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ABSTRACT

Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit
breakers (LVCBs). A fault diagnosis algorithm based on an improved Sparrow Search Algorithm (ISSA) optimized
Backpropagation Neural Network (BPNN) is proposed to improve the operational safety of LVCB. Taking the
1.5kV/4000A/75kA LVCB as an example. According to the current operating characteristics of the energy storage
motor, fault characteristics are extracted based on Empirical Wavelet Transform (EWT). Traditional BPNN has
problems such as difficulty adjusting network weights and thresholds, being sensitive to initial weights, and
quickly falling into local optimal solutions. The Sparrow Search Algorithm (SSA) with self-adjusting weight factors
combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters. The results
show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction: motor
voltage increase, motor voltage decrease, energy storage spring stuck, transmission gear stuck, regular state and
energy storage spring not locked. It is suitable for fault diagnosis and detection of the energy storage part of LVCB.
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1 Introduction

Low-voltage circuit breakers are essential control and protection equipment in low-voltage
distribution systems, and their reliable operation is essential to the power system [1,2]. With the
vigorous development of new energy, more and more wind farms are being established. In order to
protect the electrical equipment inside the converter and wind turbine, the safe and reliable operation
of low-voltage circuit breakers has become increasingly important. However, the circuit breaker is
exposed to high loads and harsh environments for a long time, and its spring operating mechanism
is prone to various failures. This will lead to the performance degradation of the internal mechanical
components of the mechanism, making the equipment unable to operate normally. According to the
investigation report of State Grid and CIGRE, it was found that the primary reason why circuit
breakers refuse to move or not move is the failure of the operating mechanism [3,4]. Among them,
the untimely detection of energy storage units is a significant cause of mechanical failure. In order to
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maintain stable operation of the power system, timely detection of faults is crucial. Traditional fault
diagnosis methods are mainly based on threshold determination, regular inspection, manual judgment
and other methods. These methods will reduce the service life of the equipment, cause a heavy burden
on daily operations, and have low accuracy. Implementing maintenance is blind and costly, and it
relies heavily on the experience of maintenance personnel. Based on this, non-invasive maintenance
technology has developed rapidly in recent years.

2 Literature Review

The development of IoT-embedded technology and artificial intelligence algorithms has provided
new ideas for non-invasive diagnosis of equipment. Various methods based on artificial intelligence
algorithms have emerged in the field of fault diagnosis: methods based on expert systems [5,6],
artificial neural Networks [7,8], fuzzy theory [9], support vector machine [10], probabilistic neural
networks, Petri net and other methods. Among them, artificial neural networks and support vector
machines show great potential in feature parameter identification and can obtain high diagnostic
accuracy. Current research on diagnosing high-voltage circuit breaker (HVCB) operating mechanisms
is mainly based on opening and closing coil current signals, contact stroke-time characteristic curves
and vibration signals. Ye et al. [11] proposed a novel U-network for HVCB fault diagnosis based
on CapsNet, which targets vibration signals and realizes the diagnosis of typical faults in circuit
breaker electromagnets. Yang et al. [12] proposed a fault vibration signal enhancement method for
circuit breakers based on WDCGAN. Sun et al. [13] used the ZFNet-DRN model to implement fault
classification considering the randomness of the closing phase for the current signal of the opening and
closing coil. Zhang et al. [14] proposed a fault diagnosis method for HVCB based on PCA-SSA-LVQ.
Their research is based on the vibration signals of circuit breakers, achieving the diagnosis of typical
faults during the opening process. Chmielewski et al. [15–17] conducted research on the modelling
of circuit breakers and explored the relationship between fault characteristics and typical signals of
circuit breakers. Huang et al. [18] used phase space reconstruction to extract vibration signal features
based on the coil current and vibration signals. They realized the diagnosis of coil-plunger stuck,
poor contact, latch stuck, insufficient power supply and other faults. Zhang et al. [19] proposed a
circuit breaker fault diagnosis method that integrates circuit breaker vibration and coil current signals.
This method solves the conflicts existing in multi-signal joint diagnosis. Wu et al. [20] proposed a
circuit breaker fault diagnosis method based on a vibration signal envelope, which reduces software
and hardware overhead. Rudsari et al. [21] proposed an efficient and accurate fault set production
method by combining the coil current and contact stroke signals. Landry et al. [22–25] realized typical
fault identification of circuit breakers based on the circuit breaker vibration signal. The above fault
diagnosis research is mainly focused on high-voltage circuit breakers. There are few reports on online
diagnostic technology for LVCBs. Until recently, few studies have been on the current signals of energy
storage motors. The energy storage motor current signal directly reflects the energy storage state of
the circuit breaker operating mechanism. Reasonable use of this signal can achieve rapid detection of
the operating mechanism and then evaluate the operating status of the early warning circuit breaker
in advance, providing support for the safe operation of the power grid.

