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ABSTRACT

A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines. To ensure the safe
operation of crude oil pipelines, an accurate model must be developed to predict the rate of wax deposition in crude
oil pipelines. Aiming at the shortcomings of the ENN prediction model, which easily falls into the local minimum
value and weak generalization ability in the implementation process, an optimized ENN prediction model based
on the IRSA is proposed. The validity of the new model was confirmed by the accurate prediction of two sets of
experimental data on wax deposition in crude oil pipelines. The two groups of crude oil wax deposition rate case
prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476%
and 0.7831%, respectively. Additionally, it shows a higher prediction accuracy compared to the ENN prediction
model. In fact, the new model established by using the IRSA to optimize ENN can optimize the initial weights and
thresholds in the prediction process, which can overcome the shortcomings of the ENN prediction model, such
as weak generalization ability and tendency to fall into the local minimum value, so that it has the advantages of
strong implementation and high prediction accuracy.
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Nomenclature

X 1 Flow velocity/(m.s−1)
X 2 Oil temperature/°C
X 3 Wall temperature/°C
X 4 Shear stress at pipe wall/Pa
X 5 Crude oil viscosity/(mPa·s)
X 6 Wax molecular concentration gradient at pipe wall/(10−3·°C−1)
X 7 Temperature gradient at pipe wall/(°C·mm−1)
X 8 Wax deposition rate/(g·m−2·h−1)
Y 1 Oil temperature/°C
Y 2 Wall temperature/°C
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Y 3 Crude oil viscosity/(mPa·s)
Y 4 Shear stress at pipe wall/Pa
Y 5 Flow velocity/(m·s−1)
Y 6 Temperature gradient at pipe wall/(°C·mm−1)
Y 7 Wax molecular concentration gradient at pipe wall/(10−3·°C−1)
Y 8 Wax deposition rate/(g·m−2·h−1)
P Predicted value/(g·m−2·h−1)
R Relative error/%
∗Note: Variables X1 to X8 represent wax deposition rate data from the Kenli Oilfield, and variables Y1

to Y8 represent wax deposition rate data from the Huachi operation area.
ENN Elman neural network
IRSA Improved reptile search algorithm
RSA Reptile search algorithm
BPNN Back-propagation neural network
RBF Radial basis function
MLP Multilayer perceptron
MLP-LMA Multilayer perceptron Levenberg-Marquardt algorithm
CFNN Cascaded forward neural network
GRNN Generalized regression neural network
PWLCM Piecewise linear chaotic map
N Number of hidden layer nodes
MSE Mean square error
RMSE Root mean square error
MAPE Mean absolute percentage error
R2 Correlation coefficient
m Number of nodes in the input layer
n Number of nodes in the output layer
a Integers between 1 and 10
WOA Whale optimization algorithm
HUANG Huang Qiyu wax deposition prediction model

1 Introduction

Pipeline wax deposition is a common problem when crude oils are transported in pipelines.
Crude oils produced in China tend to have a high viscosity, coagulate easily, and contain high
levels of wax. During the transportation of waxy crude oil through pipelines, changes in pressure
and temperature conditions promote the precipitation of solid heavy constituents, including waxes,
colloids, and asphaltenes, resulting in the formation of wax deposits on the pipeline walls [1–3]. The
oil produced from an oilfield in China is shown in Fig. 1.

Wax deposition reduces the effective flow area of the pipeline, increasing flow resistance, reducing
transport capacity, and in severe cases, even causing pipeline blockage and destructive accidents [4–6].
Therefore, it is crucial to accurately understand the mechanism of wax deposition during crude oil
pipeline transportation and calculate the rate of wax deposition in the pipeline. This holds significant
practical importance for ensuring safe oil well production. The wax deposition phenomenon of crude
oil pipelines in oilfield engineering practice is shown in Fig. 2.
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Figure 1: The oil produced from an oilfield in China

Figure 2: Wax deposition in crude oil pipeline

Researchers simulated the wax deposition phenomenon in pipelines through experiments, com-
bined with theoretical analysis to summarize the influence mechanism of wax deposition, and estab-
lished prediction models for wax deposition to predict the actual wax deposition [7–11]. Currently,
prediction models for wax deposition rate generally consist of the thermodynamic prediction model,
kinetic prediction model, and artificial intelligence prediction model [12–14].

