
This work is licensed under a Creative Commons Attribution 4.0 International
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

echT PressScience

DOI: 10.32604/ee.2023.046447

ARTICLE

Deep-Ensemble Learning Method for Solar Resource Assessment of Complex
Terrain Landscapes

Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,* and Ping Yang3

1Energy Development Research Institute, China Southern Power Grid, Guangzhou, 510000, China
2Corporate Headquarters, China Southern Power Grid, Guangzhou, 510000, China
3Guangdong Green Energy Key Laboratory, South China University of Technology, Guangzhou, 510000, China
*Corresponding Author: Qianyufan Zhou. Email: zhouqianyufan@163.com

Received: 01 October 2023 Accepted: 04 December 2023 Published: 30 April 2024

ABSTRACT

As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy
source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power
plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble
learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed
method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve
the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and
high accuracy even in the photovoltaic resource assessment of complex terrain and landscape. The experimental
results show that the proposed method outperforms the comparison algorithm in all evaluation indexes, indicating
that the proposed method has higher accuracy and reliability in photovoltaic resource assessment with improved
generalization performance traditional single algorithm.
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Nomenclature

Ecombined Combined error
EGRU Error of GRU
ERF Error of RF
f Original data
f ∗ Normalized data
fmax Maximum value of the sample data
fmin Minimum value of the sample data
n Number of samples
WRF Error weight of RF
WGRU Error weight of GRU
yi Actual value
ŷi Predicted value
y Mean of the actual values
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1 Introduction

Environmental problems caused by the burning of fossil fuels are becoming increasingly serious,
for example, global warming, air pollution, and sea level rise. In this context, the importance of
solar energy resource assessment is self-evident. As a clean and renewable energy source, solar energy
has a wide range of potential applications. Accurate assessment of solar energy resources helps to
understand the feasibility and potential of solar power generation, thus promoting the wide application
of solar energy [1]. Solar resource assessment can provide key information for the siting of photovoltaic
power plants and help decision-makers select areas with high solar resource potential, thus improving
the power generation efficiency and economic benefits of photovoltaic power plants [2]. As carbon
peak and carbon-neutral targets of China are proposed, the demand for solar resource assessment
techniques will continue to grow. Accurate and efficient assessment methods will provide strong
support for the sustainable development of the photovoltaic industry, which in turn will promote
China’s realization of green and low-carbon development goals [3].

The most direct and accurate means of evaluating solar energy resources involves leveraging
solar radiation observation data [4]. Despite the generally abundant solar resources and prolonged
daylight hours, the limited distribution of meteorological stations collecting solar radiation data in
certain areas poses a challenge. Directly relying on sparse solar radiation observation data for a
comprehensive assessment in these regions is deemed impractical [5]. Consequently, in the absence of
ample high-quality solar radiation observation data, contemporary solar energy resource assessment
methods resort to alternative meteorological information and methodologies [6–8]. These include
meteorological model simulation [9], satellite remote sensing [10], statistical interpolation [11], and,
notably, artificial intelligence methods. Among these alternatives, artificial intelligence stands out
as the prevailing choice, with its notable strengths in solar resource assessment. These strengths
encompass robust data processing capabilities, adaptive learning, high efficiency, and scalability.
The ascendancy of artificial intelligence in solar resource assessment underscores its pivotal role in
overcoming data limitations and providing accurate insights into solar energy potential.

