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ABSTRACT

Based on the actual data collected from the tight sandstone development zone, correlation analysis using the
Spearman method was conducted to determine the main factors influencing the gas production rate of tight
sandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracture
propagation and production was completed. Based on data analysis, the hydraulic fracture parameters were
optimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influence
of geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.
Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. The
data analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness and
permeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppant
addition significantly impact the gas production rate as engineering factors. Among these factors, the influence of
geological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing the
fracturing interval and adjusting the geological development well location. Given the existing well location, there
is limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturing
parameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and a
data-driven fracturing parameter optimization method was employed to determine the basic adjustment direction
for reservoir stimulation in the target block. This approach provides insights into the influence of geological,
stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameter
optimization design can significantly reduce the modeling and simulation workload and guide field operations to
improve and optimize hydraulic fracturing efficiency.
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1 Introduction

The rapid advancement in data science has recently led to the adoption of data-driven analysis
methods for oil and gas exploration and development. These methods have shown promising results
and opened new avenues for reducing costs and enhancing the recovery of oil and gas reservoirs
[1–4]. One such example is in tight sandstone gas reservoir development, where studies have shown
that efficient and accurate fracturing design is crucial for production increase. Although hydraulic
fracturing parameter optimization technology has made significant progress, constructing complex
geological and reservoir models and conducting numerical simulations of the entire process are
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necessary to achieve it. However, due to the factors affecting fracturing, such as geological parameters,
fracturing treatment parameters, production dynamic parameters, and complex relationships among
fracturing parameters, numerical simulation methods sometimes fail to find the main control factors.
Additionally, simulations mostly use static data, which cannot be integrated with dynamic production
data. This can lead to directional deviations during post hydraulic fracturing evaluation and the
development of strategies to improve fractured well production. Therefore, it is of great significance
to conduct data-driven fracturing parameter optimization research.

Many scholars have focused on integrating fractured well data to analyze the main controlling
factors of production [5–7]. Most scholars optimize reservoir production prediction and fracturing
design through machine learning methods. For instance, Pankai et al. [8] used numerical simulation to
build 2000 data points, a machine learning-based shale oil production prediction agent model, and pre-
dicted oil production. Liang et al. [9] established the relationship between estimated ultimate recovery
and fracturing/reservoir parameters and identified the ten most important parameters. Luo et al. [10]
used big data to assess the main factors affecting annual oil production. Xu et al. [11–13] theoretically
studied the main controlling factors affecting the productivity of horizontal wells in tight gas reservoirs
using numerical simulation, big data analysis, statistics, and the grey correlation method. However,
while simple data-driven methods can provide macroscopic and directional guidance, quantitative
analysis of specific fracturing parameters still requires numerical simulation. Therefore, combining
the advantages of the two methods, i.e., data-driven and numerical simulation, to optimize fracture
parameters in a data-oriented mode is of great significance. Alghamdi et al. [14] utilized Artificial
Neural Networks (ANN) to estimate the flow rate of 30 tight gas wells, achieving AI-enabled accurate
production surveillance of big-bore wells. Rollins et al. [15] utilized big data to create an easy-to-use
tool for the rapid allocation and assessment of production for any area in the continental United
States, and allocate it to the perforated formations associated with each well’s complex production
history. Trang et al. [16] presented the gas and condensate production prediction method based on the
ANFIS (adaptive neuro-fuzzy inference system) and the Takagi-Sugeno FIS (fuzzy inference system)
with multiple real-time surface inputs based on big data. According to former research, the majority
of studies focus on the gas production simulation while rare studies concentrate on the data mining in
the fracturing parameters optimization.

This study focused on a tight gas reservoir in the Ordos Basin and collected data from 125
fracturing wells. The main controlling factors of gas flow in the development zone were determined
using data correlation analysis. X1 and X2 production areas were used to analyze the differences
between geological and fracturing factors. Finally, multilevel superimposed geological modeling
was conducted using the fracture propagation-production theoretical model to optimize hydraulic
fracturing parameters. This technical approach can provide a valuable guide for subsequent hydraulic
fracturing design in tight gas reservoirs.

