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ABSTRACT

The data-driven transient stability assessment (TSA) of power systems can predict online real-time prediction by
learning the temporal features before and after faults. However, the accuracy of the assessment is limited by the
quality of the data and has weak transferability. Based on this, this paper proposes a method for TSA of power
systems based on an improved extreme gradient boosting (XGBoost) model. Firstly, the gradient detection method
is employed to remove noise interference while maintaining the original time series trend. On this basis, a focal loss
function is introduced to guide the training of the XGBoost model, enhancing the deep exploration of minority class
samples to improve the accuracy of the model evaluation. Furthermore, to improve the generalization ability of the
evaluation model, a transfer learning method based on model parameters and sample augmentation is proposed.
The simulation analysis on the IEEE 39-bus system demonstrates that the proposed method, compared to the
traditional machine learning-based transient stability assessment approach, achieves an average improvement of
2.16% in evaluation accuracy. Specifically, under scenarios involving changes in topology structure and operating
conditions, the accuracy is enhanced by 3.65% and 3.11%, respectively. Moreover, the model updating efficiency is
enhanced by 14–15 times, indicating the model’s transferable and adaptive capabilities across multiple scenarios.
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1 Introduction

The rapid development of new energy poses a severe challenge to the stability of traditional power
systems. The emerging power systems exhibit characteristics of a high proportion of new energy
sources and a high proportion of power electronics [1]. The uncertainty in the grid has increased
dramatically, making it crucial to identify the system operating state quickly and accurately to ensure
the safety and stability of the power system. Although traditional time-domain simulation methods
can accurately locate faults [2], the complexity and computation time increase exponentially with the
enlargement of the power grid due to its high-dimensional nonlinear nature. Additionally, different
power networks require re-modeling, further complicating the process. Therefore, there is an urgent
need to introduce a transient stability assessment (TSA) method that combines speed, accuracy, and
universality.
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With the rapid development of artificial intelligence technology and measurement tools such as
phase measurement units (PMUs), it has been support for research on data-driven TSA of power
systems. Many scholars have conducted research on algorithms and data [3–5]. The data-driven TSA
mainly includes offline training and online mapping. In the offline training stage, the preprocessed
data is input into the machine learning model and tested for improvement to obtain the TSA model.
In terms of algorithms, reference [6] employs deep random forest as a classification model. Compared
to deep neural networks, it has simpler parameter settings and faster training speed. However, it also
suffers from high computational complexity, sensitivity to noise, and a tendency to overfit. Reference
[7] constructs a support vector machine based on a key sample set, which reduces the number of
unstable samples being classified as stable. However, it has low efficiency when dealing with massive
measurement data in power systems. Reference [8] builds a bidirectional long short-term memory
network based on the temporal characteristics of transient process data in power systems, establishing a
nonlinear mapping relationship between the underlying measurement data and the transient stability
categories. However, due to the need for calculations in both forward and backward directions, the
computational complexity and time required are large, making it difficult to meet the timeliness
requirements of online applications. In reference [9], a real-time prediction model for power system
transient stability after faults based on EOS-ELM is established by integrating OS-extreme learning
machines and online boosting algorithms. What’s more, existing research generally fails to consider
the increased misjudgment rate of models due to sample imbalance. Minority class samples often
play a crucial role in model decision boundaries, significantly affecting the reliability of transient
stability assessment results [10]. Additionally, when there are changes in the system’s topology and
operating conditions, the existing research lacks adaptive generalization capabilities and fails to meet
the requirements of fast online assessment.

