
This work is licensed under a Creative Commons Attribution 4.0 International
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/ee.2024.050342

ARTICLE

Adaptive Predefined-Time Backstepping Control for Grid Connected
Photovoltaic Inverter

Jiarui Zhang1, Dan Liu2,*, Kan Cao2, Ping Xiong2, Xiaotong Ji3, Yanze Xu1 and Yunfei Mu1

1Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin, 300072, China
2State Grid Hubei Electric Power Research Institute, Wuhan, 430077, China
3State Grid Hubei Electric Power Co., Ltd., Wuhan, 430077, China
*Corresponding Author: Dan Liu. Email: dannyliu66@hotmail.com

Received: 03 February 2024 Accepted: 10 April 2024 Published: 19 July 2024

ABSTRACT

The system performance of grid-connected photovoltaic (PV) has a serious impact on the grid stability. To improve
the control performance and shorten the convergence time, a predefined-time controller based on backstepping
technology and dynamic surface control is formulated for the inverter in the grid-connected photovoltaic. The
time-varying tuning functions are introduced into state-tracking errors to realize the predefined-time control
effect. To address the “computational explosion problem” in the design process of backstepping control, dynamic
surface control is adopted to avoid the analytical calculations of virtual control. The disturbances of the PV system
are estimated and compensated by adaptive laws. The control parameters are chosen and the global stability of
the closed-loop is ensured by Lyapunov conditions. Simulation results confirm the effectiveness of the proposed
controller and ensure the predefined time control in the photovoltaic inverter.
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1 Introduction

As economic development accelerates, the demand for energy transformation continues to rise due
to the increasing consumptions of fossil fuels [1]. In comparison to traditional fossil fuels, renewable
energy offers the benefits of widespread distribution, diverse sources and reduced environmental
pollution [2]. Consequently, the grid-connection rate for renewable energy is on the rise within
the energy sector [3]. Furthermore, the rapid development of power electronics technology has
significantly enhanced access to the deployment of renewable energy [4]. Recently, as a sustainable
and clean energy source, photovoltaics has attracted more attention and investments in many countries
[5–7]. Grid-connected inverters receive important research value in photovoltaic powers and renewable
energy fields [8–10].

Large-scale grid-connection of photovoltaic strives for new requirements in system stability and
convergence [11]. Currently, kinds of control methods have been explored in engineering practices
[12–14]. In the field of microgrid control, finite-time control algorithms have been developed to track
reference commands within a finite time [15–17]. In the islanded systems, the smooth power control
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for PV inverters has been designed using an adaptive finite-time sliding mode technique, ensuring
finite-time stability and convergence of the tracking errors [18]. Reference [19] proposes a continuous
sliding mode control within finite time for grid-connected photovoltaic arrays, addressing modeling
uncertainties arising from variations in converter parameters, system frequency and exogenous factors.
To mitigate power chattering in the photovoltaic inverter of the master-slave island microgrid system,
the adaptive sliding mode backstepping control has been studied, which can ensure the finite-time
stability, favorable robustness performance and shortened convergence time of system states [20].
Finite-time control can ensure the finite time tracking of the system’s solution, while the upper bound
of the convergence time is influenced by the system’s initial state.

Subsequently, a fixed-time control algorithm is investigated, which can ensure the convergence of
tracking errors in a fixed time range. The convergence speed of fixed-time control is further enhanced
and the convergence time is independent of the system’s initial conditions [21]. However, the upper
bound of the convergence time cannot be explicitly determined by the control parameters [21–23].
Regarding the issue of the system level frequency deviation by the power output randomness and
PV generation, the control of bus overvoltage and power output is accomplished, ensuring the fixed
time response in the battery energy storage systems [24]. Considering the intermittent power from
renewable energy sources and frequent load fluctuations affecting the microgrid cluster, a two-layer
two-level control is developed to enhance the dynamic performance of the microgrids within a fixed
time [25]. Recently, deep researches on predefined time control algorithms have appeared [26,27].