In order to improve the accuracy and stability of fault diagnosis of the spring operating mechanism
of LVCB, this article uses Empirical Wavelet Transform (EWT) to identify the motor current fault char-
acteristic points. The Improve Sparrow Search Algorithm (ISSA) performs BPNN optimization. SSA
simulates the foraging behavior of sparrows, searches on a global scale, and has strong convergence.
SSA is applied in the training process of BPNN to enhance the network generalization ability and
fault diagnosis accuracy. Based on the current signal of the energy storage motor, this paper realizes
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rapid diagnosis of six conditions: motor voltage increase, motor voltage decrease, energy storage spring
stuck, transmission gear stuck, regular state, and energy storage spring not locked.

3 Methodology
3.1 Energy Storage Motor Signal Collection

Circuit breakers are divided into low-voltage, medium-voltage, high-voltage and extra-high
voltage. Common types are oil circuit breakers, compressed air circuit breakers, SF6 circuit breakers
and vacuum circuit breakers. Vacuum circuit breakers are widely used in medium and low-voltage
fields. This paper takes the 1.5kV/4000A/75kA circuit breakers for wind turbines as the research object.
The circuit breaker motor current signal is collected through the Hall coil current sensor; the sampling
rate is 2 kHz, and the sampling length is 10 s. A fast mechanical switch repulsion mechanism control
unit converts the collected current analogue signals into digital signals. The host computer software
is written in QT and outputs the collected motor current signals. Fig. 1 is the circuit breaker energy
storage motor current data acquisition system, in which 1© is the auxiliary switch, 2© is the opening
spring, 3© is the closing spring, 4© is the closing electromagnet, 5© is the opening electromagnet, and

6© is the transmission gear. 7© is an energy storage motor. We set the fault by adjusting the voltage
regulator, closing the spring, limit switch, and transmission gear.

Figure 1: Circuit breaker energy storage motor current acquisition system

3.2 Energy Storage Motor Fault Feature Extraction
The action of the circuit breaker is divided into energy storage stage, opening stage and closing

stage. The control system sends a closing signal; the energy storage motor releases the stored energy
and the closing spring contracts. The opening spring stores energy, driving the contacts to close,
and then the spring operating mechanism stretches the energy storage spring to the energy storage
locking position through the energy storage motor. The control system sends an opening signal, and
the opening spring releases energy to quickly separate the stored energy and complete the opening
process. This article takes Taibang ZYJ220-66-106Z energy storage motor as an example to introduce
the working principle. During the energy storage process of the energy storage motor, as the energy
storage spring stretches, the load increases. During the smooth operation of the motor, multiple peaks
appear in the current signal. In order to better extract the characteristics of the current signal, the
envelope of the signal waveform needs to be extracted. The typical energy storage motor current
envelope waveform is shown in Fig. 2. Among them, t1∼t5 are essential features in the entire process
when the circuit breaker receives the closing command and completes the closing action.
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Figure 2: Typical energy storage motor current signal of circuit breaker

(a) From t0 to t1, the motor starts its action process. When the motor starts, the current is at its
maximum, and the motor runs without load. The starting current amplitude is related to the motor
loop resistance and starting voltage. The smaller the loop resistance, the greater the starting current.
The higher the starting voltage, the greater the starting current.

(b) From t1 to t2, the motor runs with no load. At this time, the closing spring contracts to release
energy, the circuit breaker closes, and the motor current tends to a stable value. This stable value is
closely related to the starting voltage and motor loop resistance.