This study proposes a photovoltaic resource assessment method based on an integrated deep-
learning approach. The proposed method combines the random forest (RF) algorithm, gated recurrent
unit (GRU) network, and long short-term memory (LSTM) network to achieve high prediction
accuracy by utilizing the advantages of each. The proposed algorithm has better overall performance
compared to a single method. By combining the GRU network and the LSTM network, the proposed
method can capture the long- and short-term patterns of change in the solar radiation data, which
is difficult to capture by the traditional linear regression and support vector regression methods. The
proposed algorithm adopts an error correction structure, which inputs the error of RF prediction and
the error of GRU network prediction into LSTM after weighted processing, which helps to reduce
the prediction error and improve the stability of prediction results. A single model or a traditional
method may exhibit a large prediction error in some cases. Because of the strong nonlinear fitting
ability of deep learning models (e.g., the GRU and LSTM), the proposed method can well deal with
the nonlinear relationship between complex terrain and meteorological data, while traditional methods
may perform poorly in this regard. The proposed algorithm can flexibly adjust the model parameters
and input features according to the specific conditions of different regions, which is highly adaptable.
In contrast, traditional methods may need to readjust the model structure or parameters when dealing
with data from different regions, which is less adaptable. In summary, the proposed method has higher
accuracy, better nonlinear fitting ability, and stronger adaptability than the comparison algorithm in
the photovoltaic resource assessment problem, which provides strong support for photovoltaic power
plant siting and design.
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The main contributions of this study can be summarized as:

(1) Deep learning and integrated learning algorithms are combined for the first time for solar
photovoltaic resource assessment. Specifically, the method incorporates the RF, GRU, and LSTM.
The RF has high prediction performance when dealing with multi-source meteorological data, while
the GRU and LSTM excel in capturing the long- and short-term dependencies of time-series data.
Combining these models can fully utilize respective advantages and improve the overall prediction
performance.

(2) Error-weighted processing strategy. By integrating the error of the RF prediction and the error
of the GRU prediction, the prediction bias of a single model due to noise, outliers, or missing values
can be counteracted to some extent. This helps to improve the anti-interference ability of the model
and makes the prediction results more stable, effectively improving the anti-interference ability and
stability of the model.

(3) Layered prediction architecture. The proposed method adopts a layered prediction architec-
ture, in which the RF and GRU are first applied to predict the solar radiation intensity separately.
Then, the prediction errors are input to LSTM for further optimization. This layered architecture
helps to improve the prediction performance and reduce the risk of overfitting.

2 Related Works

Current artificial intelligence methods applied to photovoltaic resource assessment include sup-
port vector regression [12], random forest algorithm [13], and deep learning algorithms [14–16]. These
algorithms may have the following problems in photovoltaic resource assessment: (1) Insufficient
prediction accuracy: some algorithms (e.g., linear regression, support vector regression, etc.) may have
difficulty in obtaining high prediction accuracy when dealing with nonlinear and complex meteorolog-
ical data [17]. (2) Insufficient capture of long and short-term dependencies: for traditional regression
methods. For example, linear regression, and support vector regression. It may be difficult to capture
the long and short-term dependencies in solar radiation data. A single deep learning model (e.g.,
LSTM or GRU alone) may not be able to adequately capture the long- and short-term dependencies in
some cases [18]. (3) Poor anti-interference ability: some comparison algorithms may be more sensitive
to noise, outliers, and missing values in the data, and have poor anti-interference ability, thus affecting
the stability of prediction results [19]. (4) Difficulty in parameter adjustment: for some algorithms
(e.g., support vector regression, k-nearest neighbor regression, etc.), parameter adjustment may be
more difficult, requiring many attempts and validation, and time-consuming [20]. (5) Insufficient
adaptability: traditional methods may need to readjust the model structure or parameters when dealing
with data from different regions, with poor adaptability. A single deep-learning model may exhibit
large performance differences in different regions and climate conditions [19]. (6) Computational
complexity and resource consumption: some algorithms have higher computational complexity when
dealing with large-scale and high-dimensional data, which may require more computational resources
and time [21].

3 Deep-Ensemble Learning Method
3.1 Data Pre-Processing

To ensure the model receives clean, accurate, and reliable input data, data preprocessing is
required. This involves several key steps:
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(1) Data cleaning: in the first stage, data cleaning is performed on raw meteorological data and
solar irradiation intensity. This step aims to eliminate noise that could potentially impact the accuracy
of prediction results. Specifically, this study employs a meticulous process to identify and eliminate
any extraneous information that may interfere with the performance of the model.