In terms of data, the information collected in real-time by PMUs in the power grid often contains
some noise, resulting in random errors between the measurement data and the true values. This
increases the risk of overfitting in TSA models, making the selection of high-quality input features
a prerequisite for accurate assessment [11]. Reference [12] employs an attention mechanism and
utilizes a soft threshold function to automatically learn noise thresholds, reducing noise and irrelevant
feature interference. However, when the data scale becomes large, the computation of attention factors
becomes more complex. The reference [13] utilizes stacked sparse denoising autoencoders to reduce
the interference of noise in the input data on feature extraction. However, it fails to fundamentally
eliminate the noise, making it difficult to ensure the robustness of the model to noise under various
operating conditions. The reference [14] addresses the issue of insufficient sample diversity by alter-
nately training and learning the distribution characteristics of transient data, generating new samples
that conform to the real distribution. But the generative-adversarial process requires a significant
amount of time and is difficult to adapt to the real-time requirements of the power grid. The reference
[15] introduces a histogram algorithm to discretize the original data, enhancing the model’s robustness
to noise and reducing the risk of overfitting in noisy environments. However, it fails to consider
the impact of sample imbalance on model evaluation. The reference [16] creates an initial dataset
based on real-time dynamic information captured by PMUs, using a time set for sample labeling,
and employs a least squares generative adversarial network for data augmentation, achieving effective
data augmentation on a small-scale dataset. In summary, existing literature has not fundamentally
addressed the detection of outliers and anomalies, and it cannot guarantee that artificially generated
samples conform to the original time series distribution, which can easily interfere with the transient
stability evaluation of the model.
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In response to the practical problems of low quality of actual collected data, insufficient mining
of minority class samples, and weak generalization ability in existing research on transient stability
assessment, this paper proposes a transferable transient stability assessment method based on the
XGBoost model. The main contributions of the paper are highlighted as follows:

1. At the data level, to avoid noise interference, a data augmentation method based on the
gradient detector (GD) is employed to eliminate the influence of extreme outliers on the model
evaluation.

2. At the model level, the paper proposes an improved transient stability assessment method for
XGBoost. A regularization term is added to the original algorithm to prevent overfitting, and
the focal loss (FL) function is introduced to guide the model training [17], thereby enhancing
the mining of minority class samples.

3. A transfer learning approach based on model parameters and sample augmentation is intro-
duced. By fine-tuning the model parameters and augmenting the samples, the generalization
ability of the model to changes in the power system’s topology and operating conditions is
enhanced.

Overall, this paper presents a comprehensive approach based on the XGBoost model for transient
stability assessment. It addresses the challenges of minority class sample exploration, noise interfer-
ence, and generalization to different scenarios, providing an effective and accurate solution for power
system stability evaluation.

This paper is organized as follows. In Section 2, a sample feature enhancement strategy is proposed
for feature screening and noise interference elimination. In Section 3, The improved XGBoost model
has been introduced, achieving a focus on minority class samples. In Section 4, a complete transient
stability assessment process based on improved XGBoost has been introduced. Section 5 introduces
the implementation of the proposed method in the IEEE 39 example. The conclusion is presented in
Section 6.

2 Sample-Feature Enhancement Strategy

With the large-scale deployment of measurement components in power systems, an increasing
amount of operational data can be collected and aggregated in real-time [18]. However, on the one
hand, the data may be subject to noise and errors during measurement and transmission, which can
affect the model’s ability to identify the power system’s operating state. On the other hand, collecting
too many features can easily lead to the curse of dimensionality, reducing the efficiency of the model
[19]. Therefore, the support vector machine algorithm is used to detect and correct bad data, in order
to reduce the impact of bad data on situational awareness.

2.1 Sample Denoising
Taking advantage of the small magnitude of changes in the nearby region in a time series, the

rolling standard deviation (RSD) approach is used. This approach involves sliding a fixed-length time
window forward and, for each segment, calculating its mean and standard deviation. This process is
represented by Eq. (1).

si =
√

1
t

[
(x1 − xi)

2 + (x2 − xi)
2 + . . . + (xt − xi)

2

]
(1)
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In Eq. (1), i represents the window number; t represents the sliding time window length; x1 . . . xt

represents the feature value; xi is the average feature value of the segment, and si characterizes the
degree of feature dispersion. If the data falls outside a certain multiple of the standard deviation of
a sequence, the sample is likely to be an extreme outlier caused by noise interference and needs to
be removed promptly to avoid affecting model evaluation. Compared with the currently used global
outlier detection methods, this approach retains the trend of changes in power system time series,
considers the differences in feature values caused by different states, maximizes the integrity of normal
data, and the smaller the window length t, the more accurate the results.