Predefined time control is proposed while the upper limit of the stable time function can be
determined by selecting system parameters appropriately. In [28], the secondary controller with a
predefined time is formulated for the direct current (DC) microgrid, facilitating voltage regulation
and current sharing among different distributed generators within a specified time. The predefined
time control algorithm can provide a preset convergence time, which can be determined explicitly by
the controller gains in advance [29]. The harmonics in photovoltaics have serious effects on the grid,
therefore the rapid convergence of the voltage/current in photovoltaic inverters is important. Table 1
shows the comparison results of different control methods. Compared with finite time control and
fixed-time control, the maximum limit of the convergence time in a predefined time control can make
the theoretical value of the convergence time a simple and adjustable parameter.

Table 1: Comparison results of control methods

Control methods Merits Drawbacks

Backstepping finite time sliding
mode control [19]

Less settling time, overshoot,
oscillating response

Convergence time cannot
be calculated

Fixed-time backstepping
control [30]

Enhanced dynamic
performance within a fixed
time, regardless of initial
operating values

Convergence time cannot
be adjusted

Proposed control Enhanced robustness and
stability of the system, shorten
convergence time within a
predefined time, effective
estimation of the upper limit of
convergence time

Convergence time is
dependent on initial states
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Based on the aforementioned research, a predefined-time backstepping control is studied for the
grid-connected photovoltaic inverters. The main contributions of the paper lie in:

1. A predefined time backstepping control based on initial states is proposed for the three-phase
grid-connected photovoltaic inverter. The proposed control scheme ensures that the output states can
convergent into a small region around the origins in a predefined time.

2. Compared to semi-global stability in [12–14], the control algorithm adopts the Lyapunov
condition to ensure global closed-loop stability, realizes DC voltage tracking and unit power factor
grid-connection within the predefined time.

3. In comparison with the finite-time control and fixed-time control, the proposed predefined-
time control can effectively improve the convergence speed of the PV system and achieve an accurate
estimation of the upper limit of convergence time.

The remainder of the paper is outlined as follows. Section 2 describes the topology architecture of
the PV system, the mathematical model of the inverter and time-varying functions. Section 3 devises a
predefined-time control based on backstepping and adaptive control. In Section 4, the global closed-
loop stability analysis and the choices of the controller gains are present. Section 5 carries on the
simulation experiments and analyses. Section 6 summarizes the paper.

2 Problem Statements

The control objective of grid-connected inverters is to maintain the stability of the DC side
voltage and achieve unit power factor grid-connection. Inverters are susceptible to device aging,
thermal effects, grid voltage uncertainty and external disturbances. Therefore, the control of grid-
connected inverter should meet grid-connection requirements and exhibit robustness, while providing
the improved system stability and convergence speed. A three-phase voltage source inverter (VSI)
is modeled in a single-stage non-isolated grid-connected topology and a predefined-time control is
formulated.

2.1 Dynamic Model of VSI
As shown in Fig. 1, the topology structure diagram of a three-phase photovoltaic grid-connected

inverter is stated, where Cdc is the DC side capacitor of the inverter, upv is the output voltage of the PV
array and idc is the output current. By applying Kirchhoff’s voltage law, the three-phase voltage and
three-phase current satisfy [31]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L
dia

dt
= −Ria − ea + udc

3
(2ka − kb − kc)

L
dib

dt
= −Rib − eb + udc

3
(−ka + 2kb − kc)

L
dic

dt
= −Ric − ec + udc

3
(−ka − kb + 2kc)

(1)

Eq. (1) provides the relationship of current and voltage in the three-phase grid-connected system,
where ea, eb, ec are the alternating current (AC) voltages of the PV system, ia, ib, ic are the AC currents
of the PV system, ka, kb, kc are the input switch signals, L is the inductance, R is the resistance and udc

is the DC voltage of the inverter. Transforming the system (1) from the ABC coordinate into the DQ
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coordinate, yields⎧⎪⎪⎪⎨
⎪⎪⎪⎩

did

dt
= −R

L
id − ed

L
+ ωiq + ud

L

diq

dt
= −R

L
iq − eq

L
− ωid + uq

L

(2)

with ud = udckd and uq = udckq, kd and kq are the switch signals, id and iq are the grid side currents in
the DQ-axis, ed, eq are the grid side voltages in the DQ-axis and ω is the angular frequency of the PV
system.