1) Thermodynamic prediction model

The relevant theories affecting wax deposition have been introduced by researchers, who utilized
thermodynamics, colloid chemistry, and hydrodynamics to conduct extensive experiments, theoretical
analyses, and summarize a representative Thermodynamic mathematical model of wax deposition.
However, the components contained in the solid phase of wax deposition are very complex, and the
properties of the components are quite different, which leads to the complexity of the model formula,
poor adaptability, narrow application range, limited accuracy, and inconvenient application [15].

2) Dynamic prediction model

Combined with the wax deposition mechanism of crude oil pipelines and the influence of various
conditions and factors, researchers established the prediction model of wax deposition dynamics
based on “The Law of Fick Diffusion” and determined the relevant parameters of the model through
experiments. This kind of model is characterized by simple application and can reflect the wax
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deposition in the actual pipeline to a certain extent, but the prediction accuracy still has a lot of room
for improvement [16,17].

3) Artificial intelligence prediction model

The fast development of computer science provides a new way of thinking about wax deposition
prediction. This method does not need to consider various mechanisms and complicated influencing
factors affecting wax deposition, but only needs to establish enough experimental data samples, then
combine artificial intelligence methods to learn the experimental data samples, and then a trained
artificial intelligence wax deposition prediction model can be constructed. This method can be used
to predict the wax deposition in other operating conditions [18,19].

Zhou et al. [20] examined the effect of different factors on the wax deposition rate of pipelines and
established a prediction model for the BPNN wax deposition model by error back-propagation neural
network (BPNN). Coto et al. [21] established a novel predictive model for wax deposition in pipelines
and compared it with laboratory measurements, which has the advantage of high prediction accuracy.
Tian et al. [22] considered the effects of seven factors on the rate of wax deposition in pipelines and
established a 7-10-1 three-layer neural network structure using the BPNN model. The results show that
the BPNN model itself has some inherent defects, which will greatly affect the prediction performance.
Wang et al. [23] established a novel prediction model for pipeline wax deposition rate using support
vector machine (SVM) model. The authors pointed out that different combinations of the penalty
factor C and the kernel function parameter g have a great impact on the prediction results when the
radial basis function (RBF) neural network is used as the kernel function. Xie et al. [24] established
an RBF neural network wax deposition rate prediction model. The relative error of the model is only
1.5% compared with the experimental data. Lashkarbolooki et al. [25] established a novel multilayer
perceptron (MLP) wax deposition prediction model, and compared with the experimental data, the
newly constructed model has higher prediction accuracy. Behnam et al. [26] established four models
to predict wax deposition rates in crude oil pipelines using pour point temperature and °API as the
main factors affecting wax deposition: MLP, RBF, CFNN, and GRNN. The results showed that the
GRNN model has a stronger predictive capability. The models and methods proposed by the above
scholars have unique advantages, but due to the limitations of optimization algorithms (it is impossible
to achieve the best balance between global optimum and local optimum) and neural networks, it may
lead to the inability to accurately predict the wax deposition rate of waxy crude oil pipelines for multi-
factor and high-dimensional problems.

As a widely used neural network, ENN has a real-time feedback function and short-term memory
capability (adding a context layer to the traditional three-layer network structure) [27,28]. Compared
with BPNN, ENN is better in network stability and calculation accuracy, but it also has some defects
(lack of generalization ability, easy to fall into the local minimum value). How to improve it through
related optimization algorithms is still an important content of current research. The Reptile Search
Algorithm (RSA) is a novel meta-heuristic algorithm, which has the advantages of high solution
accuracy and fast operation speed [29–31]. In the application of RSA, a difficult problem is how to
get the best balance between global search and local search. In fact, this is also a shortcoming of the
algorithm. Considering the advantages of RSA and the shortcomings of current research, this paper
introduces the strategy of Piecewise Linear Chaotic Map (PWLCM) (enriching population exploration
space), proposes an IRSA, constructs the IRSA-ENN model, and verifies the validity of the new model
by predicting the wax deposition rate of two groups of waxy crude oil measured data. The research
results have important guiding significance for the accurate prediction of the wax deposition rate of
waxy crude oil pipeline.
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2 Theoretical Basis
2.1 Bellman Neural Network Model

ENN is a type of local regression network with a local memory unit and a local feedback
connection. Different from BPNN, it adds a context layer based on the traditional three-layer network
structure, so it has the characteristics of memory. Its structure is schematically shown in Fig. 3.

