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ABSTRACT

When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changing
the states of tie-switches and load demands. Computation speed is one of the major performance indicators in
power grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault power
grids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient.
The tedious training process of the reinforcement learning model can be conducted offline, so the model shows
satisfactory performance in real-time operation, indicating that it is suitable for fast load transfer. Considering
that the reinforcement learning model performs poorly in satisfying safety constraints, a safe action-correction
framework is proposed to modify the learning model. In the framework, the action of load shedding is corrected
according to sensitivity analysis results under a small discrete increment so as to match the constraints of line flow
limits. The results of case studies indicate that the proposed method is practical for fast and safe power grid load
transfer.
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1 Introduction

Power grids, especially distribution networks, are usually designed with different operating modes.
In contrast to section switches, standby interconnection switches are normally turned on for emergency
reserve transfer. When a line failure occurs, power load transfer must be conducted to cut off faulty
equipment and restore the downstream power supply as soon as possible [1]. Enhancing the operating
speed of load transfer is significant because it will reduce economic losses during power failure.

With the development of novel power systems, distribution networks have received an increasing
amount of renewable power generation for the global carbon goal. Keeping the power balance becomes
more difficult since the reduced capacities of conventional power units will not be able to support the
power fluctuations of renewable power sources. In order to achieve a higher response speed of power
balancing, the characteristics of load demands have been greatly changed considering demand side
management. As a result, the difficulty of load transfer increases due to the changes in load demands.
Moreover, the topology of distribution networks becomes more complex as the number of electricity
consumers rises, increasing the difficulty of distribution network reconfiguration. Hence, the problem
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remains to develop advanced load transfer methods considering high-dimensional, strong-nonlinear
input states of power grids, which is the motivation of this study.

The major methods used to solve the problems of load transfer and power grid reconfiguration
can be categorized as mathematical programming, heuristics, and reinforcement learning [2,3]. For
mathematical programming, the non-convex nonlinear optimization of power grid load transfer
is generally converted into a second-order cone programming (SOCP) model. In reference [4], a
robust optimization method is proposed for distribution network reconfiguration with wind power.
In reference [5], the active and reactive power coordinated optimization is modeled as a mixed-
integer SOCP problem. A reliability assessment method is proposed in reference [6] for post-fault
reconstructed distribution networks, and the assessment is conducted by solving a mixed-integer linear
model. In reference [7], a stochastic optimization problem for power grid economic scheduling is
solved by the SOCP model. These mathematical programming methods usually achieve satisfactory
optimal results, but their computational loads increase greatly when the network size increases [8]. The
computational load cost may be unaffordable in the case of a line failure. Considering the category of
heuristic methods, various algorithms have been developed. In reference [9], a modified crow search
algorithm is proposed for multi-objective distribution network reconfiguration. Discrete particle
swarm optimization is proposed in reference [10] for a similar reconfiguration task. Moreover, a hybrid
heuristic-genetic algorithm [11], a jellyfish search algorithm [12], rain-fall optimization [13], and other
heuristic methods [14,15] have proven feasible for distribution network optimization. These methods
seek a balance between optimal results and computation loads by changing their hyper-parameters.
However, the generalization of heuristic algorithms cannot be guaranteed, and it is difficult and tedious
to determine the best algorithm for a specific task among the many available heuristic algorithms. With
the development of artificial intelligence technologies, reinforcement learning has been introduced to
power grid optimization tasks. The training process of reinforcement learning models is complex but
can be conducted offline. After training, the reinforcement learning model is capable of making real-
time load transfer decisions for post-fault power grids. Hence, the reinforcement learning method
shows an apparent advantage in response speed when solving load transfer problems. Moreover, an
artificial intelligence model such as a neural network can conveniently receive multiple input features,
indicating the merit of handling high-dimensional, strong-nonlinear input states of power grids.