Figure 1: Topological structure diagram of three-phase PV grid-connected inverter

Basen on the Kirchhoff’s current law, the voltage udc of the capacitor Cdc is obtained as

Cdc

dudc

dt
= idc − iL (3)

where iL represents the input current of VSI , idc represents the output current of the PV array, p is the
active power and q is the reactive power. p and q are oriented using the vector of the grid voltage in
the DQ coordinate system, ed = |E|, eq = 0. Here |E| is the amplitude of the grid phase voltage and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p = 3
2

(
edid + eqiq

)

q = 3
2

(
ediq − eqid

) (4)

After ignoring the fluctuation of |E|, ed is maintained as a constant, the active power p and reactive
power q are proportional to the output current id and iq, respectively. Therefore, ignoring the losses of
VSI , the DC side voltage udc of VSI can be controlled by id, one has

idcudc = p = 3edid

2
(5)
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By invoking Eqs. (3) and (5), we can obtain

dudc

dt
= 1

Cdc

Å3edid

2udc

− iL

ã
(6)

Define the reference signal of voltage udc as udc0, and the reference signal of currents id, iq as id0, iq0.
The resulting system model for VSI is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= 3ed (x2 + id0)

2Cdc (x1 + udc0)
− iL

Cdc

+ d1

dx2

dt
= ud

L
− R

L
(x2 + id0) + ω

(
x3 + iq0

) − ed

L
+ d2

dx3

dt
= uq

L
− R

L

(
x3 + iq0

) − ω (x2 + id0) − eq

L
+ d3

(7)

where the system state variables are chosen as x1 = udc − udc0, x2 = id − id0 and x3 = iq − iq0, the control
inputs are ud and uq. Note that d1, d2 and d3 represent the unknown external disturbances of the PV
system.

2.2 Preliminaries
For all headings, please capitalize the first character of each word except prepositions, and

conjunctions.

The control object is to formulate the predefined time control laws ud and uq, then the DC voltage
udc can be regulated to track the reference signal udc0 at the D-axis, while the AC current iq of the Q-axis
can track the reference signal iq0. Especially, the tracking errors are stable and can be ensured to remain
bounded in a predefined time T1.

Lemma 1 [32]. For an n-order system ẋ = f (x, t, T) and a constant δ ∈ R
+, the solution of x is

globally predefined-time stable if ∀x0 ∈ R
n and x (x0, t, T) = 0n hold in t ≥ T . The solution of x satisfies

globally predefined-time boundedness if ∀x0 ∈ R
n and ‖x (x0, t, T)‖ ≤ δ hold when t ≥ T . The constant

parameter T represents the upper boundedness of the system stability time.

Lemma 2 [33]. For ∀γ > 0 and e ∈ R, the inequality γ > |e| − e · sg (e, γ ) ≥ 0 holds, where
sg (e, γ ) = e/

√
e2 + γ 2.

The following assumptions hold for the VSI system (7).

Assumption 1 [34]. The unknown external disturbances d1, d2 and d3 are bounded and continuous.
That is, there exist positive constants D1 ∈ R

+, D2 ∈ R
+, D3 ∈ R

+, such that the inequalities |d1 (t)| ≤
D1, |d2 (t)| ≤ D2 and |d3 (t)| ≤ D3 hold when t ≥ 0.

Assumption 2. The gain functions in inverter dynamics (7) are uniformly continuous satisfying
3ed/(2Cdc (x1 + udc0)) ≥ G1 ≥ 0 and 1/L ≥ G2 ≥ 0, with G1, G2 ∈ R

+ are known constants.

Assumption 3. Other functions in inverter dynamics (7) and their first time-derivatives are
uniformly continuous.

Remark 1. Due to the randomness of photovoltaic power generation, the uncertainty of bus volt-
age, the aging problems and thermal effects in the inverter, disturbances terms should be considered.
In practical systems, disturbances are usually subjected to various physical limitations, such as power
supply stability, circuit design and the effects of filters. These factors result in the limited magnitude
of disturbances within a certain range, making the disturbances bounded. Therefore, Assumption 1



2070 EE, 2024, vol.121, no.8

holds. Assumptions 2 and 3 are reasonable as active power p and reactive power q are controlled and
distributed, while the grid voltage can be stabilized and considered as a constant value.