Figure 3: Elman neural network structure

The nonlinear state space expression of ENN is shown in Eq. (1).⎧⎨
⎩

y (k) = P (w3x (k))

x (k) = Q (w1xc (k)) + w2 (u (k − 1))

xc (k) = x (k − 1)

(1)

where: k represents the time; y(k) is the output vector of the output node unit; x(k) is the output
vector of the middle layer; ac(k) is the output of the context layer; u is the input layer unit vector; w1

represents the weight matrix of the context and hidden layers; w2 represents the weight matrix of the
input and hidden layers; w3 represents the weight matrix of the output and hidden layers; P( ) is the
transfer function of the output neuron; Q( ) is the transfer function of middle layer neurons, the sigma
function is used in this paper [32], as shown in Eq. (2).

Q (x) = 1
1 + e−x

(2)

When ENN updates the weights and thresholds, it actually uses error back-propagation and the
error square sum function to measure them, as shown in Eq. (3).

E (k) = 1
2

[
(yd (k) − y (k))

T
(yd (k) − y (k))

]
(3)

where: E(k) represents the sum of squares of errors; yd(k) is the actual output matrix of the neural
network at the k-th time; y(k) is the network prediction output matrix at the k-th time; T is the
transpose matrix.
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2.2 Improved Reptile Search Algorithm
RSA, as a novel intelligent optimization algorithm, is superior to the traditional optimization

algorithm in terms of high precision and fast computing speed. However, when applied to high-
dimensional feature selection problems, RSA will be affected by population diversity. In order to
overcome this shortcoming, PWLCM is utilized to enhance the population’s exploration ability in
the search range, and an IRSA is proposed.

Specifically, IRSA is a coupling algorithm that takes advantage of PWLCM to enhance popu-
lation diversity. In IRSA, PWLCM is used to enrich the ability of the RSA population to explore
the spatial domain, thereby improving its ability to solve high-dimensional and complex nonlinear
optimization problems.

2.2.1 Reptile Search Algorithm

RSA is a novel meta-heuristic algorithm proposed by Abualigah et al. It is a population-based and
gradient-free algorithm established by studying the social behavior, prey encircling mechanism, and
hunting mechanism of crocodiles in nature. The algorithm is mainly divided into three main stages:
initialization, prey encircling, and hunting. In the calculation process, the prey encircling stage and the
hunting stage can be alternated continuously, thus narrowing the search range and catching prey.

The detailed principle of RSA has been described in the literature, which will not be repeated in
the article [29–31]. The RSA optimization process is divided into two phases: the exploration phase
and the exploitation phase, which are described as follows:

1) Exploration phase [Encircling]

When reptiles encircle their prey, they have two walking modes (high walking and low creeping
walking), as shown in Fig. 4, and the mathematical expression is shown in Eq. (4).

X(i,j) (t + 1) =
{

Bestj (t) − C(i,j) (t) × β − R(i,j) (t) × rand, t ≤ T/4 (a)

Bestj (t) × x(r1,j) × ES (t) × rand, T/4 < t ≤ T/2 (b)
(4)

where: Best(t) is the optimal solution obtained at the j position in this stage; C(i, j) is the hunting operator
at the j position on the i result; β is the correction parameter, which controls the accuracy of the
solution under the constraint condition of high walk in this stage; R(i, j) is a Reduce function, which
is mainly used to narrow the search range; rand is a random number from 0 to 1; x(r1, j) is the random
position of the i-Th solution; t is the current number of iteration steps; T is the maximum number of
iteration steps; ES(t) is the evolutionary ratio, which is the probability ratio that decreases randomly
between [−2, 2] in the iterative process.

2) Exploitation phase [Hunting]

In the hunting phase, reptiles have two social behaviors (coordination and cooperation), as shown
in Fig. 5, and the mathematical expression is shown in Eq. (5).