(2) Missing value processing: following data cleaning, the next step involves handling missing
values. This is done by utilizing the interquartile range method to detect outliers. Once outliers are
identified, this study employs a two-fold approach: first, by selectively deleting abnormal records, and
second, by replacing outliers with the averaging method. This ensures a comprehensive treatment of
missing values, contributing to the overall robustness of the dataset.

(3) Data normalization: recognizing that meteorological parameters may vary in terms of value
range and units, data normalization becomes crucial. This study employs the Min-Max method
to normalize the data. This method is effective in standardizing the values and units, eliminating
discrepancies between different magnitudes. The normalization process not only fosters consistency
in the dataset but also significantly enhances the convergence speed and stability of model training.
The specific formulae calculated by the Min-Max method are as follows:

f ∗ = (f − fmin)

(fmax − fmin)
(1)

where f ∗ is the normalized data; f is the original data; fmin is the minimum value of the sample data;
fmax is the maximum value of the sample data.

3.2 Random Forest Algorithm
The RF stands out as a comprehensive learning approach that elevates prediction accuracy and

robustness by constructing multiple decision trees and amalgamating their prediction outcomes [22].
Utilizing a multitude of decision trees, the RF exhibits remarkable resilience to noise, along with the
capability to effectively manage outliers and missing values [23,24]. The amalgamation of prediction
outcomes from diverse decision trees serves to mitigate the risk of overfitting that might be associated
with individual trees. Moreover, the independent construction of decision trees in the RF allows for
parallel computation, thereby substantially curtailing the training time. Simultaneously, as a decision
tree ensemble, the RF retains excellent interpretability.

The schematic representation in Fig. 1 elucidates the sequential process of the RF regression
model. In the RF algorithm, several random trees undergo independent training, resulting in the
creation of multiple models. Ultimately, these diverse model predictions are synthesized to yield the
final output.

3.3 Long Short-Term Memory
The LSTM represents a distinct variant of recurrent neural network (RNN) [25]. The LSTM

networks are specifically designed to address the problem of gradient vanishing and explosion
encountered by traditional RNNs when dealing with large amounts of sequence data. This includes
but is not limited to natural language processing, time series prediction, speech recognition, and video
analysis [26,27].

At the heart of LSTM lies its internal memory cells, characterized by a unique structure that
facilitates the storage, modification, and retrieval of long-term dependent information. Comprising
three pivotal gating structures—input gates, forgetting gates, and output gates (as depicted in Fig. 2)—
each memory cell plays a crucial role in regulating the flow of information.
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Figure 2: LSTM network structure diagram

The LSTM achieves the updating of cellular and hidden states through the collaborative interplay
of forgetting gates, input gates, and output gates. This intricate structure empowers LSTM to adeptly
capture long-term dependencies, mitigating the challenges of gradient vanishing and explosion.
Consequently, the LSTM demonstrates superior performance in addressing intricate sequential tasks.
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3.4 Gated Recurrent Unit
The GRU network stands as a distinct type of RNN [28]. It streamlines the architecture of LSTM

by consolidating the three gates into two: update and reset gates. Additionally, the GRU merges the cell
state and the output into a single state. This simplification enhances computational efficiency while
retaining the capacity to capture dependency relationships across various time scales. Notably, GRU
maximizes the intrinsic features of time-series data and effectively addresses the gradient explosion
issue encountered in traditional RNNs. For a visual representation, refer to Fig. 3 illustrating the
structure of the GRU network.
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Figure 3: GRU network structure diagram

Both the GRU and LSTM, as variations of RNN, share the common objective of addressing the
gradient vanishing issue and adeptly capturing long-term dependencies within the RNN framework.
However, they exhibit distinctive advantages. The GRU boasts a more streamlined structure compared
to LSTM, and its parameter count is relatively modest. Consequently, the GRU incurs a lighter
computational load during training, translating to higher computational efficiency. On the other
hand, LSTM excels in expressive power. In scenarios demanding the capture of intricate mathematical
structures, LSTM may outperform GRU. Notably, the feature of separate cell states of LSTM enhances
the efficient storage and management of long-time-dependent information, enabling it to navigate
problems with complex temporal dependencies more effectively. In certain cases, the integration of
both LSTM and GRU within a unified prediction framework proves beneficial, minimizing the risk
of model overfitting and elevating prediction accuracy.

