor faults, and the detection accuracy also
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has a significant advantage. In addition, robustness experiments are also conducted on six models,
and the ACC and AUC values are evaluated as model performance indicators, and the experimental
results verify that the method proposed in this paper has strong robustness and generalizability.

In future work, there is a need to explore in depth how to extend the NSVDD theorem to some
other improved SVDD methods. The fault isolation function of the SVDD model also needs to be
further developed so that the method can accurately and quickly locate the fault that occurs when
it has outstanding detection performance, not only to improve the safety of EVs driving but also to
facilitate the subsequent maintenance work.
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