2.3 Time-Varying Function
For all headings, please capitalize the first character of each word except prepositions, and

conjunctions.

The predefined time constant is introduced directly in the predefined-time control, allowing for
the adjustment of different predefined times by choosing the value of the time constant in advance.
The time-varying function ρ (t) is adopted to achieve the predefined-time tracking of the D-axis, which
satisfies the following conditions.

Condition 1. Time-varying function ρ (t), the first derivative ρ̇ (t) and the second derivative ρ̈ (t)
are bounded on t ≥ 0.

Condition 2. Time-varying function ρ (t), the first derivative ρ̇ (t) and the second derivative ρ̈ (t)
are continuous on t ≥ 0.

Condition 3. ρ (t) = 0 always holds when t ≥ T1.

Condition 4. The initial values ρ (0) and ρ̇ (0) fulfill

ρ (0) = m = x1 (0)

ρ̇ (0) = h = 3ed (x2 (0) + id0)

2Cdc (x1 (0) + udc0)
− iL

Cdc

+ d1 (0)
(8)

where m and h are parameters related to the initial conditions, d1 (0) = 0 is the initial disturbance.
Apparently, there are different candidates for the time-varying function ρ (t). A viable option ρ (t) is
the quadruple polynomial form [35]

ρ (t) =
⎧⎪⎨
⎪⎩

−
Ç

3m
T 4

1

+ h
T 3

1

å
t4 +

Ç
8m
T 3

1

+ 3h
T 2

1

å
t3 −

Ç
6m
T 2

1

+ 3h
T1

å
t2 + ht + m, t < T1

0, t ≥ T1

(9)

For the 1-order system of the Q-axis, the time-varying function υ (t) fulfills the following
conditions.

Condition 5. υ (t) and υ̇ (t) are bounded on t ≥ 0.

Condition 6. υ (t) and υ̇ (t) are continuous on t ≥ 0.

Condition 7. υ (t) = 0 always holds when t ≥ T1.

Condition 8. The initial value υ (0) satisfies

υ (0) = l = x3 (0) (10)

and l is a parameter determined by the initial conditions.

υ (t) is chosen as

υ (t) = −
⎧⎪⎨
⎪⎩

3l
T 4

1

t4 + 8l
T 3

1

t3 − 6l
T 2

1

t2 + l, t < T1

0, t ≥ T1

(11)

Remark 2. Time-varying functions are used to achieve the desired tracking performance with a
stable time-upper limit. The controller design ensures that the output tracking errors of the system
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can track the desired trajectory. The upper limit of the system’s convergence time can be adjusted by
determining the time constant T1 in the time-varying function.

3 Adaptive Predefined-Time Backstepping Control

The adaptive control is formulated to estimate and compensate for the disturbances in inverter
model (7). The time-varying function ρ (t) of the D-axis and the time-varying function υ (t) of the Q-
axis are introduced in the definitions of the tracking errors. Based on the framework of backstepping
control, the controllers ud and uq for the PV grid-connected inverter are designed. By presetting the
upper limit of the convergence time, the closed-loop system achieves the global stability within the
predefined time. For the D-axis system, a control law ud is designed to satisfy condition |x1| ≤ ε at
t ≥ T1, where ε represents a small neighborhood of the origin. For the Q-axis, a control law uq is
designed to satisfy condition |x3| ≤ ε at t ≥ T1.

Fig. 2 states the signal diagram of the closed-loop system. Adaptive control laws are introduced
to estimate and compensate for the upper limit Di of the external disturbances di (i = 1, 2, 3), while the
estimated values are denoted as �Di. Defining the parameter estimation errors as D̃i = Di − �Di. The
adaptive control law is designed as

�̇Di = rieisg (ei, γi) − σi
�Di (12)

where ri > 0, γi > 0, σi > 0 are adaptive constants.

Figure 2: Signal diagram of the closed-loop system

The state tracking error is designed

e1 = x1 − ρ (t) (13)

where ρ (t) is the time-varying function of the D-axis.