2 Integrated Fracturing Simulation of Geological Engineering
2.1 Geological Survey of Tight Gas Reservoir in the Study Area

This study was conducted in a tight gas reservoir in Ordos Basin, which is located in the transition
position of the Yishan slope and Jinxi flexural fold belt. The study block is located west of the
Lishi fault zone and has similar structural conditions to the Yishan slope. The internal deposits
of the strata are continuous, all of which are integrated contact, and consist mainly of marine-
continental transitional facies and continental clastic rock deposits. The strata consist of various
formations, including Carboniferous Benxi, Permian Taiyuan, Shanxi, Lower Shihezi, Upper Shihezi,
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and Shiqianfeng (see Table 1). The comprehensive evaluation study area is a medium-shallow, low-
porosity, ultra-low permeability, atmospheric pressure, low abundance, low production, and constant
volume elastic driven small lithologic gas reservoir. During the pre-exploration stage of the gas field,
several relatively rich areas were selected based on three-dimensional (3D) seismic data and the
exploration results of neighboring areas. However, the productivity of each development zone differs
significantly, and the main controlling factors of productivity were unclear. Currently, the tight gas
field has entered the development stage, and the pilot experiment of fracturing retreatment has been
successful. However, the production capacity of each development zone varies greatly, and the main
controlling factors of production capacity are unclear. Therefore, conducting studies on hydraulic
fracturing parameter optimization is necessary to provide a reference for the subsequent exploration
and development of the study block.

Table 1: The stratigraphic interpretation result of target formation

Formation system Stratum Thickness/m Sedimentary facies Tectonic
evolution

The upper permian The Shiqianfeng
formation

190–230 Lake Inland basin

Facies
Middle permian Shangshihe

formation
170–220 Meanderriver Offshorebasin

Xiashihezi formation 180–210 Delta
The lowerpermian Shanxi formation 80–110 Delta

Taiyuan formation 70–100 Tidal flat Epicontin
Upper carboniferous
series

Benxi formation 30–80 Shallow shelf Ental seabasin

2.2 Integrated Modeling Method of Geological Engineering
In view of the geological structure characteristics of the study block, the integrated model of

geology and mechanics was perfected based on reservoir logging prediction and evaluation technology.
Meanwhile, the parameter characteristics of the physical property and stress of a single well need
to be modified based on laboratory test data. In constructing the integrated model, the final
model was mainly constructed using stepwise superposition technology. However, for the attribute
model, the sequential Gaussian simulation was used to obtain the continuous distribution of each
reservoir attribute. The distribution characteristics of porosity and permeability were established
under the control of the microphase model through the normal distribution transformation and
variation function analysis of the porosity and permeability values in each well. A multiattribute
and multisource information modeling scheme was adopted for natural fracture modeling. Large-
scale natural fractures were constrained using seismic interpretation results (coherence, curvature, and
ant body), while medium and small-scale natural fractures were constructed using random modeling
methods and constrained using core observation and imaging data. The elastic parameters of the
target layer were determined using 3D seismic velocity data to realize 3D rock mechanics parameter
modeling. The 3D ground stress distribution was based on the boundary load method, and the finite
element inversion modeling method of the fusion optimization algorithm was used to obtain 3D stress
modeling. Figs. 1 and 2 show the relevant single well and 3D modeling results, respectively. The main



1660 EE, 2024, vol.121, no.6

lithologies of the target layers in the study area are sandstone, mudstone, coal rock and tuff, among
which the two key layers of Shihezi 7 and Shihezi 8 are mainly sandstone and mudstone, and it can be
found that the mechanical parameters of sandstone and mudstone are widely different. The Young’s
modulus ranges from 22.15 to 35.27 GPa, the Poisson’s ratio ranges from 0.18 to 0.22. The sandstone
reservoir of the L Formation in the central area of Linxing is a normal stress formation with a minimum
horizontal principal stress gradient of 0.017–0.021 MPa/m and a maximum horizontal principal stress
gradient of 0.020–0.025 MPa/m.