2.2 Feature Dimension Reduction
Feature selection is crucial for evaluating the predictive accuracy of a model. However, the high-

dimensional data obtained from PMU direct measurements can lead to the curse of dimensionality,
increasing the time required for online evaluation and reducing the interpretability of the model.
The principles of feature selection are as follows [20]: (1) The selected feature subset has a strong
correlation with the target variable, meaning that the introduction of features can significantly reduce
the confusion of label classification. (2) The features within the feature subset have low redundancy,
so that the number of features is minimized without affecting accuracy.

Given a set of input variables X = {x1, x., . . . , xm} and an output variable y, the objective function
for selecting the optimal feature subset using the incremental method can be expressed as:

x∗ = arg max
xα∈X−XS

I ({X , xα}; y) (2)

where x∗ represents the feature to be added; xα is the set of remaining features, XS represents the
target feature subset, and I (XS; y) represents the mutual information between feature subset XS and
y, which represents the reduction in uncertainty of the target variable given the feature. Considering
the principle of minimum redundancy and maximum relevance, the feature selection strategy can be
equivalently expressed as:

x∗ = arg max
xα∈X−XS

⎡
⎣I (xα; y) −

∑
xi∈XS

I (xi; xα)

⎤
⎦ (3)

Based on determining the optimal feature dimension, the selection of each feature is based on its
contribution to the model evaluation. The shapley additive explanation (SHAP) method is an additive
feature attribution approach that fits the input data using a trained generalized weighted linear model.
The model’s prediction for any sample can be represented as the sum of the prediction expectation and
the SHAP values of all features of that sample, as shown in Eq. (4).

Yi = Ybase +
R∑

r=1

ϕi,r (4)

In the equation,Yi represents the final prediction value of sample i by the model; Ybase represents
the expectation of all sample predictions; r represents the feature index; R represents the total number
of features in the sample; ϕi,r represents the SHAP value of feature r for sample i, which characterizes
the marginal contribution of feature r to the prediction value.
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3 Improved XGBoost Model
3.1 XGBoost Algorithm with Regular Terms

XGBoost is an ensemble algorithm that performs parallel computations with multiple base
models [21]. Its objective function, denoted as Obj, is composed of the model’s loss function L and
a regularization term that suppresses model complexity, as shown in Eq. (5).

Obj =
n∑

i=1

L
(
ŷi, yi

) +
k∑

t=1

Ω (t) (5)

where i represents the sample; t represents the base model; ŷi represents the predicted value of the i-th
sample; yi is the true value of the i-th sample. L denotes the loss function. n represents the sample
capacity; k represents the number of iterations, and Ω is the complexity of each base model.

The loss function is typically chosen as either squared loss or logistic loss. When the base model
is selected as a decision tree, the complexity of the model is determined by the number of leaves and
the weights of the leaf nodes. By choosing the squared loss as the loss function and simplifying it
appropriately using Taylor expansion, the objective function can be obtained as Eq. (6).

Obj = −1
2

T∑
j=1

Gj
2

Hj + λ
+ γ T (6)

Gj =
∑
i∈Ij

gi =
∑
i∈Ij

∂ŷ(t−1)L
(
yi, ŷ(t−1)

)
(7)

Hj =
∑
i∈Ij

hj =
∑
i∈Ij

∂2
ŷ(t−1)L

(
yi, ŷ(t−1)

)
(8)

where T represents the number of tree models; λ and γ are regularization coefficients used to prevent
model overfitting.