The first-time derivative of e1 is

ė1 = 3ed (x2 + id0)

2Cdc (x1 + udc0)
− iL

Cdc

+ d1 − ρ̇ (t) (14)

The virtual control law α2 is defined as

α2 = −id0 + 2Cdc (e1 + udc0)

3ed

ï
−k1e1 + iL

Cdc

− �D1sg (e1, γ1) + ρ̇ (t)
ò

(15)
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where k1, γ1 are positive parameters and sg (e1, γ1) = e1/
√

e2
1 + γ 2

1 .

Substituting the virtual controller (15) into Eq. (14) yields

ė1 = −k1e1 + 3ed

2Cdc (x1 + udc0)
(e2 + β) + d1 − �D1sg (e1, γ1) (16)

Choose a Lyapunov function candidate V1 as

V1 = 1
2

e2
1 + 1

2r1

D̃2
1 (17)

Along the trajectories (12), (15) and (16), the first-time derivative of V1 is

V̇1 = −k1e2
1 + 3ede1 (e2 + β)

2Cdc (x1 + udc0)
+ e1d1 − e1

�D1sg (e1, γ1) − e1D̃1sg (e1, γ1) + σ1

r1

D̃1
�D1

≤ −
ï
k1 − 3ed

4Cdc (x1 + udc0)

ò (
e2

1 + β2
) + 3ede1e2

2Cdc (x1 + udc0)
+ γ1D1 − σ1

2r1

Ä
D̃2

1 − D2
1

ä
(18)

The following inequalities hold by Young’s inequality⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3ede1β

2Cdc (x1 + udc0)
≤ 3ed

4Cdc (x1 + udc0)

(
e2

1 + β2
)

e1d1 − e1D1sg (e1, γ1) ≤ γ1D1

σ1

r1

D̃1
�D1 = σ1

r1

D̃1

Ä
D1 − D̃1

ä ≤ σ1

2r1

Ä
D2

1 − D̃2
1

ä
(19)

To avoid the “computational explosion problem” in backstepping control, the dynamic surface
control (DSC) is introduced. That is, the signal α∗

2 acts as the filtered signal of the virtual controller α∗
2

α̇∗
2 = (

α2 − α∗
2

)
/μ (20)

where μ is the filter gain and α∗
2 (0) = α2 (0). Then the filtering error β is characterized as

β = α∗
2 − α2 (21)

Define the state tracking errors e2 as

e2 = x2 − α∗
2 (22)

The first-time derivative of e2 is

ė2 = ud

L
− R

L
(x2 + id0) + ω

(
x3 + iq0

) − ed

L
+ d2 − α̇∗

2 (23)

The control laws ud is constructed as

ud = L
ï
−k2e2 + R

L
(x2 + id0) − ω

(
x3 + iq0

) + ed

L
+ α̇∗

2 − �D2sg (e2, γ2) − 3ede1

2Cdc (x1 + udc0)

ò
(24)

where k2 and γ2 are the controller parameters and sg (e2, γ2) = e2/
√

e2
2 + γ 2

2 . Substituting Eqs. (12),
(20) and (24) into Eq. (23), gives

ė2 = −k2e2 − 3ede1

2Cdc (x1 + udc0)
+ d2 − �D2sg (e2, γ2) (25)
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Consider the following Lyapunov function V2 as

V2 = 1
2

e2
2 + 1

2
β2 + 1

2r2

D̃2
2 (26)

Substituting Eq. (25) into the differential dynamic of V2, one has

V̇2 = −k2e2
2 − 3ede1e2

2Cdc (x1 + udc0)
− β2

μ
− βα̇2 + e2d2 − e2D2sg (e2, γ2) + σ2

r2

D̃2
�D2

≤ −k2e2
2 − 3ede1e2

2Cdc (x1 + udc0)
+ γ2D2 −

Å 1
μ

− α̇2
2

ã
β2 + 1

4
− σ2

2r2

Ä
D̃2

2 − D2
2

ä
(27)

with inequalities −βα̇2 ≤ β2α̇2
2 + 1/4, e2d2 − e2D2sg (e2, γ2) ≤ γ2D2 and D̃2

�D2 ≤ Ä
D2

2 − D̃2
2

ä
/2 hold.