(c) From t2 to t4, the contact closing action is completed. The current of the energy storage motor
increases, driving the closing spring to the energy storage locking position. At this stage, the spring
jam will increase the energy storage motor load and the motor current. If the spring energy storage is
not locked, I2 will increase accordingly. If the transmission gear is jammed, it will cause t2 to advance.
If the motor voltage is too high or too low, t2 will advance or lag.

(d) From t4 to t5, the power supply of the energy storage motor is turned off, and the motor current
gradually decreases to 0.

It can be seen from the ideal current curve of the energy storage motor. The turning points in
the energy storage motor current waveform contain rich state information, and these turning points
can reflect the health status of the circuit breaker energy storage unit to a certain extent. Therefore,
we select the characteristic points in Table 1 as the characteristic points of this article. Imax and t2

can be used to reflect whether the energy storage motor voltage is over or undervoltage. t2 can reflect
whether the circuit breaker transmission gear is stuck. I2 and t4 can reflect whether the circuit breaker
is unlocked.

The energy storage motor used is an AC motor, and the rectified AC motor current signal is shown
in Fig. 3a. In order to facilitate the extraction of feature quantities, we take the upper envelope surface
of the energy storage motor current signal, and the envelope surface is shown in Fig. 3b. We can easily
extract the required feature points according to the envelope waveform. Extract the maximum value
from the envelope surface data to obtain Imax. Take the current value at the end of the envelope
surface as I2. The sampling point corresponding to I2 is t4. There are many gear-like fluctuations on
the envelope surface, and these fluctuations cannot be considered harmonic components. The gear-
like fluctuation occurs because of the change in chain force value during the movement of the gear
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transmission chain. The existence of fluctuations makes it challenging to extract t2. In order to extract
the feature point t2 more accurately, we decompose the signal.

Table 1: Features from energy storage motor current

Feature Describe

Imax The peak value of motor starting current
t2 Closing spring energy storage start time
Imean Average value of motor current during closing spring energy storage process
I2 Current at the moment of energy storage blocking
t4 The moment of energy storage blocking

Figure 3: Collected energy storage motor current signal: (a) AC motor current signal after rectification;
(b) Motor current signal envelope surface

Empirical Mode Decomposition (EMD) is often used to decompose signals, but its existence
brings problems such as modal aliasing and endpoint effects. Ensemble Empirical Mode Decom-
position (EEMD) adds auxiliary noise when performing EMD decomposition, improving the mode
aliasing problem [26]. The Empirical Wavelet Transform (EWT) algorithm is not only based on the
concept of “empirical” decomposition of the EMD algorithm but also includes the wavelet transform
theoretical architecture [27]. It overcomes the shortcomings of the EMD algorithm’s lack of theory and
is a processing method for adaptive time-frequency analysis of non-stationary signals. Fig. 4a shows
the 10 IMF components after EEMD decomposition, and Fig. 4b shows the 10 IMF components
after EWT decomposition. The red curve in the figure is the time domain waveform, and the blue
curve is the frequency domain waveform. The IMF component after EEMD decomposition has a
serious modal aliasing phenomenon. The EWT method spectrum decomposition is more reasonable,
and the modal aliasing phenomenon is almost negligible. It can reflect the low-frequency component
more effectively. Based on the decomposed low-frequency component, it can easily Extract feature
point t2. 3-decomposition of the original signal can already meet the requirements. The time domain
waveform after 3-decomposition is shown in Fig. 5. It is easier to extract the t2 component from the
IMF component.
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Figure 4: Waveform diagrams under different decomposition algorithms: (a) EEMD; (b) EWT
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Figure 5: The time domain waveform after 3-decomposition

3.3 Fault Diagnosis Model Based on ISSA-BP
BP (Backpropagation) Neural Network is a commonly used artificial neural network model widely

applied to classification and regression problems [28]. It is a feedforward artificial neural network that
learns by adjusting weights and biases through the backpropagation algorithm, gradually reducing
prediction errors for model optimization and fitting. However, it has drawbacks such as susceptibility
to local optima and sensitivity to initial weights. In this paper, the initial weights and thresholds of
BPNN are optimized by improved SSA, which in turn improves the diagnostic accuracy and model
training rate.