Due to the advantages of reinforcement learning, many reinforcement-learning-based power grid
load transfer and network reconfiguration methods have been developed. In reference [16], a deep
Q-network (DQN) is adopted to control the status of tie-switches for network reconfiguration. The
DQN model is verified to be feasible in reference [17] for self-sufficient distribution networks with
renewable energy sources. In reference [18], a noisy net is proposed to improve the performance of
DQN by reducing voltage deviation and network loss. Based on a limited dataset of distribution
network operation, a batch-constrained reinforcement learning method is proposed in reference [19].
In reference [20], a sequential reinforcement learning framework with two sub-models is established for
unbalanced optimal grid operation. In reference [21], the DQN method is combined with probabilistic
power flow estimation for load transfer. A multi-agent reinforcement learning framework is developed
in reference [22] for AC/DC hybrid network reconfiguration. The aforementioned methods have
exhibited promising performance and high operating speed. However, the reinforcement learning
agent cannot account for the constraints of optimization problems, which may threaten the safety
of power grid operation. Additionally, it is difficult to design manual action regulations for the
reinforcement learning agent. Therefore, safe reinforcement learning methods need further research.

In terms of power grid scheduling studies based on safe reinforcement learning, a soft actor–
critic with constraint layers is developed in [23,24] for Volt-VAR control. In reference [25], a safety
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layer is adopted to predict constrained states for distribution network control. In reference [26], a
constrained policy optimization algorithm is proposed for power grid operation. Unfortunately, there
are few other related studies, and the safe models developed for specific tasks may not apply to all
power grid scheduling tasks. The research gaps of current load transfer studies are summarized as
follows:

• Research studies are currently pursuing reinforcement-learning-based methods to solve load
transfer problems, since these methods are efficient in handling high-dimensional power grid
states. However, the risk remains of using reinforcement learning to control power system opera-
tions, because the nonlinear neural networks are black-boxes. It should be further researched on
how to improve the safety of reinforcement-learning-based power grid load transfer methods.

• Although some load transfer studies have been developed based on safe reinforcement learning
technologies, the security domain of power system operating and the correction amount of load
transfer actions are usually measured in data-driven manners. The physical knowledge of power
systems needs to be mined to enhance the reliability of safe reinforcement learning.

• How to design the objective functions of reinforcement learning agents is a major difficulty for
power grid load transfer problems. A balance should be always sought between the security
and economy of load transfer results. The computation speed is also an important indicator to
ensure the timely elimination of power grid faults.

In order to fill the aforementioned research gaps, the major contributions of this study are
summarized as follows:

1. A safe reinforcement learning method is newly proposed for the real-time power grid load
transfer task. The load transfer problem is solved using a deep deterministic policy gradient
(DDPG) model in which the load-shedding amount and the tie-switch status are both involved
in the action space. The actions can be adaptively corrected in the method to enhance the safety
of the power system operating.

2. A safe action-correction framework is established in the proposed safe reinforcement learning
method. In the framework, a sensitivity analysis method is developed to compute the sensitivity
coefficients based on line-node power ratio matrixes. The method involves physical knowledge
of power systems as the guidance for action corrections.

3. Comparative studies reveal that the proposed method offers a promising computation speed
for load transfer, indicating that the method can decrease the economic loss of a post-fault
power grid. Meanwhile, the safety constraints of power grid load transfer can be always
satisfied in the proposed method.

2 Modeling of Power Grid Load Transfer

The purpose of load transfer is to restore power supply when a line failure occurs. The intercon-
nection switches and grid topology can be adjusted under load transfer control. In this case, power
grid load transfer is modeled as an optimization problem, where the objective is to reduce the power
load loss and the number of switch operations. The objective function is formulated as follows:

min
Pi,she ,Aj,sw

Cload

(
Nnode∑

i=1

Pi,org −
Nnode∑

i=1

Pi,res

)
+ Csw

(
Nsw,op

)
(1)

where Cload and Csw are the costs of power load loss and switch operations, respectively, and the costs
are usually formulated as second-order polynomial functions, Pi,org is the original power load from the
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ith node, Pi,res is the restored power load, Nnode is the number of load nodes, Nsw,op is the number of
operated switches, and Pi,she and Aj,sw are the control actions, denoting the amount of load shedding
and the on-off of a switch, respectively:

Pi,she = Pi,org − Pi,res; i ∈ [1, Nnode] , Pi,res ≤ Pi,org (2)

Aj,sw ∈ {0, 1} ; 0 ≤ j ≤ Nsw,op ≤ Nsw (3)

where Nsw is the total number of interconnection switches in the power grid.