Compute the first and second derivatives of each sample for each node, and then sum them up for
each node to obtain the objective function by traversing the decision tree. To evaluate the quality
of each tree structure, the exact greedy (EG) algorithm is adopted. When a tree splitting node is
encountered, Eq. (9) is used to determine the split.

Ga = LL + LR − LF (9)

where LL represents the loss value obtained by splitting the left node; LR represents the loss value
obtained by splitting the right node, and LF represents the loss value obtained by not splitting the
node and passing through the parent node. If Ga is greater than 0, the node will continue to be split,
otherwise the splitting will stop.

3.2 Improvement of Loss Function Based on Unbalanced Samples
Cross entropy (CE) is one of the most commonly used loss functions in the field of machine

learning [22], and is often used to guide model training in classification tasks. Its formula is as follows:

ICE

(
Y , �Y

)
= −

∑
i

[
yi · ln

(�yi

)]
, i = {0, 1} (10)

According to Eq. (10), it can be observed that as the distance between X and Y increases, the
value of Z becomes larger, resulting in a higher penalty for the model. In practical power systems,
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there are far fewer transient instability samples compared to stable samples, which leads to a model
that is more biased towards predicting stable samples and increases the misjudgment of unstable
samples. To address this class imbalance issue, there are currently two main methods [23]: at the data
level, techniques such as oversampling, undersampling, and data augmentation are employed; at the
algorithm level, weighted loss functions are used. In this paper, an improvement is made by introducing
the focal loss function, which is formulated as follows:

IFL

(
Y , �Y

)
=

⎧⎨
⎩

−α
(

1 − �yi

)β

· log �yi, yi = 1

− (1 − α) · �yi

β · log
(

1 − �yi

)
, yi = 0

(11)

where (0,1) represents the balancing factor, which is used to balance the ratio between the majority
class and the minority class samples; [0, +∞] represents the modulation factor, which can reduce the
loss function value of the majority class samples, thereby enlarging the difference in loss function
values between the minority and majority samples, and enhancing the weight of the minority samples
in the model. The remaining parameters are consistent with the definition in Eq. (10).

3.3 Transfer Learning Based on Model Parameters and Sample Enhancement
The data-driven transient stability assessment method is trained specifically for the studied

topology structure and operating conditions. However, when there are significant changes in the
topology structure or operating modes, the classification model trained for the previous topology may
no longer be applicable. Due to the large scale and diverse operating modes of practical power grids, it is
difficult to retrain samples that are suitable for the current operating mode to meet the requirements of
online real-time assessment. Therefore, this paper proposes to fine-tune the parameters of the original
evaluation model through transfer learning, so that it can still have good evaluation performance under
new operating modes.

Parameter fine-tuning is a method of model transfer, which transfers the network structure and
parameters of the pre-trained model in the source domain to the new model as the initial values in the
target domain, reducing the training time of the new model. Based on the model transfer mentioned
above, the network is fine-tuned using the new training set in the target domain to quickly obtain
a classification model suitable for the new operating conditions. The implementation of the transfer
scheme relies on the new sample set in the target domain. In order to reduce the time for generating
new operating condition samples and the number of samples in the target domain, this paper first
generates samples in the source domain by combining similar topology structures, and then applies
the data processing of the original system to the target domain system using sample transfer. The
calculation formula for selecting transferable samples from the source system is shown in Eq. (12).

{DT |max CE (Z, l, T) < σ , (Z, l) ∈ DT} (12)

where DT represents the sample set used for migration; CE (Z, l, T) is the Euclidean distance calculation
function; Z denotes the input features of the source domain samples, l represents the state labels of the
source domain samples; σ is a predetermined constant, and T represents the target domain sample set.

When the sum of all elements in the sample subset and the target domain sample set is less than a
threshold value, the sample subset can be used as the migration sample set. By merging it with a small
number of samples generated online, the goal is to ensure that the target domain data distribution is
essentially consistent with the synthesized data distribution. The unstable samples are enhanced using
Cross-Entropy (CE), as shown in Fig. 1. Finally, an appropriate transient stable prediction model for
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the target domain system is obtained, effectively addressing the time-consuming sample generation
and sample selection issues in transfer learning.