X(i,j) (t + 1) =
{

Bestj (t) × P(i,j) (t) × rand, T/2 < t ≤ 3T/4 (a)

Bestj (t) − C(i,j) (t) × δ − R(i,j) (t) × rand, 3T/4 < t ≤ T (b)
(5)

where: Best(t) is the optimal solution obtained at the j position in this stage; C(i, j) is the hunting operator
at the j position on the i result; P(i, j) is the percentage of the difference between the best solution at the
j-th position and the current solution; rand is a random number from 0 to 1; δ is a small value.
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Figure 4: Reptiles encircling the prey [29]

Figure 5: Reptiles attacking the prey [29]

2.2.2 Piecewise Linear Chaotic Map

Chaotic mapping is an effective method to deal with the problem of population diversity and
low convergence speed in optimization algorithms. In this paper, PWLCM is used to initialize the
population position, and then expand the search space, so as to improve the performance of RSA.
As a typical representative of chaotic mapping, PWLCM has a simple mathematical form, ergodicity,
and randomness. The mathematical expression is shown in Eq. (6).
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x (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x (t)
p

, 0 ≤ x (t) < p

x (t) − p
0.5 − p

, p ≤ x (t) < 0.5

1 − p − x (t)
0.5 − p

, 0.5 ≤ x (t) < 1 − p

1 − x (t)
p

, 1 − p ≤ x (t) < 1

(6)

where: p is a control parameter, which is used to determine the section range of the four-section formula
so that there is no overlap between them, and the range is (0, 0.5). x(t) is the generated random iterative
value in the range of [0,1].

2.2.3 Comparison before and after Algorithm Improvement

In this paper, the RSA original method and PWLCM are used to initialize the population, and the
results of random initialization of the population sequence are compared to verify whether PWLCM
can explore the population space more thoroughly [30,31]. To conveniently compare the results, the
number of particles is set to 150, the maximum number of iterations is 50, and the value of p in PWLCM
is 0.4.

Comparing Figs. 6 with 7, it can be seen that the random initialization strategy of the PWLCM
effectively enhances the ergodicity of the population and avoids the large blank of the population in
the search range.

Figure 6: The RSA original method randomly initializes the population
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Figure 7: PWLCM randomly initializes the population

3 Wax Deposition Rate Prediction Model for Crude Oil Pipelines Based on IRSA-ENN Algorithm
3.1 Construction of IRSA-ENN Model

The construction process of the wax deposition rate prediction model for waxy crude oil pipelines
based on the IRSA-ENN prediction model is shown in Fig. 8.

Figure 8: Wax deposition rate model for pipelines with waxy crude oil based on IRSA-ENN algorithm



1016 EE, 2024, vol.121, no.4

The IRSA is applied to optimize the ENN model, thus constructing the IRSA-ENN prediction
model. The model constructed by this method can overcome the problems of low prediction accuracy
and insufficient generalization ability of the ENN model. The steps of establishing the model are as
follows.

Step 1: The experimental data on wax deposition rates in crude oil pipelines have been normalized
to initialize the ENN model and determine the number of input hidden and output layers. The IRSA
is introduced to set the initial parameters (including population number, iteration times, problem
dimension, etc.).

Step 2: PWLCM (Eq. (6)) is introduced to initialize the reptile population sequence and randomly
distribute the reptile exploration space. The fitness function (MSE of training samples) is calculated
(Eq. (7)) to measure the optimal solution in the overall optimization process.

fitness = 1
n

n∑
i=1

(
dfi − dvi

)2
(7)

where: dfi is the output value of the i-th sample model; dvi is the actual value of the i-th sample.

Step 3: According to the updated position of the reptile, the fitness function of the reptile at this
position is obtained, and the position of the reptile is updated by Eqs. (4) and (5), that is to adjust the
threshold and weight of ENN. Then, compared with the current position fitness value and the current
optimal value. If the current position fitness value is better, it is updated, otherwise it is not updated.

Step 4: Generation of the optimal solution. When the iteration of the algorithm stops, the final
optimal solution is the optimal solution of the whole training.

Step 5: The optimal solution (optimal weights and thresholds of the ENN) is assigned to the ENN
model, and the improved ENN model is trained after matrix reconstruction and predicted from the
experimental data of pipeline wax deposition rate.

3.2 Model Evaluation
Three evaluation parameters, RMSE, MAPE, and R2, are introduced to evaluate the prediction

accuracy of the model [33]. The calculation Eqs. (8)–(10) of the three are as follows:

RMSE =
√√√√ 1

M

M∑
i=1

(
yi − f

(
xi

))2
(8)

MAPE = 1
M

M∑
i=1

∣∣∣∣yi − f (xi)

yi

∣∣∣∣ × 100% (9)

R2 =
∑M

i=1 (yi − y) ·
(

f (xi) − f
)

√∑M

i=1 (yi − y)
2 ∑M

i=1

(
f (xi) − f

)2
(10)

where: M represents the number of sample sets; yi is the actual value; f (xi) is the predicted value; y is
the average value of the actual value; and f is the average of predicted values.
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4 Proposed ENN Modelling and Analysis
4.1 Data Acquisition and Preprocessing