3.5 Proposed Method Framework
This study introduces an innovative solar resource prediction method utilizing an integrated deep

learning approach that incorporates three distinct algorithms: RF, GRU, and LSTM. By amalgamat-
ing these algorithms, the proposed method strives to enhance the precision and dependability of solar
resource assessment, capitalizing on the strengths of each model. The structure of the proposed method
is schematically shown in Fig. 4.

Initially, the multidimensional meteorological data from the preceding 24 h undergo input into
the RF. The RF model, adept at capturing nonlinear relationships within multidimensional data and
demonstrating strong generalization capabilities, predicts solar radiation intensity for the subsequent
Nr hours. The training of the RF model yields the initial prediction of solar radiation intensity.
Subsequently, the solar radiation data from the past 24 h are fed into the GRU network for prediction.
The GRU network, known for its proficiency in capturing long-term dependencies and understanding
intrinsic patterns in time series data, predicts solar radiation intensity for the next Ng hours. Training
the GRU network produces another preliminary prediction of solar radiation intensity. To integrate
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the prediction results from both RF and GRU, it becomes essential to compute their prediction errors.
These errors are then weighted to generate a composite error, with the weights assigned based on the
respective prediction performance of each model. Models demonstrating superior performance are
allotted larger weights. This study adopts the inverse error proportion as the weighting mechanism,
wherein the weights are determined by their inverse relationship with the model error. Specifically,
if the error in the RF prediction for a given hour is represented as ERF, and the error in the GRU
prediction is EGRU. The weights are assigned as follows:

WRF = EGRU

ERF + EGRU

(2)

WGRU = ERF

ERF + EGRU

(3)

where WRF is the error weight of RF; WGRU is the error weight of GRU.
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Figure 4: Framework diagram of solar energy resource prediction method based on deep ensemble
learning method

The prediction errors of RF and GRU were weighted to obtain the combined error:

Ecombined = WRF · ERF + WGRU · EGRU (4)

The processed composite error, weighted according to the inverse error proportion, serves as input
for the LSTM network, enabling further optimization of the error. Leveraging its superior capacity
for capturing long-term dependencies compared to GRU, LSTM adeptly learns the intrinsic patterns
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within the error sequence. Subsequently, the output from the LSTM network provides the prediction
for solar radiation intensity in the upcoming hour. Following this prediction, the final estimate for
solar radiation intensity is derived. Refer to Table 1 for a comprehensive overview of the input and
output physical quantities associated with each algorithm in the proposed method.

Table 1: Input and output physical quantities of RF, GRU, and LSTM algorithms

Algorithms Inputs Outputs

RF Multidimensional weather for the past 24 h Multidimensional weather for the next Nr

hours
GRU Solar radiation data for the past 24 h Solar radiation data for the next Ng hours
LSTM Combined error for the past 24 h Combined error for the next 1 h

3.6 Evaluation Metrics
The article employs four key indicators to assess the performance of the model:

(1) R2 (coefficient of determination): R2 serves as a metric for model fit, signifying the proportion
of variation in the dependent variable explained by the model. Ranging from 0 to 1, a higher R2

indicates a better fit to the data, while a lower R2 implies a poorer fit.

R2 = 1 −

n∑
i=1

(
yi − ŷi

)2

n∑
i=1

(yi − y)
2

(5)

where n is the number of samples; yi is the actual value; ŷi is the predicted value; y is the mean of the
actual values.