Figure 1: Comparison of sample set distribution before and after migration

4 Transient Stability Assessment Based on Improved XGBoost
4.1 Input Feature Selection

The selection and construction of input features directly impact the evaluation performance of the
TSA model [24]. The existing research categorizes the transient stability feature sets into two types:
the first type is based on expert knowledge, considering state variables that comprehensively reflect
the dynamic characteristics of the system during transient processes. It utilizes combined features
obtained through mathematical operations, but the calculations are complex and cannot guarantee
real-time evaluation. The second type directly uses time-series measurements from PMUs as inputs,
which can reduce subjectivity caused by human intervention and improve the computational speed of
the algorithm.

This paper aims to construct a TSA model that can perform online analysis based on underlying
measurement data. To ensure comprehensive coverage of transient information, the following electri-
cal quantities are selected as initial input features: bus voltage magnitude, phase angle, generator rotor
angle, angular velocity, active power, reactive power, active and reactive power of the AC transmission
lines, active and reactive power of the load. All these electrical quantities can be directly obtained
through PMUs [25].

4.2 Model Tag Construction
For the transient stability assessment (TSA) problem in power systems, it is typically classified as

a binary classification problem [26]. This paper introduces a transient stability index (TSI) [27], which
evaluates the power angle stability of the system after experiencing significant disturbances, as shown
in Eq. (13).

TSI = 360° − |Δδmax|
360° + |Δδmax| (13)
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where Δδmax represents the maximum angular difference in power angle between any two generators at
any given time. When Δδmax is less than 360°, i.e., TSI is greater than 0, the system is in transient stability,
and the sample is labeled as 0. Conversely, if the system is transiently unstable, with Δδmax exceeding
360°, the sample label is set as 1.

4.3 Model Evaluation Index
Accuracy is the most commonly used metric for evaluating the performance of machine learning

models, but it cannot reflect the degree of attention paid to minority class samples. In practical
applications, ignoring the judgment of unstable samples may cause large-scale cascading failures,
resulting in more serious consequences than misjudging stable samples as unstable samples. Therefore,
it is necessary to pay extra attention to the model’s ability to identify unstable samples, rather than
using a single overall accuracy metric to measure the performance of the transient voltage stability
assessment model. The confusion matrix for transient power angle stability evaluation is defined as
shown in Table 1.

Table 1: Confusion matrix for transient power angle stability assessment

Actual operating state The prediction results of the model

Stable Unstable

Stable T00 F01

Unstable F10 T11

In Table 1, T00, T11, F01, F10 respectively represent the number of samples correctly predicted as
stable, correctly predicted as unstable, stable samples incorrectly predicted as unstable, and unstable
samples predicted as stable. Based on this, the model performance evaluation metrics accuracy,
misjudgment rate, and recall are defined as shown in Eqs. (14)–(16).

ACC = T00 + T11

T00 + F01 + F10 + T11

(14)

MIS = F10

T00 + F01 + F10 + T11

(15)

REC = T11

F01 + F10

(16)

4.4 Evaluation Process
The TSA process based on improved XGBoost proposed in this paper consists of two parts, namely

offline training and online evaluation, as shown in Fig. 2.

Firstly, the raw dataset reflecting different power flow operating modes and fault conditions is
generated through time-domain simulation software, and the transient electrical quantities in 2.1 are
extracted as input features. The dataset is randomly divided into a training set and a test set, with
the training set used to construct the XGBoost model, and the test set used to evaluate the model’s
performance and adjust the model parameters based on the test results. At the same time, the original
sample set and model parameters are transferred to the target domain, and the model’s generalization
ability is validated on the test set in the target domain. In online applications, the transient power angle
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stability of the system can be quickly determined by feature selection based on real-time measurement
information provided by PMUs.