Two groups of measured wax deposition rate data of crude oil pipelines with different physical
properties given in the article [34,35] are taken as cases (corresponding to Case I and Case II
respectively) to verify the generalization performance of the improved new model (learning ability
for different groups of measured data), and to compare and analyze the prediction accuracy of the
IRSA-ENN model and other models. The measured data of wax deposition rate in crude oil pipelines
are 35 groups and 38 groups, respectively, among which 5 groups of data are randomly selected as
prediction samples (the rest are used as their own training samples) to compare and analyze the
prediction accuracy of each model. The measured data of wax deposition rate in two groups of different
waxy crude oil pipelines are shown in Appendix A.

When learning training samples, because of the different dimensions among variables, we need
to use the map min-max function to normalize the data, that is, map the data of each variable to the
range of [0,1], The mathematical expression is shown in Eq. (11).

yi = xi − min (xi)

max (xi) − min (xi)
(11)

where: yi represents the processed sample data; xi represents preprocessing data.

4.2 Result Analysis and Model Evaluation
MATLAB software is used to realize the simulation process, and the parameters of the computer

are shown in Table 1. The ENN model determines the optimal number of hidden layer nodes by
minimizing the MSE of the training samples as a measure of the machine learning on the training
samples of Case 1 and Case 2. The learning parameters of the ENN model are shown in Table 2. When
the ENN model determines the optimized number of hidden layer nodes H for the wax deposition rate
data of the pipelines in Case 1 and Case 2, the formula is Eq. (12).

H = √
m + n + a (12)

where: The value of H varies with the value of a.

Table 1: Computer software and hardware parameters

Name Detailed parameters

Central processing unit
(CPU)

AMD Ryzen7 5800H @ 3. 20
GHz

ROM 32.0 GB
Operating system (OS) Windows 11
Language MATLAB R2020a

Table 2: ENN model learning parameters setting

Parameters Detailed settings

Number of training sessions 1000
Learning rate 0.01

(Continued)
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Table 2 (continued)

Parameters Detailed settings

Minimum error of training target 1 × 10−6

Momentum factor 0.01
Minimum performance gradient 1 × 10−6

The MSE results of training samples solved by different hidden layer nodes in Case I and Case II
are shown in Tables 3 and 4.

Table 3: Calculation of the MSE of training samples with different numbers of hidden layer nodes
(Case I)

N 3 4 5 6 7 8 9 10 11 12

MSE 0.1233 0.0399 0.3131 0.0330 0.0237 0.5582 0.4852 0.0157 0.0079 0.0348

Table 4: Calculation of the MSE of training samples with different numbers of hidden layer nodes
(Case II)

N 3 4 5 6 7 8 9 10 11 12

MSE 0.2431 0.1701 0.3874 0.1382 0.0137 0.2362 0.1563 0.2708 0.0181 0.3871

As shown in Table 3, when the number of hidden layer nodes is 11, the MSE of the training samples
is minimized (Case 1), so Case 1 is determined to construct a 7-11-1 three-layer ENN model. Similarly,
as shown in Table 4, when the number of hidden layer nodes is 7, the MSE of the training samples is
minimized (Case 2), so Case 2 is determined to construct the 7-7-1 three-layer ENN model.

To validate the prediction accuracy of the IRSA-ENN, Huang Qiyu wax deposition prediction
(HUANG), ENN, Whale optimization algorithm-ENN (WOA-ENN), and RSA-ENN models are
established and compared [36,37]. For easy comparison and analysis of the forecast results, fixed
random seeds are used to ensure the consistency of each running result of each model, the iterative
optimization times of each model are set to 150 times and the population size is 50. The initialization
constants of the WOA-ENN model are a = [0,2], b = 1, l = [−1,1]. The initialization constants of RSA-
ENN and IRSA-ENN are α = 0.1 and β = 0.005. The results of the predictions of various models
for the two wax deposition rate Cases are shown in Tables 5–7, Figs. 9 and 10, along with the relative
error results.
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Table 5: Prediction results and relative errors of different models (Case I)