During load transfer, the constraints of power grid operation must be satisfied. Generally, node
voltage and line power flow cannot exceed defined limits. The limits are formulated as:

Ui,min ≤ Ui ≤ Ui,max (4)

− Pij,max ≤ Pij ≤ Pij,max (5)

where i and j are the node indexes, Ui,min and Ui,max are the minimum and maximum voltage limits, and
Pij,max is the maximum line power flow limit. In summary, the power grid load transfer task in this study
is modeled under the following optimization problem:

minPi,she ,Aj,sw Cload

(
Nnode∑

i=1

Pi,org −
Nnode∑

i=1

Pi,res

)
+ Csw

(
Nsw,op

)

s.t.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pi,she = Pi,org − Pi,res

Aj,sw ∈ {0, 1}
Ui,min ≤ Ui ≤ Ui,max

−Pij,max ≤ Pij ≤ Pij,max

(6)

According to the aforementioned optimization problem, the action space of load shedding
amount is continuous and the space of tie-switch operations is discrete. A mixed integer programming
method is needed for load transfer. The problem is also high-dimensional and strong-nonlinear since
the number of network nodes is large and the computation of power loads is nonlinear. Therefore,
this paper proposes a novel safe reinforcement learning method to enhance the computation speed
of solving the load transfer problem. The principles and algorithms of the proposed method will be
introduced in the following section.

3 Safe Action-Correction Reinforcement Learning Method

A key requirement of load transfer is a good computational rate of model solving, which affects
the loss level of power line failure. Motivated by this, a reinforcement learning method is developed for
quick and intelligent load transfer control. Considering that the reinforcement learning method cannot
ensure safety constraints are satisfied, this study proposes an improved action-correction method for
safe control. The algorithms are detailed in this section.

3.1 Load Transfer Agent Based on Reinforcement Learning
The core of reinforcement learning is to train an intelligent agent to choose actions according

to the observed system states and reward rules. The agent proposed for power grid load transfer is
presented in Fig. 1.
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2. Load demand
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Rewards

2. Grid constraints

1. Operating costs

Figure 1: The intelligent agent for power grid load transfer

a) Actions

The actions of the agent include the load shedding amount and the on-off of switches, formulated
as follows:

A = {
Pi,she, Aj,sw

}
(7)

where A is the action space of the agent, and Pi,she and Aj,sw are defined according to Eqs. (2) and (3),
respectively. Specifically, the load-shedding amount is a continuous action, and the on-off of switches
is a discrete action.

b) States

The real-time power grid states are the major inputs of the agent. When line failure occurs, the
index of the faulty line should be provided. Thus, one-hot encoding is adopted for the state input of
line failure, as follows:

Slf = [
0 1 0 · · · 0

] ∈ N
1×Nline (8)

where Slf is the state input of line failure, and Nline is the total number of line branches in the power grid.
A line is faulty if s = 1

(
s ∈ Slf

)
; otherwise, the line is operating normally. The original load demand

Pi,org and power supply Gi,org of each node are also indispensable states for power flow computation.
Therefore, the state space is defined as follows:

S = [
Slf , Pi,org, Gi,org

]
, i ∈ [1, Nnode] (9)

c) Rewards

An agent prefers actions with higher rewards. Therefore, the reward function of load transfer is
modified based on the objective defined in Eq. (1), as follows:

Rcost = 1

Cload

(
Nnode∑

i=1

Pi,org −
Nnode∑

i=1

Pi,res

)
+ Csw

(
Nsw,op

) + ε

(10)

where a higher reward Rcost can be achieved with lower operating costs, and ε is a very small value that
prevents the function from being divided by zero. Moreover, a penalty is added to the reward function
to punish the agent for breaking the constraints or failing to converge. The total reward is formulated
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as:

R = Rcost + Rpen (11)

where Rpen is a negative penalty term whose absolute value is larger than the maximum Rcost in training
samples. Based on the previously defined action (A), state (S), and reward (R) functions, the intelligent
agent can be established using reinforcement learning. Since the action space is continuous due to the
load-shedding amount, the DDPG is adopted as the core agent model.