(2) Root mean squared error (RMSE): the square root of the mean of the sum of the squares of
differences between predicted and actual values serves as a measure of prediction accuracy. A smaller
RMSE corresponds to better prediction performance.

RMSE =
√√√√1

n

n∑
i=1

(
yi − ŷi

)2
(6)

where n is the number of samples; yi is the actual value; ŷi is the predicted value.

(3) Mean absolute error (MAE): MAE represents the mean of the absolute differences between
predicted and actual values. A smaller MAE reflects superior prediction performance.

MAE = 1
n

n∑
i=1

∣∣ŷi − yi

∣∣ (7)

where n is the number of samples; yi is the actual value; ŷi is the predicted value.

(4) BIAS (Deviation): BIAS gauges the deviation between predicted and actual values, providing
insights into the accuracy of prediction results. When BIAS is close to 0, it signifies accurate
predictions. A BIAS greater than 0 indicates overestimation, while a BIAS less than 0 implies
underestimation.
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BIAS = 1
n

n∑
i=1

(
ŷi − yi

)
(8)

where n is the number of samples; yi is the actual value; ŷi is the predicted value.

4 Experimental Results and Analysis

The simulation environment for this study is meticulously configured with an Intel Core i9-
12900H processor, 32 GB of 6000 MHz RAM, a 64-bit Windows 11 operating system, and MATLAB
R2021b as the software version. Within this well-defined environment, researchers conduct simulation
experiments to assess the solar energy resource forecasting performance of the proposed method. To
enhance the comparability of the simulation experiments, three groups of comparison algorithms are
introduced: the RF model, GRU network, and LSTM network.

4.1 Study Aea and Dataset
Jiangmen City (latitude 22°16′47′′∼22°17′03′′N, longitude 113°03′30′′∼113°03′50′′E) is located

in the central-southern part of Guangdong Province, downstream of the Xijiang, in the Western
Pearl River Delta. It falls under the subtropical marine climate category. Nestled downstream of
the Xijiang River, in the western region of the Pearl River Delta, the city enjoys a subtropical
maritime climate characterized by warmth and rainfall, devoid of snow throughout the year, and
featuring minimal inter-annual temperature fluctuations. With 1838.6 annual sunshine hours and an
average temperature of 22°C, Jiangmen serves as a representative location. Fig. 5 illustrates the city’s
geographical coordinates.

N

Figure 5: Geographic location map of Jiangmen City

In terms of topography and geomorphology, Jiangmen City boasts a diverse landscape encom-
passing hills, plains, and river networks. The terrain gradually descends from north to south. The uti-
lization of a dataset reflecting this intricate topographic and geomorphological makeup in simulation
experiments is instrumental. The dataset allows for testing the adaptability of the proposed method
across diverse terrains and evaluating their performance under varied application scenarios.

The experimental data include daily climate data from ground stations in China and daily field
station solar irradiation intensity in the hills and mountains of Jiangmen City. This study specifically
curated data spanning from May 13 2022, to November 11, 2022. The selected dataset comprises
a comprehensive set of variables, including visibility (VIS), mean relative humidity (RHU-mean),
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minimum relative humidity (RHU-min), mean wind speed (WIN-mean), mean precipitation (PRE-
mean), mean barometric pressure (PRS-mean), maximum pressure (PRS-max), minimum pressure
(PRS-min), sunshine duration (SSD), mean temperature (TEM-mean), maximum temperature (TEM-
max), minimum temperature (TEM-min), mean ground surface temperature (GST-mean), and solar
radiation intensity (AD).

4.2 Performance of Random Forest Algorithm for Daily Solar Radiation Prediction
The optimal performance and generalization ability of the RF algorithm hinge on the careful

selection of hyperparameters. Varied hyperparameter configurations can result in noteworthy dispar-
ities in model performance. To ensure the RF model attains its best potential, this study employs grid
search to fine-tune its hyperparameters. The specifics of hyperparameter selection for the RF model
are succinctly illustrated in Table 2.