The state tracking errors e3 of Q-axis is defined as

e3 = x3 − υ (t) (28)

where υ (t) is the time-varying function of the Q-axis.

The first-time derivative of e3 is

ė3 = uq

L
− R

L

(
x3 + iq0

) − ω (x2 + id0) − eq

L
+ d3 − υ̇ (t) (29)

The control laws uq is designed as

uq = L
ï
−k3e3 + R

L

(
x3 + iq0

) + ω (x2 + id0) + υ̇ (t) − �D3sg (e3, γ3) + eq

L

ò
(30)

where k3 and γ3 are controller gains to be determined later, sg (e3, γ3) = e3/
√

e2
3 + γ 2

3 . Recalling the
adaptive law (12) and the VSI controller (30), one can get

ė3 = −k3e3 + d3 − �D3sg (e3, γ3) (31)

Define a Lyapunov function candidate V3 as

V3 = 1
2

e2
3 + 1

2r3

D̃2
3 (32)

The time derivative of V3 can be expressed as

V̇3 = −k3e2
3 + e3d3 − e3D3sg (e3, γ3) + σ3

r3

D̃3
�̇D3 ≤ −k3e2

3 + γ3D3 − σ3

2r3

Ä
D̃2

3 − D2
3

ä
(33)

where the inequalities e3d3 − e3D3sg (e3, γ3) ≤ γ3D3 and D̃3
�D3 ≤ Ä

D2
3 − D̃2

3

ä
/2 hold.

Choosing the total Lyapunov function V as

V = V1 + V2 + V3 (34)

From Eqs. (18), (27) and (33), V̇ can be represented as

V̇ ≤ −
Å

k1 − 3ed

4Cdc (x1 + udc0)

ã
e2

1 − k2e2
2 − k3e2

3 − σ1

2r1

D̃2
1 − σ2

2r2

D̃2
2 − σ3

2r3

D̃2
3

−
Å 1

μ
− 3ed

4Cdc (x1 + udc0)
− α̇2

2

ã
β2 + Γ (35)
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where Γ � γ1D1 + γ2D2 + γ3D3 + 1
4

+ σ1

2r1

D2
1 + σ2

2r2

D2
2 + σ3

2r3

D2
3.

4 Stability Analysis

By the Lyapunov theory, the predefined time stability of the closed-loop system is achieved, which
is summarized in Theorem 1.

Theorem 1. For the inverter (7) in the PV system, the control laws ud and uq are proposed in (24)
and (30), and the first-order filter is given by Eq. (20). For any constant ε ∈ R

+, all signals in the
closed-loop system can be bounded at t ≥ 0 under the proper control gains ki, i = 1, 2, 3. After the
selection of control parameter T1, |x1 (t)| ≤ ε and |x3 (t)| ≤ ε holds when t ≥ T1. The predefined-time
stability of photovoltaic inverter is realized.

Poof. Define a vector ζ = î
e1, e2, e3, β, D̃1, D̃2, D̃3

óT ∈ R
7 and a compact set Ω

Ω =
{

ζ ∈ R
7 : e2

1 + e2
2 + e2

3 + β2 + D̃2
1

r1

+ D̃2
2

r2

+ D̃2
3

r3

≤ ε2

}
(36)

The controller gains are selected as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 − 3ed

4 (x1 + udc0) Cdc

>
Γ

ε2
, k2 >

Γ

ε2
, k3 >

Γ

ε2

1
μ

− 3ed

4 (x1 + udc0) Cdc

− α̇2
2 >

Γ

ε2

σ1

2
>

Γ

ε2
,
σ2

2
>

Γ

ε2
,
σ3

2
>

Γ

ε2

(37)

From Eqs. (35)–(37), we can deduce that

V̇ < −2Γ

ε2
V + Γ (38)

Next, the discussion focuses on the boundedness of signals in the closed-loop system in the
compact set Ω. Based on Condition 1 and Condition 2, it can be inferred that ρ (t), ρ̇ (t), and ρ̈ (t) are
consistently bounded on t ≥ 0. From Condition 5 and Condition 6, υ (t) and υ̇ (t) are always bounded
on t ≥ 0. While ei and β are bounded on the set Ω.