Power flow
setting

Transient
fault

Original
sample set

Training setTest set

Model
construction

Cross
entropy loss

function

Model testing

Accuracy rate
Misjudgment

rate
Recall rate

PMUs real-time
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Input feature
screening

Model training
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result

Performance
evaluation

Parameter
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Off-line training
Online

application

Generalization
ability

Parameter
migration

Sample
migration

Data preprocessing

RSD based
denoising

Feature selection

Performance
evaluation

Sample
enhancement

Feature
enhancement

Transient stability assessment

Figure 2: Transient stability assessment process

5 Analysis of Algorithms
5.1 Simulation Conditions

To validate the effectiveness of the proposed method, the commonly used IEEE 39-bus system
is adopted as a case study for transient stability analysis. The simulation platform used is PSASP.
Five different load levels are considered: 80%, 90%, 100%, 110%, and 120%. The fault type is three-
phase short circuit, occurring at 1%, 50%, and 99% of each line, with fault durations of 0.1, 0.15, and
0.2 s. Samples are labeled as stable if they remain stable during the fault, otherwise they are labeled as
unstable. A total of 12,000 samples are obtained through simulations, with 2,476 unstable samples and
9,524 stable samples. 70% of the samples are randomly selected as the training set, while the remaining
30% are used as the testing set.

5.2 Data Preprocessing
The time series extracted by PMU often contains outliers and outliers. In this paper, the gradient

detection method is adopted and the sliding time window size is set to 5, so that sample points with
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the smallest gradient change can be screened out in each segment to avoid the interference of extreme
data on sample prediction, as shown in Fig. 3.

Figure 3: Sample denoising based on gradient detection

In terms of features, the first step is to select the number of feature subsets based on the
incremental method and cross-validation. As shown in Fig. 4, when the number of features is 132,
the model achieves the optimal evaluation accuracy of 0.987. This ensures that the model covers the
essential transient information while minimizing the feature dimension as much as possible to improve
computational efficiency.

Figure 4: Sample denoising based on gradient detection

Next, the contribution of each input feature is ranked based on the SHAP principle, as shown
in Fig. 5. G represents the generator, B represents the bus, L represents the load, AP represents the
active power, PA represents the power angle, and VA represents the voltage amplitude. As shown in
the figure, features such as the active power of the generator, power angle difference, bus voltage, and
active power of the load have a significant impact on the transient stability of the system. Finally,
132-dimensional variables before contribution are selected as inputs to the data-driven model.
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Figure 5: Feature contribution degree based on SHAP

5.3 Model Performance Comparison
To verify the impact of the proposed sample-feature enhancement strategy on model evaluation

results, a comparison was made between the performance of the model using the original data, data
denoised using only rolling standard deviation, data with only feature reduction, data denoised using
the soft threshold method [12], and the proposed method in this paper, as shown in Table 2.

Table 2: Performance differences between different data processing methods

Data processing methods Accuracy rate/% Misjudgment rate/% Calculation time/ms

Raw data 95.3 2.8 672
Denoising based on rolling
standard deviation

97.5 1.6 741

Feature dimensionality
reduction

96.8 2.1 316

Soft threshold method for
denoising

97.3 1.6 1482

Proposed strategy 98.2 0.3 482

According to Table 2, the denoising method based on rolling standard deviation detection signif-
icantly improved the accuracy of the model and reduced the misjudgment rate by 1.2%. Although the
soft threshold denoising method had a similar prediction accuracy, it greatly increased the evaluation
time due to the need to calculate attention weights. The data enhancement strategy proposed in
this paper comprehensively considered the feature dimension and noise impact, which improved the
accuracy by 2.9% and reduced the computation time by 28.2%.

To compare the differences between commonly used machine learning models and the proposed
method, this study selects artificial neural network (ANN), multi-layer perceptron (MLP), random
forest (RF), convolutional neural networks (CNN), generative adversarial network (GAN), long short-
term memory network (LSTM), and support vector machine (SVM) as benchmarks for transient
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stability assessment. The training and testing samples used are consistent across all models. The
evaluation results of each model on the testing set are presented in Table 3.