Table 2: Hyperparameters in the RF model

Hyperparameters Values

Number of trees 600
Maximum tree depth 20
Minimum leaf node size 10
Characteristic proportions of samples 0.7

In the random forest algorithm, feature importance assessment helps to identify the key features
that have a large impact on the model prediction results, guide the feature selection and dimensionality
reduction, and improve the model performance and generalization ability. At the same time, feature
importance assessment also helps to enhance the interpretability of the model and better understand
the relationship between features and the prediction process. Taking the solar irradiance intensity data
for the hilly as an example, Fig. 6 shows the importance of each feature in meteorological data.
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Importance of varibles (%)

TEM mean

PRE mean

WIN mean

TEM max

TEM min
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PRS mean

VIS

GST mean

SSD

Figure 6: Feature importance map in random forest model prediction



EE, 2024, vol.121, no.5 1339

As can be seen in Fig. 7, the SSD is considered to be the most critical variable, followed by
GST-mean, VIS, PRS-mean, RHU-mean, TEM-min, TEM-max, WIN-mean, TEM-mean, PRE-
mean, RHU-min, PRS-max, PRS-min, in descending order. The significance of SSD is 81%, which
is consistent with the results of earlier studies. The importance of GST-mean was 8% and all other
variables were less than 5%. Fig. 7 shows the performance of the RF model in predicting hourly solar
radiation.
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Figure 7: Scatter plot of solar radiation intensity predicted by random forest model

4.3 Performance of Gated Recurrent Unit for Daily Solar Radiation Prediction
This study employs grid search to tune the hyperparameters of the GRU network to obtain the

best model performance. Table 3 demonstrates the selection of hyperparameters in the GRU model.
Fig. 8 demonstrates the loss variation curve and RMSE variation curve during the training process
of the GRU network. Fig. 9 demonstrates the scatter plot of solar radiation intensity predicted by the
GRU model.

Table 3: Hyperparameters in the GRU model

Hyperparameters Values

Hidden layer units 200
Minibatch size 48
Activation function Tanh
Optimizer SGDM
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variation curve during training
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Figure 9: Scatter plot of solar radiation intensity predicted by GRU

4.4 Overall Prediction Performance of Proposed Method
The proposed method incorporates RF, GRU, and LSTM networks, and the combination of

these models can fully utilize their respective strengths to achieve a highly accurate prediction of solar
radiation intensity. Table 4 demonstrates the selection of hyperparameters for the algorithms included
in the proposed method.



EE, 2024, vol.121, no.5 1341

Table 4: Hyperparameters in the RF, GRU and LSTM

Algorithms Parameters Values

RF

Number of trees 600
Maximum tree depth 20
Minimum leaf node size 10
Characteristic proportions of samples 0.7

GRU

Hidden layer units 200
Minibatch size 48
Activation function Tanh
Optimizer SGDM

LSTM

Hidden layer units 200
Minibatch size 48
Activation function Tanh
Optimizer SGDM

Fig. 10 visually presents the prediction outcomes generated by both the proposed algorithm
and the comparison algorithm on hilly data. Notably, the proposed method leverages the synergies
of Random Forest (RF), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM)
networks, achieving a remarkable level of accuracy in forecasting solar radiation intensity. On the other
hand, the comparison algorithms encompass RF, LSTM, GRU, support vector machines (SVM),
orthogonal matching pursuit (OMP), extreme gradient boosting (XGB), and kernel ridge (KR).
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Figure 10: (Continued)
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Figure 10: Scatterplots of solar radiation intensity results output by prediction algorithms:
(a) scatterplot of prediction results of the proposed method; (b) scatterplot of prediction results of
the RF; (c) scatterplot of prediction results of the GRU; (d) scatterplot of prediction results of the
LSTM; (e) scatterplot of prediction results of the SVM; (f) scatterplot of prediction results of the
OMP; (g) scatterplot of prediction results of the XGB; (h) scatterplot of prediction results of the KR
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For a more comprehensive assessment, Table 5 encapsulates the evaluation metrics data for both
the proposed algorithm and the comparative algorithms under different terrain landscapes. Analyzing
the experimental results reveals that the proposed method exhibits superior fitting capabilities, partic-
ularly in predicting solar radiation data. Across all evaluation indices, the proposed method outshines
the comparative algorithms, underscoring its heightened accuracy and reliability in photovoltaic
resource assessment. These findings affirm the effectiveness of the proposed method, establishing it as
a robust tool for guiding the siting and design of photovoltaic power plants.