Figure 1: (Continued)
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Figure 1: The modeling results of single well geological and stress characteristics were studied

Figure 2: The results of 3D geological and stress modeling of the block are studied
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3 Analysis of Main Controlling Factors of Gas Production
3.1 Collected Data Characteristics

The original data was analyzed and processed to obtain data from 125 Wells in two development
zones, including the pilot. The preliminary screening analysis of these data shows that the influencing
factors of fracturing productivity in this block can be divided into geological factors and fracturing
engineering factors, etc. Gas production rate is used to measure fractured well productivity, and a total
of 12 influencing factors are screened, as shown in Table 2.

Table 2: Classification of influencing factors

Influencing factor Type Parameter

Geological factor Reservoir characteristics Thickness, porosity, permeability,
gas saturation, rock density

Fracturing treatment factor Fracturing scale Actual proppant volume, proppant
ratio, fracturing fluid volume

Flowback condition Amount of flowback liquid and
flowback rate

3.2 Data-Driven Approach
Correlation coefficient indexes in statistics mainly include Spearman, Pearson and Kendall

correlation coefficients. The coefficient index was originally based on bivariate data (X1, Y1), (X2,
Y2),... Since the sample statistics of (Xn, Yn), data (X, Y) are Independent and idendistributed,
with continuous joint distribution function H of marginal F and G, respectively [17]. In 1959, Sklar
introduced the copula theory and expressed C: [0, 1] × [0, 1] → [0, 1] as a copula function, making
H(x, y) = C(F(x), G(y)). For the continuous distribution function, copula function is unique [18]. The
Copula function describes the dependence between X and Y, and the dependence does not change,
only the marginal distribution function changes with the transformation. The correlation coefficient r
reflects the correlation degree of the linear relationship between the two variables. The range [−1,
1], the closer the absolute value is to 1, the closer the relationship between the two variables is.
The correlation coefficient standard is shown in Table 3. Considering the requirement of normal
distribution and linear relationship of data when using Spearman and other methods, the Spearman
correlation coefficient method is adopted to analyze fracturing parameters.

Table 3: Correlation coefficient criteria [19,20]

Range of |r| Degree of correlation

[0, 0.2) Very weakly correlated or irrelevant
[0.2, 0.4) Weak correlation
[0.4, 0.6) Moderate correlation
[0.6, 0.8) Strong correlation
[0.8, 1.0) Extremely strong correlation

Spearman correlation coefficient is a kind of rank correlation coefficient. Compared with the
Spearman correlation coefficient, it does not have many restrictions (such as conforming to a normal
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distribution and large capacity), and it is not affected by outliers and is suitable for nonlinear data
analysis. For Spearman’s correlation coefficient, you do not need to care about how the data changes
and what kind of distribution it fits, you just need to care about the position of the corresponding value
of each variable. The total parameter ρs can also be expressed in terms of consistent and inconsistent
pairs, similar to Kendall correlation coefficients, but requires three pairs of binary random variables
(X1, Y1), (X2, Y2) and (X3, Y3). The parameters are defined as follows:

ρs = 3 [P ((X2 − X1) (Y3 − Y1) > 0)

− P ((X2 − X1) (Y3 − Y1) < 0)

= 12P ((X2 > X1, Y3 > Y1) > 0) − 3 (1)

Spearman’s correlation coefficient rs is defined as:

rs = 1 − 6
n (n2 − 1)

n∑

i=1

[
RX

i − RY
i

]2
(2)

3.3 Main Control Factor Determination
Based on the above three analysis methods, data-driven analysis of geological and fracturing

treatment-related parameters of two blocks in the study block was completed. Table 4 presents the
analysis results. Among them, the thickness, permeability, porosity, and gas saturation of geological
parameters in the X2 production area were highly correlated with the amount of treatment fluid in
fracturing treatment parameters. However, the gas flow rate in the X1 production zone had a relatively
modest correlation with geological and engineering parameters. Only the thickness and the actual
amount of proppant added affected the production of the final fractured well, indicating that these
parameters have a strong influence. The results of Kendall Spearman correlation analyses are similar
to those of Spearman correlation analysis.