Table 3: Comparison of experimental results

Models ACC/% REC/% MIS/%

ANN 96.5 92.8 1.68
MLP 95.4 89.7 2.47
SVM 94.7 86.1 2.96
RF 96.1 88.7 2.04
CNN 98.0 95.8 0.71
GAN 97.6 96.4 0.48
LSTM 97.5 96.0 1.05
Proposed XGBoost 98.2 96.4 0.32

According to Table 3, it can be seen that XGBoost has the highest evaluation accuracy, reaching
98.2%. ANN and MLP, as neural networks, also achieve relatively ideal results after parameter
optimization, but their accuracy is still 1.7% lower than that of XGBoost mentioned. SVM and
RF, as shallow machine learning models, have lower accuracy, especially in terms of recall rate and
misjudgment rate. CNN and GAN, after tuning and optimization, have an accuracy rate close to 98%,
but there is still a higher probability of failing to detect faults. Overall, the XGBoost mentioned in this
paper still has the highest recall rate, and the misjudgment rate can be reduced to 0.32%, which may
simultaneously ensure the precision and recall of unstable samples.

5.4 Migration Effect Analysis
5.4.1 Migration under Topology Change

For the IEEE 39-bus system, in order to enhance the adaptability to changes in the system struc-
ture after line faults or emergency controls, modifications were made to its topology and operation.
Three additional target scenarios were introduced, and their topology changes and simulation settings
are shown in Table 4. For different topology structures, the sample migration method proposed in
Section 3.3 was used to generate 3,000 training samples and 1,200 testing samples. The performance
effects of pre-migration samples, fine-tuning of the sample set, and the sample-model migration
method proposed in this paper were compared, and the test results are shown in Table 5.

Table 4: Source and target domain simulation setup under topology change

Systems Topological structure Generators Loads
level/%

Source domain IEEE 39 10 generators 80–120
Target domain 1 Disconnect five lines Remove 3 generators 80–120
Target domain 2 Increase 3 lines Increase 1 generator 80–120
Target domain 3 Disconnect 4 lines and

Increase 4 new ones
Remove 2 and Increase 2
generators

80–120
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Table 5: Comparison of migration schemes under topology changes

Systems Migration schemes ACC/% MIS/% REC/%

Target domain 1
Unadjust 91.67 90.24 4.05
Sample migration 93.42 92.68 2.17
Proposed method 96.77 94.13 0.88

Target domain 2
Unadjust 92.51 91.86 3.75
Sample migration 94.27 93.48 2.04
Proposed method 97.03 95.32 0.82

Target domain 3
Unadjust 88.27 86.55 6.28
Sample migration 90.34 89.04 5.74
Proposed method 95.18 94.98 1.98

From Table 5, it can be seen that due to significant changes in the sample distribution of the
target domain after topology changes, the performance of the model significantly decreases when
directly evaluating it with the model before topology changes. When only using the sample migration
method, there is some improvement, but the misjudgment rate and omission rate remain at a high
level. Moreover, for target domain 3, which experiences significant changes in topology, all indicators
show a noticeable decline, making it unsuitable for online applications. However, by using the method
proposed in this paper, compared to before migration, there is a significant improvement of 6.91%
and 8.43% in the highest achieved recall rate and precision rate for domains ACC and MIS, respectively.
Additionally, there is a 4.3% reduction in REC. This method significantly reduces the probability of
failing to detect instability in real power systems in a timely manner, achieving adaptive evaluation of
transient stability under topology changes.

5.4.2 Migration under Changing Operating Conditions

In order to enhance the adaptability under multiple operating conditions, we set up variations
in generator and load levels under the same topological structure conditions, as shown in Table 6.
For each operating condition, we generated 3,000 training samples and 1,200 testing samples. We
compared the performance of pre-migration, fine-tuning on the sample set, and the sample-model
migration method proposed in this paper, and the test results are shown in Table 7.