Table 5: Evaluation indicators for various algorithms

Algorithms Terrain R2 RMSE MAE BIAS

Proposed method
Hilly 0.9701 43.8540 20.2440 1.9171
Mountain 0.9683 42.8622 21.5104 1.9358

RF
Hilly 0.9559 53.2838 29.6091 5.2336
Mountain 0.9602 51.5642 28.2054 4.9256

GRU
Hilly 0.9132 74.7935 36.2206 7.2611
Mountain 0.9347 72.5579 35.2468 6.8528

LSTM
Hilly 0.9645 47.8172 23.2733 3.7577
Mountain 0.9645 47.8172 23.2733 3.7577

SVM
Hilly 0.8292 84.8293 32.0973 2.6168
Mountain 0.8184 85.3875 30.3587 2.8436

OMP
Hilly 0.5263 147.2063 49.7127 10.2111
Mountain 0.5053 146.8798 48.2489 10.5557

XGB
Hilly 0.5949 139.0180 46.6756 10.9656
Mountain 0.6153 132.5789 44.8425 9.9548

KR
Hilly 0.6613 119.9122 39.4614 4.3262
Mountain 0.7024 105.9592 35.5715 5.9568

5 Conclusions

The article focuses on the photovoltaic resource assessment method utilizing integrated deep
learning. It begins by introducing the principles of three machine learning algorithms—RF, GRU,
and LSTM. Subsequently, it innovatively combines integration and deep learning algorithms for
photovoltaic resource assessment. The article concludes by comparing the advantages of the proposed
method against individual machine learning algorithms through simulation results. The primary
research contributions are as follows:

(1) Introduction of a photovoltaic resource assessment method based on integrated deep learning,
a pioneering approach that combines integrated learning and deep learning methods. This method
effectively enhances the accuracy and reliability of photovoltaic resource assessment by integrating
RF, GRU, and LSTM.
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(2) Exploration of a hierarchical forecasting framework’s performance, which merges multiple
forecasting models to achieve more efficient and accurate predictions. Unlike traditional methods,
this framework maximizes the strengths of each model, leveraging their respective advantages.

(3) Analysis of simulation results demonstrates that integrating RF and GRU prediction errors
can mitigate biases from a single model caused by noise, outliers, or missing values. This enhances the
model’s resistance to interference, ensuring more stable and effective prediction results.

Despite the high accuracy and adaptability demonstrated in experiments, the proposed pho-
tovoltaic resource assessment method has limitations. Future improvements and extensions could
include: (I) Incorporating more types of meteorological data: The current dataset might lack com-
prehensive coverage of factors influencing photovoltaic resource assessment. Future research should
consider including additional meteorological data, such as atmospheric pressure, humidity, and surface
albedo, to enhance the model’s adaptability to complex meteorological conditions. (II) Temporal-
spatial data fusion: Given the evident temporal-spatial characteristics of solar radiation, future
research could explore combining spatial data with time-series data to better capture the temporal-
spatial variations in solar radiation. (III) Exploring more deep learning models: Beyond GRU and
LSTM, numerous other deep learning models, such as convolutional neural networks and graph
neural networks, could find application in photovoltaic resource assessment. Future research should
investigate the potential of these models in enhancing the accuracy and versatility of photovoltaic
resource assessments.
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