However, there is another difficulty in conventional reinforcement learning. Although the agent
is unlikely to break the constraints due to the penalty term in Eq. (11), the punishment-based method
cannot ensure that those constraints are always obeyed, so unsafe power grid operation may occur. To
solve this problem, the safe action-correction method is proposed in this study.

3.2 Deep Deterministic Policy Gradient (DDPG)
The DDPG model is developed based on a deterministic policy gradient and actor-critic methods

[27]. The deterministic policy gradient aims to train the agent model according to the gradient ascent
direction of policy-value functions. The method is defined as:

∇θJ (πθ) = Es∼ρπ

[∇θπθ (s)∇aQπ (s, a) |a=πθ (s)

]
(12)

where θ is the set of trainable parameters in the agent, J is the accumulated reward, πθ is the policy
function, s is the state, ρπ is the sampling space of states, Q is the action-value function, and a is the
action. Based on the deterministic policy gradient method, DDPG builds an actor model to choose the
deterministic policy and a critic model to evaluate the action-value function. Moreover, the actor and
critic both have two copies in DDPG, namely the main and target models. The two model copies can
update their trainable parameters asynchronously. The architecture of DDPG is shown in Fig. 2. The
variables of action (a), state (s), and reward (r) in the architecture are defined as A, S, and R according
to Eqs. (7)–(11).

Actor 
main

Critic 
main

Critic 
target

Actor 
target

s

s'

a = ��(s)

a' = ��'(s' )

Qw(s, a)

Qw'(s', a')

main

target

Main 
models:

Target 
models:

Update actor (�): min -Qw[s, a = ��(s)]

a = ��(s) Qw(s, a)(

Qw'(s', a')

Update critic (w): 
min MSE[Qw(s, a), 
r + �Qw'(s', a')]

Figure 2: Architecture of the deep deterministic policy gradient (DDPG)

Based on the architecture, the actor determines the deterministic policy based on the state input,
formulated as:

a = πθ (s) = MActor (s) (13)
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where MActor is the main actor model and θ is its trainable parameter set. Based on the state input, the
critic evaluates the value of the actor output, formulated as:

Qw (s, a) = MCritic (s, a) (14)

where MCritic is the main critic model and w is its trainable parameter set. The target models can be
built with the same input-output manner. Therefore, the main actor parameters can be updated by
maximizing the action-value function Q (i.e., by following the gradient ascent direction of Q), where
the objective is defined as:

max
θ

= Qw [s, a = πθ (s)] (15)

The main critic parameters are solved by minimizing the evaluation error of action-value functions
between the main and target models. This minimization objective is defined as:

min
w

= ‖Qw (s, a) − (r + γ Qw′ (s′, a′))‖2
2 (16)

where s′ and a′ are the state and action for the target model, w and w′ are the parameters of the main
and target models, respectively, r is the reward calculated based on Eq. (11), and γ is the constant
for discounted rewards. Hence, the training of main models in DDPG can be conducted. For target
models, the parameters are updated progressively under the following equations:{

θ ′ = τθ + (1 − τ) θ ′

w′ = τw + (1 − τ) w′ (17)

where 0 < τ < 1 is a weighting constant.

Based on the DDPG core models, an action-correction method is proposed to enhance the safety
of power grid load transfer. The structure of the method is detailed in the following subsection.

3.3 Safe Action-Correction Based on Power System Sensitivity Analysis
According to the original DDPG-based load transfer method, the safety constraints cannot be

guaranteed by using only a penalty reward on the agent. Compulsory measures must be developed to
correct agent actions. Generally, line overload is the major threat during load transfer due to the line
power flow limit, and load shedding is effective in handling the overload problem. It is also difficult to
precisely measure the security domain of line overload. In this study, a safe action-correction method
is proposed since the load-shedding amount Pi,she is one of the actions in the DDPG model. Moreover,
the load shedding amount is measured under a sensitivity analysis method. The structure of the safe
action-correction method is presented in Fig. 3. The procedures are as follows:

First, when a line failure occurs, states (s = S) of the power grid according to Eq. (9) are imported
to the DDPG, and the original actions (a = A) according to Eq. (7) are computed under the actor
model in DDPG.