Table 4: Spearman data-driven correlation analysis of gas production control factors

Block X1 development zone X2 development zone

Thickness Moderate correlation Weak correlation
Rock density Moderate correlation Weak correlation

Geological parameter Porosity Weak correlation Strong correlation
Permeability Moderate correlation Strong correlation
Gas saturation Weak correlation Moderate correlation

Actual proppant
volume

Moderate correlation Moderate correlation

Proppant ratio Weak correlation Very weakly correlated
Fracturing treatment
parameters

Treatment fluid
volume

Weak correlation Moderate correlation

Amount of flowback
fluid

Weak correlation
(negative)

Weak correlation
(negative)
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4 Case Study

Taking the X1 and X2 development zones of the study block as examples, both development
zones are tight sandstone gas reservoir blocks, with development horizons dominated by Shihezi 7
and Shihezi 8. The lithology of the blocks is similar, and the fracturing and reconstruction techniques
used are similar. However, the gas production rates of the two development zones are quite different.
The statistical results of gas production rates of typical wells are shown in Fig. 3.
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Figure 3: Comparison of gas production in X1 and X2 development zones

4.1 Difference Analysis of Geological Factors
Fig. 4 shows the comparison of geological parameters. The average porosity and gas saturation

in the X2 development zone were similar to those in the X1 development zone (less than 10% dif-
ference). However, the average reservoir thickness and permeability increased by 32.95% and 33.65%,
respectively. Therefore, it was found that the gas flow differential in the X1 and X2 development zones
was greatly influenced by geological factors such as reservoir thickness and permeability. This result is
also related to the deviation in understanding the well and layer selection in this area during the early
development stage. With the continuous development and progress of new exploration technology, the
development horizon can gradually approach the area with a better geological sweet spot. However, in
the case of the X1 development zone, geological understanding is lacking, resulting in a poor selection
of predevelopment wells in the optimal perforating zone.

4.2 Analysis of Variance of Engineering Factors
Fig. 5 shows the comparison of fracturing treatment parameters. A similar transformation

method was adopted for fracturing in the X1 and X2 development zones, and there was little
difference in the actual proppant volume and proppant ratio parameters. Compared with the X1
development zone, the average treatment fluid volume in the X2 development zone increased by 42%.
The correlation analysis showed that the treatment fluid volume in X1 and X2 development zones was
highly correlated with the gas flow. The average flow-back volume in the X2 development zone was
40% less than that in the X1, and the flow-back rate was less than half of that in the X1 production zone.
After fracturing in the study block, the gas flow rate decreased with an increase in the actual fracturing
fluid flow-back rate. This is because the reservoir physical property in the location of the fracturing
well is relatively good; therefore, the volume of fracturing fluid into the ground will be smaller, and the
fracturing effect will be better. The results of correlation analysis showed that the amount of flow-back
liquid and rate was negatively correlated with the gas flow rate, and the flow-back rate had a more
significant influence. Therefore, the difference in gas flow in X1 and X2 development zones is greatly
affected by the amount of treatment fluid and proppant addition, which indicates that the geological
condition of the X2 development zone is better than that of X1.
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(a) reservoir thickness correlation
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(b) porosity comparison
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(d) gas saturation comparison

0
10
20
30
40
50
60
70
80
90

100

G
as

 s
at

ur
at

io
n 

/%
Well number

X1 development zone
Mean gas saturation 52.99%

X2 development zone
Mean gas saturation 57.62%

Figure 4: Comparisons of geological parameters in X1 and X2 development zones

(b) Proppant ratio comparison
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(c) fracturing liquid volume comparison (d) flowback fluid volume comparison
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Figure 5: Comparison of engineering parameters of X1 and X2 development zones

4.3 Example of Data Driven Fracturing Parameter Optimization
After combining the data analysis results, it was found that the key parameters affecting the gas

flow rate of the two blocks were not the same. Therefore, the basic data of multiple wells in this block