3.3.1 BPNN

Artificial neural networks are conceptualized based on human brain-related biological activities
[29], simulating intelligent processing of knowledge by mimicking the activity of human neurons.
Currently, neural networks exhibit excellent performance in fault diagnosis, prediction, and various
other fields. In artificial neural network models, the BPNN belongs to multi-layer feedforward
networks. The training process of neural networks is based on the backpropagation algorithm. It
consists of the input layer, hidden layer, and output layer. The basic structure of the BPNN is shown
in Fig. 6.
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Figure 6: Basic structure of BPNN

The BP algorithm is crucial for BPNNs. It employs the backpropagation algorithm to update the
network during the forward transmission of signals. The input signal I is represented as follows:

I = (i1, i2 · · · in) (1)

The signal is transmitted from the input to the hidden layer, and the corresponding neuron output
value mj is obtained based on the neuron threshold and activation function as:

mj = fm

(∑n

i=1
ωjiii − θj

)
(2)

where f m is the hidden layer activation function, ωji is the weight between the j-th hidden layer neuron
and the i-th input layer neuron, and θ j is the j-th hidden layer neuron threshold.

The output layer neuron output oj can be expressed as:

oj = fo

(∑m

i=1
vjimi − ϑj

)
(3)

where f o is the output layer activation function, vji is the weight between the j-th output layer neuron
and the i-th hidden layer neuron and ϑj is the j-th output layer neuron threshold.

The error function in forward propagation is defined as follows:

E = 1
2

∑O

i=1
(oi − yi)

2 (4)

where yi is the desired output, and o is the number of neurons in the initial layer.
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In the backpropagation algorithm, the modification for each neuron’s threshold and correspond-
ing connection weight in the BPNN is as follows:

v(n+1)

lj = v(n)

lj + Δv(n)

lj

ϑ(n+1)

lj = ϑ(n)

lj + Δϑ(n)

lj

Δv(n)

lj = −η
∂E
∂vlj

Δϑ(n)

lj = −η
∂E
∂ϑlj

(5)

where η is the learning rate, the learning rate determines the step size at each parameter update. An
excessively large or small learning rate can lead to training instability or slow convergence.

The learning process of the BPNN involves repeated cycles of forward signal transmission and
backward error propagation. The network converges to reduce the error between actual and expected
outputs by adjusting and correcting weights and thresholds. Therefore, BPNNs exhibit good nonlinear
performance and are well suited for dealing with the simulation of nonlinear systems and the parallel
processing of large amounts of information. However, during the network training process, BPNNs
converge slowly and suffer from slow convergence and susceptibility to local optima during training.
This paper uses ISSA to optimize the BPNN, which can enhance the fault diagnosis accuracy and
training rate.

3.3.2 Improved Sparrow Search Algorithm

During the power grid operation, online diagnostic equipment is required to be simple, reliable and
quickly identify faults. SSA [30] has a simple structure, easy implementation, fewer control parameters,
and local solid search ability compared with other optimization algorithms. The solution process of
SSA is to initialize the population of N sparrows and use the fitness function to calculate and rank
the advantages and disadvantages of each sparrow’s position. However, SSA has shortcomings, such
as easy premature convergence and low convergence accuracy. Therefore, this article improves SSA to
improve the performance of the algorithm.

The initialization process of sparrow search is optimized, and chaotic initialization is introduced to
increase the randomness of the initial weights of the neural network, which makes the neural network
search in a broader range. Compared with Tent and Logistic chaos initialization, one-dimensional Sin
chaos initialization has better chaotic characteristics. In this paper, one-dimensional Sin chaos is used
for initialization:⎧⎨
⎩

xn+1 = sin
2
xn

, n = 0, 1...N

−1 � xn � 1, xn �= 0
(6)

Based on the position update equations of the discoverers, the adaptive inertia weight ω is
introduced to enhance the algorithm’s global optimization and local optimization ability, and the
influence of the optimal position of the previous generation is considered in the position update
process. The inertia weight ω and the discoverer update equations considering the influence of the
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optimal position of the previous generation are as follows:

ω = e2(1−t/itermax) − e−2(1−t/itermax)

e2(1−t/itermax) + e−2(1−t/itermax)
(7)

X t+1
i,j =

⎧⎪⎨
⎪⎩

(
X t

i,j + ω
(
f t

j,g − X t
i,j

)) · rand
R2 < ST
X t

i,j + QL, R2 � ST

(8)

where f t
j,g is the j-th dimensional global optimum of the previous generation; X t

i,j stands for the position
of the i-th sparrow in the j-th dimension at the t-th iteration; Q is a random number that obeys a normal
distribution; L represents a matrix with 1 row and d columns and all elements are 1. R2 is a warning
value, R2 ∈ (0, 1); ST is the safety value, ST ∈ (0.5, 1).

The strong disturbance ability of Cauchy mutation and the strong optimization ability of reverse
learning are combined to update the optimal position of sparrow population. The probability function
Ps is introduced for the alternate use of reverse learning and Cauchy mutation. The improved optimal
position update formula is:

X
′
best (t) = Xbest (t) + cauchy (0, 1) ⊕ Xbest (t) (9)

X t+1
i,j = X

′
best (t) + b1 ⊕ (

Xbest (t) − X
′
best (t)

)
(10)

where Eq. (9) is the Cauchy mutation position update formula, Eq. (10) is the reverse learning position
update formula, and the choice between the two depends on the probability function Ps. When rand
< Ps, reverse learning is used for position update; otherwise, Cauchy mutation is used for position
update, and the probability function Ps is as follows:

Ps = −e(1− 1
itermax )

20 + θ (11)

where θ is an adjustable parameter, generally 0.05.

The new position after Cauchy mutation or reverse learning is brought into the fitness function.
When the fitness value of the new position is less than the fitness value corresponding to the current
optimal position, the optimal position is updated.

3.3.3 Improved Sparrow Search Algorithm Optimizes BPNN

As mentioned earlier, traditional BP algorithms heavily depend on the initial weights and
thresholds for training. Reasonable weights and thresholds can improve the training efficiency and
diagnostic accuracy of BPNNs. SSA has global search ability and strong convergence. In this paper, the
optimized SSA algorithm is used to optimize the initial weights and thresholds of BPNN to improve
the diagnostic performance.

Fig. 7 shows the SSA-BP fault diagnosis steps.

(a) Normalize the input data to scale feature values to an appropriate range ([0, 1]) for improved
model convergence, stability, and generalization.

The normalization formula is as follows:

y = x − max
max − min

(12)
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Figure 7: ISSA-BP fault diagnosis steps

(b) Determine the structure of the BPNN (including the number of nodes in the input layer, hidden
layer and output layer). In this paper, it is proposed to diagnose the six conditions of normal state:
gear jamming, spring jamming, motor voltage increase, motor voltage decrease and the energy storage
spring unlatched, so the number of nodes in the output layer is set to be 6, and the output value of each
node indicates the probability of the fault, the previous section selects five feature points as the feature
quantity, so the number of nodes in the input layer of the BP network is 5. Determine the number of
nodes in the hidden layer of the network through the empirical formula, M = √

5 + 6 + 8, α = 8.

(c) Set initial parameters of SSA: the number of sparrows (20), the maximum number of iterations
(30), the dimension of positions (143), and the proportion of discoverers (20%). Sin Chaos initializes
the initial position of the sparrow population.

(d) Define the fitness function, measuring the difference between the neural network’s predicted
results and actual results. Cross-entropy is selected as the fitness function for its suitability in
classification problems. The equation of cross entropy is as follows:

L = − 1
N

∑
i

∑M

c=1
yic log (pic) (13)

where M is the category, yic is the sign function (taking 1 when the category of sample i is c and 0 for
the rest), and pic is the predicted probability.

The optimal position and the worst position in the population are determined by updating the
population fitness ranking matrix according to the cross-entropy equation.

(e) Update the sparrow position based on the position update equations, select the reverse learning
strategy or Cauchy mutation method to generate a new solution based on the probabilistic Ps, and
determine whether to update the position of the most optimal population.