Second, based on the original actions (a), the load transfer and power flow results are simulated
to evaluate the safety constraints according to Eqs. (4) and (5).

Third, if the safety constraints cannot be satisfied, the actions are corrected using sensitivity
analysis. The sensitivity analysis is conducted based on a line-node power ratio, formulated as [28]:

δk−i = λk−iUk,line

Ui,node

(
cos ϕk,line cos ϕi,node + sin ϕk,line sin ϕi,node

)
(18)
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where δk−i is the sensitivity coefficient between the kth branch line and ith node, Uk,line and ϕk,line are the
voltage drop modulus and phase angle of the line head of the kth branch, respectively, Ui,node and ϕi,node

are the voltage modulus and phase angle of the ith node, respectively, and λk−i is the line-node power
ratio defined by:

λk−i ∈ Mλ = YlineAnode
TY−1

node ∈ R
Nline×Nnode (19)

where Mλ is the ratio matrix with a size of Nline lines and Nnode nodes, Yline is the line admittance matrix,
Ynode is the node admittance matrix, and Anode is the node incidence matrix.

Power grid

DDPG

Actor

Critic

State (s)

Action-
value (Q)

Satisfy safety
constraints?

No

Yes

Sensitivity analysis

Action correlation

Action (a) fy safety
traints?

oNo

ity analysis

correlation

Power grid (after 
load transferring )

Action (a)
~ ~

Reward (r)

DDPG model training

Figure 3: Structure of the proposed safe action-correction method

Fourth, based on the analysis results λk−i ∈ Mλ and the overload line, the node most sensitive
to shed load demand is identified. Since the load shedding amount is the DDPG action, the action
correction is formulated as:
P̃i,she = Pi,she + αPi,org;

P̃i,she ∈ A, P̃i,she ≥ Pi,she

(20)

where A is the action space, P̃i,she is the corrected action, and α is the shedding coefficient. A smaller
value of α denotes a more precise correction, which will require a longer operating time.

Afterward, the sensitivity analysis and action correction can be repeated until the safety con-
straints in Eqs. (4) and (5) are satisfied. The corrected actions (ã) are thus obtained.

Finally, the corrected actions are used to update the DDPG parameters according to Eqs. (15)
and (16). Specifically, the load-shedding amount during safe action correction will receive a larger
punishment, modifying the reward function in Eq. (11) to the following form:

R̃ = 1

2Cload

(
Nnode∑

i=1

P̃i,she

)
− Cload

(
Nnode∑

i=1

Pi,she

)
+ Csw

(
Nsw,op

) + ε

+ Rpen (21)

where Pi,she is the original action from DDPG, and P̃i,she is the corrected amount. Accordingly, the cost
of load shedding from action correction is higher than that from the DDPG actor, preventing DDPG
from frequently breaking the safety constraints. Moreover, since the constraints can always be satisfied
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after the proposed correction method, the penalty term Rpen is merely used to evaluate whether the load
transfer has successfully converged.

As previously mentioned, conditional judgment can always ensure the constraints during DDPG-
based load transfer, thus enhancing the safety of power grid operation. The proposed method is
verified through comparative studies in the following section.

4 Results and Discussion

Experiments are conducted based on a distribution network case modified from the IEEE 33-
bus system. The topology of the network is presented in Fig. 4 according to [29]. The power supply
is provided on bus 1. The hourly solar photovoltaic forecasts and electricity load demand forecasts
are both sampled from the real-world ISO-New dataset [30], and are then normalized to fit the
unit values in the IEEE 33-bus case. Based on the dataset, real-time power grid load transfer is
operated under one-hour intervals. The distribution networks contain five tie-switches for backup.
The switches are normally off but can be turned on for load transfer under emergency conditions. The
parameter configurations of experiments are determined as follows: the cost functions are Cload (P) =
22 × P2 (p.u.) and Csw (N) = 3 × N2, the penalty term is Rpen = −5 for breaking safety constraints
and Rpen = −10 for failing to converge, the weighting constant for DDPG training is τ = 0.1, the load
shedding coefficient of action-correction is α = 0.02, and the discounted reward constant is γ = 0.9.
Under these configurations, the proposed load transfer agent is trained based on the real-world load
dataset, where the line failure randomly occurs at one of the 32 branches, except for branches 1–2.