1666 EE, 2024, vol.121, no.6

was further used to conduct numerical simulations of fracturing production. The personalized fracture
parameter optimization of different blocks was achieved using the dual-driven method of theory and
data. Using the integrated fracturing numerical simulation software of geological engineering, two
typical wells in X1 and X2 development zones, L1 and L2, were selected to analyze the numerical
simulation results of fracture parameter optimization, and the change law of the modified volume
after optimization was compared. The selected well L1 and L2, were buried between 1400 and 1500 m,
and the main formation was situated in the He7 Member. The drilling rate of the sand body was
96.44%, and the geomechanical characteristics of the two wells were similar, with Young’s modulus
between 17.76 and 24.52 GPa. The brittle index of both wells was between 65 and 76, and the different
coefficients of horizontal stress were about 0.2. Both wells were treated with a tight sandstone gas
fracturing liquid system with low temperature and low concentration of melon gum.

Fig. 6 shows the fracturing numerical simulation results. The length of the fractured well L1 was
148 m, and the fracture width was about 4.2 mm, whereas the length of the fractured well L2 was
91 m, and the fracture width was about 3.7 mm. The production of the fractured wells under different
conditions was simulated by changing the treatment parameters, as shown in Fig. 7. According to the
simulation results of fracture parameter optimization, it was observed that for the well L1 in the X1
development zone, the production of fracturing reconstruction showed a slow-increasing trend with a
continuous increase in liquid injection volume, but the overall increase was not significant. However,
the increase in proppant addition during fracturing showed a downward trend after increasing to
a certain range. On the other hand, for well L2 in the X2 development zone, the production of
fractured wells gradually increased with an increase in the fluid used strength and proppant-added
volume. When the production of fractured wells reached a certain level, the injected fluid and liquid
filtration volumes reached a balance. It was challenging to increase the production by increasing
the fluid used volume. However, increasing the strength of sand addition can increase the effective
support reconstruction volume and thus increase production. When the strength of sand addition
reaches a certain value, the fracture conductivity meets the tight gas conductivity, which can increase
the treatment displacement. The optimized liquid and proppant volumes were adopted for different
fracture stage lengths. By comparing the simulation scheme with the field treatment examples, the
development strategies of the X1 and X2 development zones were further determined. The perforation
interval in the X1 development zone was further optimized to ensure that the advantageous geological
sweet spot is fully utilized, whereas the X2 development zone can improve the production of a
single well through fracturing measures such as optimizing the discharge rate and proppant injection
intensity. The optimization technology was applied to 12 wells in this area, and the average test
production reached 5.56 × 104 m3, achieving the purpose of commercial development.

Figure 6: The numerical simulation results of fracture propagation in well L1 and well L2 were studied
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Figure 7: Comparison of numerical simulation results of gas production under different fracturing
parameters in the research block

5 Conclusion

(1) The data screening was carried out to identify outliers in the entire data and the data-driven
fracturing parameter optimization method can obtain the basic adjustment direction of reservoir stim-
ulation in the target block, and the influences of geological, stimulation and completion parameters
on gas production rate can be obtained. After that, the optimization design of fracturing parameters
was further conducted with the help of data analysis. The research workflow can significantly reduce
the modeling and simulation workload and guide the on-site improvement and optimization of the
final fracturing effect.

(2) The gas flow rate after fracturing in the study block decreases with an increase in the actual
fracturing fluid flow-back rate. This is because the reservoir’s physical property in the location
of fracturing wells is relatively good. The smaller the volume of fracturing fluid flowing back to
the surface, the better the fracturing effect. The correlation analysis results of fracturing treatment
parameters show that flow-back fluid volume and rate are negatively correlated with gas flow rate,
and the flow-back rate has a more significant influence.

(3) It is suggested to further optimize the perforation interval in the X1 development zone to
ensure that the advantageous geological sweet spot is fully utilized, while the X2 development zone can
improve the production of a single well by optimizing the flow rate and proppant injection intensity.
Considering the larger density and density of the reservoir in the X2 development zone, the difficulty of
fracturing and the ease of fracture closure after fracturing, similar development zones need to optimize
fracturing parameters and select the appropriate proppant type to increase the reservoir reconstruction
volume.
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