Table 6: Simulation settings for source and target domains under changing operating conditions

Systems Generators level/% Loads level/%

Source domain 100 80–120
Target domain 4 100 50–70
Target domain 5 80 80–120
Target domain 6 80 50–70
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Table 7: Comparison of migration schemes under changing operating conditions

Systems Migration schemes ACC/% MIS/% REC/%

Target domain 4
Unadjust 93.48 90.24 2.19
Sample migration 95.82 92.68 1.84
Proposed method 97.67 97.99 0.75

Target domain 5
Unadjust 93.04 92.86 2.77
Sample migration 95.18 95.29 2.05
Proposed method 98.27 97.90 0.95

Target domain 6
Unadjust 90.65 91.03 3.83
Sample migration 92.33 91.80 2.52
Proposed method 96.72 95.08 1.73

According to Table 7, it can be seen that the impact of changes in operating conditions on model
evaluation is weaker than that of changes in topology. The model still maintains an accuracy of 93.48%
without adjustment. However, when both the generator and load level are changed simultaneously,
the accuracy drops to nearly 90%. The method proposed in this paper can adapt to various extreme
changes, compared to single sample transfer, and has strong generalization ability, which can ensure
real-time response of online evaluation.

5.4.3 Migration Time Comparison

For a power system with a new topology or operating conditions, traditional methods generate a
large number of labeled samples by re-simulating and then retrain a new model based on these samples.
This process usually takes a lot of time. The comparison of the time consumption between the proposed
method and the retraining process is shown in Table 8.

Table 8: Comparison of time consumption of different migration schemes

System Schemes Sample time/s Model time/s Total time/s

Target domain 1
Retrain 397 173 570
Proposed method 18 22 40

Target domain 2
Retrain 362 248 610
Proposed method 16 23 39

Target domain 3 Retrain 585 376 961
Proposed method 20 25 45

The test results indicate that the proposed transfer learning method is significantly faster in terms
of training speed compared to retraining. For unidirectional adjustments in the topology structure,
the model’s update efficiency is improved by 14–15 times. For complex structural adjustments, the
efficiency improvement can exceed 20 times. This substantial reduction in online evaluation time meets
the requirements for timeliness.
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6 Conclusions

The paper proposes an improved XGBoost-based method for transient stability assessment,
aiming to address the issues of low accuracy and insufficient generalization ability in the existing power
system transient stability evaluation. The proposed method is tested and validated on the IEEE 39-bus
system, and the conclusions are as follows:

1) The proposed sample-feature enhancement strategy reduces extreme data caused by noise
interference, resulting in a 2.9% increase in accuracy and a 28.2% improvement in computational
efficiency compared to existing algorithms.

2) The proposed transient stability assessment algorithm improves the loss function based on
cross-entropy to guide the model’s attention towards unstable samples of the minority class. Compared
to existing machine learning methods, the accuracy is improved to 98.2%, and the misjudgment rate
is significantly reduced to below 0.35%.

3) The proposed transfer learning method based on model parameter and sample enhancement
demonstrates strong adaptability to changes in topology structure and operating conditions. It
achieves a 6.9% and 3.3% increase in accuracy respectively when facing changes in topology structure
and operating conditions. Moreover, the computational efficiency is improved by more than 14 times,
meeting the requirements for online evaluation.

The TSA method proposed in this paper qualitatively discriminates stable and unstable samples.
In future work, the stability and instability margins will be further quantified, and faulted lines under
transient instability conditions will be accurately identified using fault location techniques, providing
a basis for power grid dispatchers to investigate potential hidden dangers in the system. Additionally,
the offline sample set used for transient stability assessment is mostly generated through time-domain
simulation methods. Future research will focus on the sample level to make the simulated samples
more closely resemble actual measured data, thereby improving the evaluation model.
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