1 2 3 4 5 6 7 88 9 10 11 12 13 14 15 16 17 1833 66

23 24 25

26 27 28 299 300 311 322 33

19 20 21 22

266 2727 2828 22929299299999

55 6166 1717 111111

2212222111 2222

Node

Node with photovoltaics

Line with tie-switches

9 100 1111 1212 1313 1414 1111111

Figure 4: Topology of the IEEE 33-bus distribution network

4.1 Comparative Results
The proposed safe action correction is verified by comparison with two benchmark methods,

including a genetic algorithm, which is a heuristic method, and a reinforcement learning agent without
safe action correction. The two benchmarks both involve penalty terms to handle safety constraints. In
Table 1, the results of actions and rewards for different methods are compared. The reward is computed
using the function in Eq. (10) under several experimental trials. According to the comparisons of
actions and rewards, the three methods have similar load-shedding ratios and total rewards. However,
the genetic algorithm operates tie-switches more frequently compared with the two DDPG-based
methods, usually performing 4 or 5 switch actions. As a result, the genetic algorithm obtains the lowest
total reward (8.20 × 10−4) and is inferior to DDPG in this study. The comparison of rewards between
the genetic algorithm and the proposed DDPG method is presented in Fig. 5. The distributions of
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rewards match the numerical results in Table 1, indicating that the proposed DDPG outperforms the
genetic algorithm during load transfer due to higher rewards.

Table 1: Comparisons of actions and rewards for different methods

Method Ratio of load shedding Number of switch
actions

Reward

Genetic algorithm 0.243 ± 0.015 4.76 ± 0.52 (8.20 ± 0.66) × 10−4

DDPG without safe
action-correction

0.211 ± 0.016 3.04 ± 0.22 (10.30 ± 0.78) × 10−4

DDPG with safe action
correction (proposed)

0.258 ± 0.015 3.23 ± 0.45 (9.53 ± 0.52) × 10−4

6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
× 10

-4
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Figure 5: Comparison of rewards between the genetic algorithm and the proposed DDPG method

From the comparisons of actions and rewards, the DDPG methods with and without safe action
correction achieve similar results, with both outperforming the genetic algorithm. Furthermore, the
safety of each method is evaluated, and the results are shown in Table 2. Three metrics are adopted,
including connecting the topology, converging successfully, and satisfying the safety constraints.
Connecting the topology means that the tie-switches operate well and there is no isolated node in the
distribution network with one line failure. Converging successfully indicates that the computation of
load transfer has converged without fully considering the constraints. Satisfying the safety constraints
requires that the agents do not break any constraints. On the testing samples, the two DDPG methods
always connect the topology and converge successfully. However, the genetic algorithm merely achieves
a 95.45% ratio in connecting the topology and a 92.50% ratio in converging successfully. The DDPG
without action-correction can usually satisfy the safety constraints with a high probability of 98.13%,
but the proposed method of DDPG with action-correction improves the probability to 100%, showing
that the proposed method can always ensure the safety constraints are satisfied with just a slight
decrease in rewards.

The computation times of the three methods are recorded and compared, and the results are shown
in Table 3. The genetic algorithm requires large computation loads because it takes an average time of
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587.24 s for the algorithm to solve each load transfer scenario. The DDPG method without safe action-
correction takes an average of 0.18 s for power grid load transfer using a well-trained agent, which is the
shortest computation time. Compared with the conventional DDPG method, the proposed method
requires a longer decision-making time due to the loop of action-correction. However, the proposed
method’s total decision-making time is still considerably shorter than that of the genetic algorithm. In
fact, the proposed method is fast enough for the real-time load transfer applications of distribution
networks.