No. Actual
value

HUANG ENN WOA-ENN RSA-ENN IRSA-ENN

P R P R P R P R P R

1 17.033 18.557 8.9522 18.4059 8.0600 16.9269 0.6232 16.9465 0.5078 17.0145 0.1087
2 21.261 22.452 5.6059 22.7987 7.2324 21.2828 0.1027 21.1630 0.4611 21.3387 0.3653
3 28.390 27.455 2.9935 31.2323 10.0116 28.7643 1.3184 28.2890 0.3559 28.3989 0.0314
4 22.837 23.578 3.2471 25.1524 10.1388 23.1690 1.4539 22.9192 0.3598 22.8118 0.1103
5 13.575 15.331 12.935 16.1136 18.7004 13.5874 0.0916 13.5865 0.0844 13.4660 0.8032

Table 6: Prediction results and relative errors of different models (Case II)

No. Actual
value

HUANG ENN WOA-ENN RSA-ENN IRSA-ENN

P R P R P R P R P R

1 12.11 16.213 33.884 12.0819 0.2319 12.2489 1.1469 12.140 0.2558 12.0338 0.6290
2 9.60 9.392 2.1661 8.8676 7.6295 9.5700 0.3127 9.5956 0.0454 9.6023 0.0241
3 8.66 6.371 26.426 8.6799 0.2296 8.5769 0.9595 8.7492 1.0301 8.6527 0.0848
4 18.09 24.025 32.813 18.9128 4.5482 17.9921 0.5411 17.7921 1.6469 18.2355 0.8045
5 16.43 13.512 17.759 21.2316 29.2244 16.6630 1.4179 16.5435 0.6911 16.4846 0.3325

Table 7: Comparison of prediction accuracy of different models

Case I Case II
Model MAPE/% RMSE R2 Model MAPE/% RMSE R2

HUANG 6.7469 / 0.99127 HUANG 22.609 / 0.63418
ENN 10.8286 2.1970 0.98660 ENN 8.3727 2.2032 0.88435
WOA-ENN 0.7180 0.2290 0.99941 WOA-ENN 0.8756 0.1349 0.99849
RSA-ENN 0.3538 0.0826 0.99973 RSA-ENN 0.7338 0.1487 0.99847
IRSA-ENN 0.2837 0.0616 0.99988 IRSA-ENN 0.3749 0.0774 0.99977

It can be seen from Tables 5–7, Figs. 9 and 10 that the IRSA-ENN model has higher prediction
accuracy than the HUANG, RSA-ENN, WOA-ENN, and ENN models, and its correlation coefficient
R2 is closer to 1, and its MAPE is only 0.2837% and 0.3749%, respectively, which is smaller than other
models. In addition, the prediction accuracy of WOA-ENN and RSA-ENN models for two groups
of waxy crude oil wax deposition rate is obviously higher than that of the ENN model, which further
proves the effectiveness of using an optimization algorithm to improve the ENN model. Generally
speaking, the IRSA-ENN model has ideal results for predicting wax deposition rate data of different
groups of crude oil. The model is suitable for describing wax deposition in waxy crude oil pipelines
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in the petroleum industry and has a certain guiding significance for guiding the pigging of crude oil
pipelines.
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Figure 9: Comparison of prediction results of different models
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Figure 10: Comparison of prediction errors between IRSA-ENN and ENN models

According to the prediction results of wax deposition in two groups of crude oil pipelines by the
ENN model, the prediction accuracy is poor. This is due to the fact that the Elman trains function of
the ENN model uses the BP training function to modify the weights, which leads to the defect that the
gradient descent method easily falls into local minima when solving the partial derivative of E(k) to
the weights. When the ENN is used to create the prediction model, the initial weights and thresholds
are usually initialized by pseudo-random numbers, which leads to the poor stability of the trained
prediction model, and then leads to the lack of generalization ability (the adaptability of training and
learning to new samples).
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The improved ENN model can be globally optimized for the randomly initialized weights and
thresholds, which is beneficial to: (1) overcoming as much as possible the defects of slow convergence
speed and easily falls into local minima when the ENN model is adjusted by the gradient descent
method in the training process due to improper initial weights and thresholds; (2) it avoids the defect
that when using the random method to assign weights and thresholds, it is easy to lead to a well-
trained model, and it is difficult to obtain accurate prediction results when predicting other samples,
and improving the generalization ability of ENN model.