Invoking the definition x1 = e1+ρ (t), as x1 is bounded on Ω, then α2 is bounded on the compact set
Ω by virtual controller (15) and Assumption 2. The boundedness of x2 can be ensured by the definition
of x2 = e2 + α2 + β. Similarly, the boundedness of x3 is given by x3 = e3 + υ (t). Considering the
virtual controller (15), first-order filter (20) and filter error (21), the boundedness of ud and uq on the
set Ω can be obtained from Assumption 2 and Assumption 3.

The first derivation of the virtual controller α2 can be expressed as

α̇2 =
Å 3ed

2Cdc (x1 + udc0)

ã−1 ï
−k1ė1 − Ä�D1sg (e1, γ1)

ä′
+ ρ̈ (t)

ò
(39)

Apparently α̇2 is bounded on Ω from Assumption 2. Then, the second formula in Eq. (37) holds.
An analysis is conducted on the initial states of the tracking errors. For the D-axis signal, substituting
Condition 3, virtual controller Eq. (15) and the controller Eq. (24) into tracking errors Eqs. (13) and
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(22), one has e1 (0) = e2 (0) = 0 on the compact set Ω. Based on α∗
2 (0) = α2 (0), β (0) = 0 holds. The

Q-axis signal e3 (0) = 0 on the compact set Ω can be obtained. According to the controller Eqs. (24)
and (39) implies that V̇ < 0 on V = ε2/2. Thus, from V (0) = 0 < ε2/2, V (t) ≤ ε2/2 always holds for
t ≥ 0.

In addition, according to Eq. (36), |e1 (t)| ≤ ε and |e3 (t)| ≤ ε holds when t ≥ 0. Considering
Conditions 3 and Conditions 7, ρ (t) = 0 and υ (t) = 0 hold when t ≥ T1. Eqs. (13) and (28) implied
that |x1 (t)| ≤ ε and |x3 (t)| ≤ ε holds when t ≥ T1. Therefore, the solution of the PV system (7) is
global predefined-time bounded according to Lemma 1. �

Remark 3. For i = 1, 2, 3, the detailed design process of the proposed control scheme is

1. Based on the initial states (8) and (10), select the suitable time-varying functions (9) and (11) to
fulfill the predefined time stability conditions.

2. Choose the appropriate parameters μ and determine the first-order filter (20).

3. Choose appropriate parameters ki, ri, σi, γi to determine the adaptive laws (12), virtual control
law (15), controllers (24) and (30).

5 Simulations

The simulation is carried on the photovoltaic system to demonstrate the effectiveness of the
proposed control method. The physical parameters are as follows: Cdc = 4.4 mF , R = 0.5 �,
L = 2.5 mH, iL = 50 A, ed = 270 V , eq = 0 V , f = 50 Hz, ω = 314 rad/s, udc0 = 500 V , iq0 = 0 A.
Choose the controller gains as k1 = 120, k2 = 150 and k3 = 200; The filter gain for DSC is selected as
μ = 0.001. Set the adaptive gains to r1 = 2, r2 = r3 = 5, σ1 = 0.8, σ2 = σ3 = 0.6, γ1 = γ2 = γ3 = 0.1.

Case1. Simulations under different predefined times T1 = 0.1 s, T1 = 0.08 s, T1 = 0.15 s

The initial condition is set to x1 (0) = −8V , x2 = −2A, x3 (0) = 2A. The disturbances d1 =
4.4, d2 = 5, d3 = 5 are added between 0.2 and 0.4 s.

Fig. 3 shows the trajectories of state x1, x2 and x3 when the predefined time is set to T1 = 0.1 s.
From Fig. 3, the system state variables can convergent to the small neighborhood of the origin within
T1 = 0.1 s. That is, the proposed predefined time backstepping control method has completed DC
voltage tracking and unit power factor grid connection within the specified time, while the predefined
time control goal is achieved.