Table 2: Comparisons of operating safety for different methods

Method Percent of connecting
the topology (%)

Percent of succeeding
in converging (%)

Percent of satisfying
safety constraints
(%)

Genetic algorithm 95.45 92.50 84.67
DDPG without safe
action-correction

100 100 98.13

DDPG with safe
action-correction
(proposed)

100 100 100

Table 3: Comparisons of computation time for different methods

Method Time of decision-making (s)

Genetic algorithm 587.24
DDPG without safe action-correction 0.18
DDPG with safe action-correction (proposed) 6.43

4.2 Performance of the Proposed Method
The aforementioned study results indicate the superiority of the proposed method compared

with benchmark methods. Therefore, the performance of the proposed method is tested on a detailed
operating scenario. The net loads considering distributed photovoltaics in the scenario are provided
in Fig. 6. The line failure occurs on the 29th branch between bus #29 and #30. In this case, the load
transfer agent turns three tie-switches on, connecting the branches 25–29, 33–18, and 9–15. Due to
overload, load shedding is conducted as shown in Fig. 6b. Buses #24, #25, and #30 decrease load
demands to meet the safety constraints using the proposed method.

4.3 Repetitive Experiments and Discussion
In addition to the case of the IEEE 33-bus system, cases of a 69-bus distribution system [31]

and a 141-bus distribution system [32] are adopted for further comparative experiments between
the conventional reinforcement learning method and the proposed safe action-correction method.
Specifically, the 69-bus system is modified by adding tie-switches 11–43, 13–20, 15–46, 27–65, and
50–59. The 141-bus system is modified by adding tie-switches 5–86, 20–130, 32–82, 52–80, 59–66, 71–
86, 94–104, 98–125, and 100–109. Since the training process of the reinforcement learning methods
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contains randomness, experiments are repeated ten times for all three distribution network cases. The
experimental results are presented in Table 4.
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Figure 6: Intelligent load transfer results based on the proposed method. (a) Actions of tie-switches.
(b) Actions of load shedding

Table 4: Results of repetitive experiments based on different distribution network cases

Distribution network case Percent of satisfying safety constraints (%)

Conventional DDPG Safe action-correction DDPG (proposed)

33-bus system 98.13 ± 1.55 100 ± 0.00
69-bus system 96.77 ± 1.76 100 ± 0.00
141-bus system 95.12 ± 3.11 100 ± 0.00

The experimental results show that the probability of conventional DDPG satisfying the safety
constraints drops slightly as the scale of the distribution system increases. The fluctuation of con-
ventional DDPG solutions also rises according to the standard deviations of probabilities, since the
training process becomes more complex with more network nodes. In contrast, the proposed method
can always satisfy the safety constraints in the three system cases and the ten repetitive trials. According
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to all the experiments conducted in this study, the strengths and weaknesses of different reinforcement
learning methods are summarized as follows:

• Conventional reinforcement learning methods with penalty terms: The advantages of these
methods are the convenient training process and the high decision-making speed, as indicated
in Table 3. However, the weighting coefficients of rewards are difficult to configure. An
unreasonable reward function may reduce the probability of satisfying the safety constraints.

• The proposed safe action-correction reinforcement learning method: The merit of the proposed
method is that the method can always ensure the safety constraints are satisfied based on
manual action-corrections. However, the method is weak in computational speed due to the
loop operations of discriminating constraints and correcting actions.

5 Conclusion

The real-time power grid load transfer task adjusts the ties-switches and the network topology
during line failure to ensure stable power supplies. A high computation speed is required to minimize
the net load loss. With the rapid development of artificial intelligence, reinforcement learning methods
have been applied to load transfer, especially in distribution networks. Although reinforcement
learning methods show satisfactory computation speed, these methods cannot ensure constraints are
satisfied when solving optimization problems. This shortcoming of reinforcement learning increases
the security risk of power grid operation.

In order to solve the shortcoming, this study proposes a safe action-correction method to
improve the DDPG-based load transfer agents. The method is based on network sensitivity analysis
and can modify the load shedding amount to always ensure the safe operation of power grids.
The comparative results indicate that the proposed method outperforms the benchmark methods
in handling safety constraints. The reward function and the computation time receive merely little
degeneration compared with the conventional DDPG method.
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