In addition, according to the results of IRSA-ENN and RSA-ENN for waxy crude oil pipeline
wax deposition prediction, the MAPE and RMSE of RSA-ENN for Case I are 0.3538% and 0.0826%,
respectively, and the MAPE and RMSE for Case II are 0.7338% and 0.1487%, respectively. The MAPE
and RMSE of the IRSA-ENN model for Case I are 0.2837% and 0.0616%, respectively, and the MAPE
and RMSE for Case II are 0.3749% and 0.0774%, respectively. Compared with the RSA-ENN model,
the IRSA-ENN model has higher prediction accuracy and has more obvious advantages in the wax
deposition rate of crude oil pipelines. This also proves the effectiveness of using PWLCM to improve
the RSA. The reason is that the PWLCM can initialize the population sequence more randomly, and
then expand the search space of the population, which overcomes the defect of insufficient global
search ability of RSA in the initial stage of iterative optimization to a certain extent.

5 Conclusion

Aiming at the problem of wax deposition rate prediction of crude oil pipelines, a new method
based on the IRSA-ENN model for wax deposition rate prediction is proposed in this paper. The new
model is trained and verified by using two sets of measured data of the wax deposition rate of crude
oil pipelines with different physical properties, and the following conclusions are obtained.

1) Aiming at the deficiency of the ENN model (generalization ability is not strong, easy to fall into
local minimum value), an IRSA-ENN model is proposed, and the wax deposition rate of the crude
oil pipeline is predicted by two Cases. The results show that the MAPE of the IRSA-ENN prediction
model is only 0.2837% and 0.3749%, respectively, which has good prediction accuracy.

2) Using PWLCM, the RSA is improved. By comparing RSA-ENN and IRSA-ENN models for
two groups of wax deposition rate prediction data of crude oil pipelines, it can be seen that the IRSA
has better optimization performance.

3) Compared with the ENN model, WOA-ENN model, and RSA-ENN model, the prediction
accuracy of the IRSA-ENN model has obvious advantages. It effectively solves the shortcomings of
the ENN model, such as insufficient generalization ability, and easily falls into minimum value. This
method provides a new way for accurate prediction of wax deposition rate, can effectively meet the
demand of wax deposition rate prediction in crude oil pipelines under actual working conditions, and
provides a new decision-making basis method for pigging cycle formulation and safety management
of waxy crude oil pipeline.
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Appendix A

Table 8: Training sample of experimental data of wax deposition rate of waxy crude oil in Kenli Oilfield
(Case I) [34]

Number X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8

1 0.9 48 45 15.681 26.135 0.29 4.615 9.127
2 0.9 46 43 17.352 28.919 0.37 4.619 10.353
3 0.9 39 36 30.77 51.283 1.41 4.626 24.826
4 0.9 38 35 35.264 58.773 1.78 4.626 29.116
5 0.9 35 32 67.271 136.3 3.11 4.456 20.430
6 0.9 33 30 84.27 355.428 4.01 4.623 8.585
7 0.9 32 29 85.94 385.235 4.44 4.625 5.819
8 0.9 50 45 14.383 23.972 0.29 7.614 13.505
9 0.9 49 45 14.994 24.99 0.29 6.122 11.356
10 0.9 48 38 15.681 26.135 0.84 14.814 45.629
11 0.9 45 38 18.38 30.634 0.84 10.537 33.467
12 0.9 40 38 27.406 45.677 0.84 3.103 12.578
13 0.9 48 43 15.681 26.135 0.37 7.616 15.341
14 0.9 47 42 16.461 27.434 0.41 7.616 16.006
15 0.9 44 39 19.581 32.635 0.63 7.616 20.344
16 0.9 42 37 22.707 37.845 1.25 7.614 35.270
17 0.9 40 35 27.406 45.677 1.78 7.611 43.561
18 0.9 38 33 35.264 58.773 2.65 7.607 55.782
19 0.18 48 38 3.136 26.135 0.84 8.661 58.230
20 0.18 45 38 3.676 30.634 0.84 6.168 43.643
21 0.18 40 38 5.481 45.677 0.84 1.819 17.083
22 0.18 38 35 7.053 58.773 1.78 2.713 39.127
23 0.18 48 38 7.666 26.135 0.84 11.781 51.060
24 0.44 45 38 8.986 30.634 0.84 8.391 37.855
25 0.44 42 38 11.101 37.845 0.84 4.885 24.331
26 0.44 40 38 13.399 45.677 0.84 2.475 14.515

(Continued)
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Table 8 (continued)