(f) Determine whether to terminate the process based on termination conditions. If termination
is reached, output the optimal solution and assign it to the BPNN. Set training parameters and train
the network.

(g) Validate the diagnostic accuracy of the trained BPNN using a test set.
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4 Results and Analysis

By consulting the circuit breaker manufacturer, we learned that in actual applications, the energy
storage mechanism of the circuit breaker often suffers from mechanical failures such as transmission
mechanism jamming, operating power supply failure, and closing spring jamming. Based on this we
set up the following faults: Fault 1: Insufficient power supply to the energy storage motor. Set the
power supply voltage of the energy storage motor to 154–198 V through the voltage regulator. Fault
2: The energy storage motor is overvoltage. Set the power supply voltage of the energy storage motor
to 236–264 V. Fault 3: Place a hard object at the transmission gear to simulate the situation when the
transmission gear is jammed. Fault 4: Simulate the energy storage spring by adding different elastic
forces to the closing spring. Fault 5: Place objects of different thicknesses in front of the limit switch
to simulate different degrees of unlatched springs. For algorithm training, select “A-Normal state
of equipment”, “B-Motor voltage decrease”, “C-Motor voltage increase”, “D-Energy storage spring
stuck”, “E-Transmission gear stuck” and “F-Energy storage spring is not locked”. There are 20 groups
for each of the six types, 15 of which are used as BP neural network training sets, and the other 5 groups
are used as subsequent test sets, as shown in Table 2.

Table 2: Sample identification

Training sample number Test sample number Status type

1–15 91–95 A
16–30 96–100 B
31–45 101–105 C
45–60 106–110 D
61–75 111–115 E
76–90 116–120 F

After normalizing the feature points, a training set is created, and network training parameters are
set, with a maximum iteration count of 10000, a learning rate of 0.01, and a neural network training
error of 0.05. The softmax activation function is selected. The softmax function is particularly well
suited for multi-categorization tasks, as it can convert raw scores into probabilities, making predictions
more intuitive and easier to understand. SSA variables have lower bounds of −3, upper bounds of
1, and a safety value of 0.8. Input the training set into ISSA-BP, ISSA continuously updates the
population position, and the optimal fitness is continuously updated. The improved sparrow search
algorithm and the optimal individual fitness change curve of the improved sparrow search algorithm
are shown in Fig. 8. It can be seen from the figure that as the number of evolutionary generations
increases, the population continues to iterate. The optimal individual fitness gradually decreases,
and ISSA-BP finds the optimal weights and thresholds around 25 generations. Since the chaotic
initialization process of ISSA expands the optimization scope of SSA, it is necessary to find better
weights and thresholds in the initial stage. SSA-BP falls into a local optimum during the iteration
process. Therefore, the improved Sparrow search algorithm has faster convergence speed and accuracy,
and the BPNN is trained with the optimal weights and thresholds found.

In order to test the effectiveness of ISSA optimized BP neural network, the proposed hybrid model
was combined with basic a BP neural network model, SSA optimized BP neural network, Radial Basis
Function neural network (RBF), Product-based Neural Network (PNN) and Generalized Regression
Neural Network (GRNN) was compared. Table 3 shows the prediction results of different methods.
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Numbers 1–5 in the table correspond to “A-Normal state of equipment”, numbers 6–10 correspond to
“B-motor voltage decreases”, numbers 11–15 correspond to “C-motor voltage rises”, numbers 16–20
correspond to “D-Energy storage spring is stuck”, numbers 21–25 correspond to “E-transmission
gear is stuck”, numbers 25–30 correspond to “F-energy storage spring is not locked”. The mean
probabilities of traditional BP for A-F are 87.45%, 98.83%, 93.81%, 71.38%, 83.45%, and 80.20%; the
mean probabilities of SSA-BP for A-F are 92.86%, 99.42%, 94.64%, 79.11%, 88.07 %, and 94.52%.;
the mean probability values of ISSA-BP for A-F are 98.89%, 99.90%, 99.23%, 80.93%, 95.55%, and
98.36%. Compared with other neural networks, ISSA-BP has a higher fault diagnosis accuracy rate,
which verifies the algorithm’s effectiveness. Based on ISSA-BP, it can effectively distinguish between
normal status and each fault.