Figure 3: State variables and tracking errors at T1 = 0.1 s

Figs. 4a and 5a show the trajectories of state variables x1, x2 and x3 at different predefined times
of T1 = 0.08 s and T1 = 0.15 s, respectively. Figs. 4b and 5b show the trajectories of tracking errors
e1, e2 and e3. When the preset convergence times changes, the proposed predefined time backstepping
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control method still completes DC voltage tracking and unit power factor grid connection within the
preset time.

Figure 4: State variables and tracking errors at T1 = 0.08 s

Figure 5: State variables and tracking errors at T1 = 0.15 s

A comparison simulation of finite-time backstepping control and fixed-time backstepping control
are performed. Fig. 6a shows the trajectories of state variables x1, x2, x3 and tracking error e2 in finite-
time control, while Fig. 6b shows the trajectories of state variables x1, x2, x3 and tracking error z2 in
the fixed-time control. The finite-time control can achieve the tracking in 0.35 s, while the convergence
time in fixed-time control is 0.2 s. Compared with finite-time and fixed-time, the predefined time
control can customize the upper limit of convergence time within the range supported by physical
parameters. The proposed predefined time backstepping control can improve the convergence speed of
PV systems, achieve predefined time control objectives and provide a satisfactory control performance.
After disturbances are triggered, the robust performance is effectively improved.

Figure 6: State variables and tracking errors in traditional backstepping controller
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Fig. 7 shows the estimation value of the virtual control at T1 = 0.1 s. Fig. 8 shows the curves of
controllers ud and uq under different predefined times. Although the preset time value changes, the
controller achieves stable control within the different predefined time.

Figure 7: Estimation value of virtual controller at T1 = 0.1 s

Figure 8: Controllers under different predefined times

Case2. Simulation under different initial states

To address the tracking performance of the controller, different initial states (4V , 3A, −1A),
(−5V , −3A, 6A) and (10V , 6A, −5A) are considered.

Fig. 9 displays the state responses x1, x2 and x3 under different initial states, while Fig. 10 illustrates
the tracking errors e1, e2 and e3 under different initial states, set the predefined time to 0.1 s. The control
can achieve effective tracking within the predefined time under the different initial values.

Fig. 11 illustrates the curves of state variables in finite time backstepping control under different
initial states. Apparently, the tracking process of state variables is slow and the trajectory changes are
small under different initial states, achieving tracking about 0.35 s. Fig. 12 depicts the state responses
variables in a fixed-time controller under different initial states. The convergence time of fixed time
control has been improved and effective tracking can be achieved in different initial states, while
the tracking goal is reached within 0.2 s. Compared with finite-time control and fixed-time control,
predefined time control can approach the upper limit of convergence time more accurately, while
provide the improved convergence speed and control performance effectively.

Figs. 13–15 show the controllers’ trajectories in finite-time control, fixed-time control, and
predefined-time control, respectively. Based on the simulation results, the predefined-time backstep-
ping controllers and can achieve grid-connection objectives within the predefined time, effectively
reduce the convergence time and improve the quality of grid-connected electrical energy.
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Figure 9: State response under different initial states at T1 = 0.1 s

Figure 10: Tracking errors under different initial states at T1 = 0.1 s
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Figure 11: State responses under different initial states in finite-time backstepping controller

Figure 12: State responses under different initial states in fixed-time backstepping controller
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Figure 13: Controllers under different initial states at T1 = 0.1 s

Figure 14: Controllers under different initial states in finite-time backstepping controller

Figure 15: Controllers under different initial states in fixed-time backstepping controller

6 Conclusion

To realize the effective control of VSI in a grid-connected PV system, a predefined-time controller
is formulated. The time-varying functions are introduced in state tracking errors during the back-
stepping recursive design. Analytical differential calculation of the virtual control in backstepping
control is avoided by the DSC strategy, and the disturbance compensation is realized by adaptive
control. Furthermore, the global stability of the proposed predefined time control is verified by the
Lyapunov theory. The simulation results demonstrate that the proposed predefined-time controller
can implement predefined-time control and has excellent control performance for the inverter. The
predefined time control method proposed in this paper can track the DC voltage and connect the unit
power factor to the grid in the predefined time, but it depends on the initial states of the system, which
should be solved in the future research.
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