Number X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8

27 0.44 38 35 17.24 58.773 1.78 3.689 33.421
28 0.62 48 38 10.803 26.135 0.84 13.177 48.423
29 0.62 45 38 12.662 30.634 0.84 9.381 35.727
30 0.62 38 35 24.293 58.773 1.78 4.122 31.331

Table 9: Prediction sample of experimental data of wax deposition rate of waxy crude oil in Kenli
Oilfield (Case I) [34]

Number X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8

1 0.9 41 38 24.794 41.324 0.84 4.625 17.033
2 0.9 42 38 22.707 37.845 0.84 6.128 21.261
3 0.18 42 38 4.541 37.845 0.84 3.591 28.390
4 0.62 42 38 15.643 37.845 0.84 5.458 22.837
5 0.62 40 38 18.88 45.677 0.84 2.766 13.575

Table 10: Training sample of experimental data of wax deposition rate of waxy crude oil in Huachi
operation area (Case II) [35]

Number Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8

1 33 30 29.31 5.69 0.29 2.24 2.62 11.90
2 35 32 25.84 1.51 0.09 1.23 2.10 11.63
3 35 32 25.66 2.50 0.15 1.64 2.10 10.91
4 35 32 25.49 4.96 0.29 2.24 2.10 10.13
5 35 32 25.40 7.42 0.44 2.60 2.10 9.75
6 35 32 25.35 9.87 0.58 2.87 2.10 9.50
7 35 32 25.30 14.78 0.88 3.23 2.10 9.19
8 37 34 22.34 4.36 0.29 2.24 1.52 7.51
9 38 35 20.97 4.10 0.29 2.24 1.16 6.54
10 40 37 18.79 1.10 0.09 1.23 0.63 6.40
11 40 37 18.67 1.83 0.15 1.64 0.63 6.00
12 40 37 18.56 3.64 0.29 2.24 0.63 5.57
13 40 37 18.51 5.44 0.44 2.60 0.63 5.36
14 40 37 18.48 7.24 0.59 2.87 0.63 5.22
15 40 37 18.44 10.84 0.88 3.23 0.63 5.05
16 44 41 14.81 2.91 0.30 2.24 0.34 6.20
17 45 42 14.04 2.76 0.30 2.24 0.34 6.77
18 46 43 13.33 2.63 0.30 2.24 0.37 7.20
19 48 45 12.05 2.38 0.30 2.24 0.46 7.11
20 49 46 11.47 2.27 0.30 2.24 0.52 5.95

(Continued)
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Table 10 (continued)

Number Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8

21 35 30 25.72 5.01 0.29 3.72 2.62 15.96
22 37 32 23.03 1.35 0.09 2.08 2.10 14.42
23 37 32 22.77 2.22 0.15 2.75 2.10 13.54
24 37 32 22.53 4.40 0.29 3.72 2.10 12.59
25 37 32 22.35 8.72 0.59 4.76 2.10 11.81
26 37 32 22.28 13.04 0.88 5.35 2.10 11.42
27 42 37 16.98 1.00 0.09 2.08 0.51 9.92
28 42 37 16.82 1.65 0.15 2.75 0.51 9.31
29 42 37 16.58 4.88 0.44 4.33 0.51 8.33
30 42 37 16.54 6.49 0.59 4.76 0.51 8.12
31 42 37 16.5 9.71 0.88 5.35 0.51 7.86
32 42 35 16.78 3.29 0.29 7.44 0.77 11.30
33 40 30 19.09 3.74 0.29 7.44 1.93 22.46

Table 11: Prediction sample of experimental data of wax deposition rate of waxy crude oil in Huachi
operation area (Case II) [35]

Number Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Y 7 Y 8

1 37 32 22.41 6.56 0.44 4.33 2.10 12.11
2 40 35 18.71 3.66 0.29 3.72 0.88 9.60
3 42 37 16.66 3.27 0.29 3.72 0.51 8.66
4 37 30 22.72 4.43 0.29 4.73 2.62 18.09
5 45 35 14.39 2.83 0.30 7.44 0.64 16.43

Innovation

1. Aiming at correcting the defects of the traditional ENN, such as the tendency to fall into the
local minimum value and weak generalization ability, an IRSA is proposed to improve the prediction
model of ENN, which can optimize the weights and thresholds initialized by the traditional ENN, so
the prediction accuracy of the model can be greatly improved.

2. The RSA cannot achieve a good balance between global search and local search, and it will
fall into the local optimal solution. PWLCM is introduced to initialize the population and expand the
search space of the population. A novel IRSA is proposed.
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