Figure 8: SSA-BP and ISSA-BP fitness decline curve

Table 3: Prediction results of different methods

Status type Serial
number

RBF GRNN PNN BP SSA-BP ISSA-BP

A/%

1 28.11 38.21 84.43 92.22 96.24 99.16
2 25.59 32.01 70.03 95.60 96.41 99.40
3 24.82 27.54 47.46 84.02 90.02 99.52
4 22.80 22.35 42.79 68.97 84.33 97.00
5 27.91 37.76 83.64 96.46 97.32 99.35

B/%

6 72.76 74.09 99.79 97.28 97.61 99.16
7 88.02 87.68 99.99 99.58 99.92 99.40
8 90.07 90.89 99.98 99.54 99.88 99.52
9 69.58 80.08 99.90 98.83 99.84 97.00
10 67.82 79.36 99.90 98.91 99.87 99.35

C/%

11 72.76 31.11 47.82 84.82 85.65 97.91
12 88.02 44.21 99.61 94.98 96.38 99.90
13 90.07 41.80 87.24 97.53 97.96 99.95
14 69.58 39.21 99.68 95.56 97.52 98.52
15 67.82 40.62 69.35 96.15 95.70 99.89

(Continued)
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Table 3 (continued)

Status type Serial
number

RBF GRNN PNN BP SSA-BP ISSA-BP

D/%

16 37.11 27.48 80.37 55.28 85.03 94.40
17 28.42 29.39 77.23 79.48 86.07 93.86
18 26.77 28.52 62.78 78.09 66.42 68.27
19 24.68 24.19 83.91 84.37 84.11 82.14
20 26.51 28.68 87.50 59.69 73.94 65.98

E/%

21 19.53 28.69 98.81 71.36 77.53 90.81
22 20.87 27.11 46.45 93.43 97.96 99.90
23 19.46 28.63 69.10 75.51 76.24 87.91
24 20.30 24.79 98.98 83.38 93.98 99.43
25 20.46 26.34 99.96 93.55 94.64 99.70

F/%

26 24.97 35.34 98.81 84.81 98.36 99.95
27 21.22 29.60 46.45 77.82 93.36 98.10
28 21.90 29.96 69.10 57.47 82.51 93.83
29 25.05 36.69 98.98 86.52 98.69 99.92
30 27.20 41.20 99.96 94.37 99.70 99.98

5 Conclusion

This paper aims to achieve a non-invasive fault diagnosis of the spring operating mechanism of an
LVCB by applying the Improved Sparrow Search Algorithm (ISSA) to optimize the BPNN. Taking the
1.5kV/4000A/75kA vacuum circuit breaker as an example, the motor current signal is collected during
the energy storage process of the energy storage spring. The characteristics of the current signal are
extracted based on empirical wavelet decomposition. ISSA is used to optimize the BPNN and find the
optimal initial weights and thresholds, which speeds up the training rate of the BPNN and the accuracy
of fault diagnosis. Research shows that the method proposed in this article can effectively identify
energy storage motor overvoltage, energy storage motor Undervoltage, transmission gear stuck, energy
storage spring stuck, and energy storage unlatched faults. The model’s recognition accuracy for energy
storage spring stuck reaches more than 80%, and its recognition accuracy for other states reaches
more than 95.55%. It can effectively identify faults in the energy storage unit of LVCB. The research
results provide new ideas for the field of LVCB fault diagnosis and have broad application prospects.
Based on our research, the diagnostic accuracy of energy storage spring stuck faults is lower than
that of other faults. The energy storage spring stuck is a weak fault. A more efficient weak-fault
feature extraction method will help future research. As the number of operations of the circuit breaker
operating mechanism increases, wear and tear will cause insufficient lubrication of the mechanism or
a weak energy storage spring. It may affect the characteristic curve of the circuit breaker operating
mechanism, reducing the reliability of the model data training set. Therefore, studying a more reliable
training set generation method is also a future work.
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